实验19:表面张力及表面吸附量的测定

合集下载

物化实验报告 溶液中的吸附作用和表面张力的测定

物化实验报告 溶液中的吸附作用和表面张力的测定

最大气泡压力法测量溶液中的吸附作用和表面张力摘要:本实验采用最大气泡法测量液体的表面张力。

通过测量不同浓度下正丙醇的表面张力,计算吸附量,求出正丙醇分子的横截面积。

并探讨了表面张力的性质、表面吸附,加深对表面自由能的理解和表面活性剂的了解。

关键词:最大气泡法 表面张力 吸附 横截面积0. 引言在日常生活中, 我们对见到的一些现象可能已经习以为常,比如, 下过雨后, 我们可以见到树叶、草上的小水珠都接近於球形;不小心打碎了体温计后, 里面的水银掉到地上, 小水银滴也呈球形.其实这些现象都与表面张力有关.液体与气体相接触时, 会形成一个表面层, 在这个表面层内存在着的相互吸引力就是表面张力, 它能使液面自动收缩.表面张力是由液体分子间很大的内聚力引起的.处於液体表面层中的分子比液体内部稀疏, 所以它们受到指向液体内部的力的作用, 使得液体表面层犹如张紧的橡皮膜, 有收缩趋势, 从而使液体尽可能地缩小它的表面面积.我们知道, 球形是一定体积下具有最小的表面积的几何形体.因此, 在表面张力的作用下, 液滴总是力图保持球形, 这就是我们常见的树叶上的水滴按近球形的原因.表面张力与我们生活息息相关。

1、实验部分1.1实验原理:物体表面的分子和内部分子所处的境况不同,因而能量也不同,如图11-1,表面层的分子受到向内的拉力,所以液体表面都有自动缩小的趋势。

如要把一个分子由内部迁移到表面,就需要对抗拉力而作功,故表面分子的能量比内部分子大。

增加体系的表面,即增加了体系的总能量。

体系产生新的表面(∆A )所需耗费功(W )的量,其大小应与∆A 成正比。

-W =σ∆A (12-1) 如果∆A =1m 2,则-W =σ,即在等温下形成1m 2新的表面所需的可逆功。

故σ称为单位表面的表面能,其单位为N ·m -1。

这样就把σ看作为作用在界面上每单位长度边缘上的力,通常称为表面张力。

它表示表面自动缩小的趋势的大小。

物理化学-表面张力及表面吸附量的测定-175

物理化学-表面张力及表面吸附量的测定-175

1.实验数据记录与处理表:2.质量分数与浓度转换:3.实验曲线:实验温度 T=28℃ 水的表面张力 σ0=0.07150N ▪m -1序号 ω乙醇 最大压差Δp/Pa仪器常数K/mσ/ N ▪m -1 Z/ N ▪m -1 Γmol ▪m -2 1 2 3 平均 1 0%(水) 541 541 542 541 1.339×10-40.07244 //2 5% 414 415 415 415 0.05557 0.01112 4.441×10-63 10% 372 372 373 372 0.04981 0.01414 5.648×10-6 4 15% 304 302 302 303 0.040570.01433 5.723×10-6 5 20% 272 272 271 272 0.03642 0.014745.887×10-66 25% 264 265 263 264 0.03535 0.01398 5.584×10-67 30% 239 239 239 239 0.03200 0.01368 5.464×10-6 8 40% 218 218 217 218 0.02919 0.01101 4.397×10-6 90%(水)5345355335340.07150/ /计算公式:最大p K ∆=σ最大p K ∆•=σZ= σ0i -σiRTZ=Γ ω乙醇 密度ρ/kg ▪m -3浓度c/mol ▪L -10%(水) 998.20 05% 989.34 1.0737 10% 981.89 2.1313 15% 975.17 3.1751 20% 968.54 4.2046 25% 961.58 5.2180 30% 953.72 6.2105 40%935.138.1192计算公式:Mc ρω=实验曲线分析:①“表面张力σ-浓度c 图”:当乙醇浓度不断增大,表面张力随之减小,二者成反比关系。

