721三角形内角和教案

合集下载

《三角形内角和》数学教案(通用16篇)

《三角形内角和》数学教案(通用16篇)

《三角形内角和》数学教案(通用16篇)《三角形内角和》篇1大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。

请学生画一个三角形,要求:有两个直角。

为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。

板书课题。

(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

三角形内角和是多少度呢?指名汇报。

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

三角形内角和教学设计(5篇)

三角形内角和教学设计(5篇)

三角形内角和教学设计(5篇)三角形内角和教学设计(5篇)三角形内角和教学设计范文第1篇教学目标:1.引导同学试验发觉三角形内角和是180°。

2.学会应用三角形内角和的学问解决实际问题。

3.发挥同学的主体性,培育同学小组合作、探究学习的力量。

教学重点:理解把握三角形的内角和是180°。

教学难点:引导同学通过试验探究得出三角形的内角和是180°。

教学预备:量角器、锐角(直角、钝角)三角形、剪刀。

教学流程:常规口算。

(小老师组织同学口算练习,老师小结,引出课题。

)(设计意图:课前口算练习增加了同学的口算意识,进而提高了同学的计算力量,为笔算奠定良好的基础。

)一、引导自学小老师组织同学读学习目标和自学提示。

(一)学习目标1.能试验发觉三角形内角和是180°。

2.学会应用三角形内角和的学问解决实际问题。

(二)自学提示1.想一想,什么是三角形的内角和内角和?(三角形相邻两条边的夹角叫做三角形的内角,三角形三个内角的度数和叫做三角形的内角和。

)2.动手量一量、折一折、拼一拼、剪一剪、摆一摆,验证三角形的内角和是多少。

3.质疑、解疑、存疑。

(同学自学时,个人发觉问题先小组内解决,假如小组内解决不了再全班沟通解决。

)(学习时间5分钟,学习方式采纳独学、对学、组学,小组学习由小组长组织。

要求同学做好课堂笔记,展现时由小组长分工。

)(三)同学自主合作学习师:下面请同学们自学看书,在自学时可以动笔画一画、记一记,做好分工,整理成条。

(学习时间为5分钟,学习方式采纳独学、对学和组学,要求同学做好自学笔记,组长关注学困生。

老师巡察,关注同学的学习状况,把控学习时间。

)(点评:小老师精彩的组织力量给课堂增加了一道亮丽的风景线,学习目标简洁、明白、易懂,自学提示的设计简洁又不失针对性,突出重点。

教学过程重在培育同学主动探究、动手操作的力量,进展同学的空间观念和规律思维力量。

)二、指导展现同学展现学习成果。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?我们通常所说的角就是三角形的内角。

为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。

用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。

〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。

是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。

《三角形内角和》教学设计精选5篇

《三角形内角和》教学设计精选5篇

《三角形内角和》教学设计精选5篇角形内角和教学设计篇一课题三角形的内角和手记教学目标1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生:45°、90°、45°。

生:30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

《三角形的内角和》教案(精选10篇)

《三角形的内角和》教案(精选10篇)

《三角形的内角和》教案《三角形的内角和》教案(精选10篇)《三角形的内角和》教案篇1教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

教学目标:1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件、各种三角形等。

学具准备:三角形、剪刀、量角器等。

教学过程:一、出示课题,复习旧知1、认识三角形的内角。

(1)复习三角形的概念。

(2)介绍三角形的“内角”。

2、理解三角形的内角“和”。

【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

二、动手操作,探究新知1、通过预习,认识结论,提出疑问2、验证三角形的内角和(1)用“量一量、算一算”的方法进行验证①汇报测量结果②产生疑问:为什么结果不统一?③解决疑问:因为存在测量误差。

(2)用“剪一剪、拼一拼”的方法进行验证①指导剪法。

①分别拼:锐角三角形、直角三角形、钝角三角形。

三角形内角和教案4篇

三角形内角和教案4篇

三角形内角和教案4篇三角形内角和教案篇1教材分析教材的小标题为“探究与发觉”,说明这部分内容要求同学自主探究,并发觉有关三角形内角和性质。

教材创设了一个有趣的问题情境,以此激发同学的爱好,引出探究活动。

首先,老师应使同学明确“内角”的意义,然后引导同学探究三角形内角和等于多少。

大多数同学会想到用测量角的方法,此时就可以安排小组活动。

每组同学可以画出大小、外形不同的假设干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。

最末发觉,大小、外形不同的三角形,每一个三角形内角和都在180°左右。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。