表面张力的测量和应用

表面张力的测量和应用

表面张力的测量和应用表面张力是指液体表面上的分子间吸引力所产生的张力,是液体表面强度的度量。

通过测量表面张力,可以获得液体表面的物理和化学性质,从而为各种应用提供有效的参考。

一、表面张力的计算和测量表面张力可以通过两种方法进行计算和测量:接触角法和杂质提升法。

1. 接触角法接触角法是利用液体在固体表面上的接触角来计算表面张力。

接触角是液体与固体表面接触的角度,它可根据接触线和水平面形成的切线得出。

接触角的大小反映了液体与固体之间的相互吸引力大小。

一般来说,角度越小,液体越容易与固体相互吸附,表面张力越小。

2. 杂质提升法杂质提升法是通过往液体表面添加一定量的杂质,从而减小表面张力并测得表面张力大小。

添加的杂质通常为表面活性剂,如十二烷基硫酸钠、十二烷基苯磺酸钠等。

通过测量液体表面杂质提升前后的高度差,可以计算出表面张力的大小。

二、表面张力的应用表面张力主要应用于以下领域:1. 表面润湿性液体经过表面张力的影响,在固体表面上形成了一种液滴状结构。

这种液滴结构对于在固体表面上的液体润湿性有很大影响。

表面张力越小,液体在固体表面上的渗透性越强,润湿性越好。

在工业上,这种性质得到广泛应用,如涂料润滑剂等。

2. 微粒分散性表面张力对于微粒分散性的影响也很大。

在液体中添加适量的表面活性剂,可以减小液体表面张力,使得固体颗粒更容易分散在液体中,提高微粒分散度。

这种方法在制药、化工和材料科学等领域得到广泛应用。

3. 液滴稳定性表面张力对于液滴稳定性也有影响。

液滴稳定性可以用来判断液体的纯度和化学性质。

液滴不稳定的原因通常是表面张力不足或液滴大小不均。

因此,在制药和化学工业中,经常通过测量液滴大小和稳定性来测试化学反应、物质的纯度等。

总之,表面张力的测量和应用在各种领域都具有重要意义。

通过了解表面张力的大小和变化,可以更好地掌握物质的物理和化学性质,为工业生产和实验研究提供有效的依据。

溶液表面张力的测定实验报告

溶液表面张力的测定实验报告

溶液表面张力的测定实验报告一、实验目的1、掌握最大气泡压力法测定溶液表面张力的原理和方法。

2、测定不同浓度正丁醇水溶液的表面张力,计算表面吸附量和表面活性剂分子的横截面积。

3、了解表面张力与溶液浓度之间的关系,加深对表面化学基本概念的理解。

二、实验原理1、表面张力在液体内部,每个分子都受到周围分子的吸引力,合力为零。

但在液体表面,分子受到指向液体内部的合力,使得液体表面有自动收缩的趋势。

要增大液体的表面积,就需要克服这种内聚力而做功。

在温度、压力和组成恒定时,增加单位表面积所做的功即为表面张力,用γ表示,单位为 N·m⁻¹或 mN·m⁻¹。

2、最大气泡压力法将毛细管插入待测液体中,缓慢打开滴液漏斗的活塞,让体系缓慢减压。

当压力差在毛细管端产生的作用力稍大于毛细管口液体的表面张力时,气泡就会从毛细管口逸出。

此时,气泡内外的压力差最大,这个最大压力差可以通过 U 型压力计测量得到。

根据拉普拉斯方程:\(\Delta p =\frac{2\gamma}{r}\)其中,\(\Delta p\)为最大压力差,\(r\)为毛细管半径,\(\gamma\)为液体的表面张力。

对于同一根毛细管,\(r\)是定值。

只要测出\(\Delta p\),就可以算出液体的表面张力\(\gamma\)。

3、表面吸附与吉布斯吸附等温式在一定温度下,溶液的表面张力随溶液浓度的变化而变化。

当溶质能降低溶剂的表面张力时,溶质在表面层中的浓度比溶液内部大,称为正吸附;反之,当溶质能升高溶剂的表面张力时,溶质在表面层中的浓度比溶液内部小,称为负吸附。

吉布斯吸附等温式为:\(\Gamma =\frac{1}{RT}\frac{d\gamma}{dC}\)其中,\(\Gamma\)为表面吸附量(单位:mol·m⁻²),\(R\)为气体常数(\(8314 J·mol⁻¹·K⁻¹\)),\(T\)为绝对温度,\(C\)为溶液浓度,\(\frac{d\gamma}{dC}\)为表面张力随浓度的变化率。