二是把三个内角折叠在一起,发觉也能组成一个平角。

每个活动都要使同学动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探究过程。

另外,教材还从两个方面引导同学应用三角形的内角和:一是依据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。

学情分析同学在前面的学习中已经认识了三角形的基本特征及分类,并且在四班级〔上册〕教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;同学通过前几年的学习,已具备了初步的动手操作技能和主动探究技能以及合作学习的习惯,所以在同学具备这些数学知识和技能的基础上,来引导同学探究和发觉三角形内角和是180°这一性质。

要让同学明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。

教学目标1、知识目标:让同学探究与发觉三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:11.2.2三角形的内角和
年级:八年级(上) 课型:新授
时间:2014.3 科目:数学
教学目标:
知识技能:1.会用拼合的方法探究三角形内角和。

并会证明.
2.掌握内角和定理及简单应用.
数学思考:通过定理的多种证法,初步体会思维的多向性,引导学生个性发展.
解决问题:通过探究三角形内角和,尝试从不同的角度寻求解决问题的方法。

情感态度:通过猜想、推理等活动,感受数学活动充满着探索以及数学结论的确定性,激发学生的学习热情.
重点:探索三角形内角和等于180·.
难点:三角形内角和的几种证明.
教具:课件直尺
问题与情境师生行为设计意图
一、复习提问
1.三角形的高、中线、角平分线各是如何定义的?
2.三角形按角可分为哪三类三角形?教师提出问题
学生边画图边说出定义
通过复习提问,巩固所学
知识。

二、三角形内角和定理的实
践探索
1.在纸上画一个三角形,将它的内角剪下,试着拼拼看,你能得出什么结论?
2. 如果我们不用剪、拼办法,可不可以用推理论证的方法来说明上面的结论的正确性呢?
已知ABC
∆,说明
180
=

+

+
∠C
B
A,用上面的拼图方法给你什么启示?你有几种方法?
3.除了这两种你还有其它证明的方法吗?
教师组织学生动手操作
学生画出一个三角形,将
内角剪下,拼拼看。

教师引导学生得出结论
教师根据学生说法画出
图形,写出已知、求证
学生探讨后叙述理由
教师板演证明过程
第二种让学生自己画图
证明板演,再集体评议。

学生讨论后叙述
通过学习动手拼图感性得
出三角形内角和为180·的结
论,再通过数学推理得邮结
论,使学生牢固掌握三角形内
角各定理。

三、三角形内角和定理的应

1.例:如图,C岛在A岛的北教师出示问题,帮学生一通过应用举例使学生会用
偏东
50方向,B岛在A岛的北偏东
80方向,C岛在B岛的北偏西
40方向,从C岛看A、B两岛的视角ACB
是多少度?
2.你还能想出这个例题的其他解法吗?起审题。

学生思考,交流叙述思
路。

教师板书过程
教师提出问题
学生充分探讨、交流后分
小组在黑板上板演出来。

集体评议。

三角形内角和定理。

通过探讨,使学生充分思考,
让其发散思维,得出题多解的
思路。

四、练习、小结、作业
练习:1.P13T1,2
2.补充练习
⑴角形中最大的角是
70,那么这个三角形是锐角三角形()
⑵一个三角形中最多只有一个钝角或直角()⑶一个等腰三角形一定是锐角三角形()
⑷三角形最少有一个角不大于
60()
小结:
学习了本节你有什么收获?
作业:
P16T1,2学生练习
教师巡视指导
教师帮学生共同小结
布置作业
通过练习、小结使学生进
一步会运用三角形内角和定
理,已知两个角可以求第三个
角或已知各角关系求各角。

板书设计:
11..2.1 三角形内角和定理三角形的内角和为180·
例题:。

相关文档
最新文档