最大气泡压力法测定溶液中吸附作用和表面张力 实验报告

最大气泡压力法测定溶液中吸附作用和表面张力 实验报告
-1-
最大气泡压力法测定溶液中吸附作用和表面张力
PB10207071 阮亮
生命学院
【摘要】
表面张力是描述液体表面自动缩小趋势的大小的一种性质。 本实验通过最大气泡 压力法测量溶液表面张力, 根据吉布斯公式和朗格缪尔等温方程式研究吸附量 与溶液浓度及表面张力的关系研究吸附作用和溶液浓度的定量关系。结果表明, Γ与c 的关系曲线呈阶梯型走势。同时,实验还给出正丁醇分子横截面积的数值。
-3
仪器:
型号及名称 DMP-2C 型数字式微差测 量计 HK-2A 超级恒温水浴 恒温套管 毛细管 250mL 分液漏斗 100mL 容量瓶 2mL 移液管 滴管 生产厂家 南京大学应用物理研究所 南京大学应用物理研究所 (半径 0.15~0.20mm ) 容积 250mL 量程 100mL 仪器参数 数量 1台 1台 1支 1支 1个 7个 1支 1支
3.实验步骤
1.
毛细管常数的测定 打开恒温水浴,使其温度稳定于 30℃。取一直浸泡在洗液中的毛细管,依 次用洗液,蒸馏水反复清洗若干次,玻璃套管加上蒸馏水插上毛细管,用 套管下端的开关调节液面恰好与毛细管端面相切,使样品在其中恒温 10 分钟。在分液漏斗中加入适量的水并与吸滤瓶连接好。然后调节分液漏斗 下的活塞使水慢慢滴入吸滤瓶中,这时体系压力逐渐增加,直至气泡由毛 细管口冒出,细心调节出泡速度,使之在 5~10 秒内出一个。记录气泡爆
( ) T <0,Γ >0,称为表面活性物质,另一类 c
) T >0,Γ <0,称为非表面活性物质。正丁醇是表面活性物质,其水溶 c 液的浓度越大,表面张力越小,在它的σ -C 曲线中取各点斜率代入 Gibbs 吸附公式即得不同浓度下的Γ 值。 在一定温度下,吸附量与溶液浓度之间的关系由 Langmuir 等温式表示为: Kc 1 K c

物理化学实验报告-溶液表面张力的测定及等温吸附(2)

物理化学实验报告-溶液表面张力的测定及等温吸附(2)

p最大 = p大气 − p系统 = ∆p
毛细管内气体压力必须高于大试管内液面上压力的附加压力以克服气泡的表面张力,此附加压力∆p与 表面张力γ成正比,与气泡的曲率半径R成反比,其关系式为:
2γ ∆p = R
如果毛细管半径很小,则形成的气泡基本上是球形的。随着气泡的形成曲率半径逐渐变小,直到形成

半球形。这时曲率半径R与毛细管内半径r相等,曲率半径达到最小值。
数字式微压差测量仪当表面张力仪的活塞使水缓慢下滴而减小系统压力这样毛细管内液面上受到一个比试管中液面上大的压力当此压力差在毛细管尖端产生的作用力稍大于毛细管管口液体的表面张力时气泡就从毛细管口逸出这一最大压力差可由数字式微压差测量仪测出
1.精密恒温水槽;2.带有毛细管的表面张力仪; 3.滴液漏斗;4.数字式微压差测量仪
答:实验中,气泡的速度对实验数据有很大的影响。速度过快,会使数据变大。因此,保持相同的气泡速
度对于实验的成败有很大的关系。而实验装置中,随着滴液漏斗中水的不断流出,滴液的速度会减慢,装
置的此处有待改进。另外,毛细管的竖直以及毛细管进入液面的深度,对于测定结果都有一定的影响,实

验中应该注意。实验的数据处理也是很关键的一步,对测量结果有较大影响。
=
71.97 280.7
=
0.2564
mN

m−1

Pa−1
2. 求出各浓度正丁醇溶液的表面张力。
γ溶液 = K∆p溶液
表 1 正丁醇溶液表面张力的测定数据记录表
c mol ∙ L−1
0
0.02 0.04 0.06 0.09 0.12 0.16 0.2 0.24
∆pm1 Pa ∆pm2 Pa ∆pm3 Pa ∆pm Pa γ mN ∙ m−1

溶液表面张力的测定及等温吸附

溶液表面张力的测定及等温吸附

一、实验目的和要求1、加深理解表面张力、表面吸附等概念以及表面张力和吸附的关系。

2、掌握用最大气泡法测定溶液表面张力的原理和技术。

二、实验内容和原理最大气泡法是测定液体表面张力的方法之一,它的基本原理如下:当玻璃毛细管一端与液体接触,并往毛细管内加压时,可以在液面的毛细管口处形成气泡。

气泡的半径在形成过程中先由大变小,然后再由小变大。

设气泡在形成过程中始终保持球形,则气泡内外的压力差△p (即施加于气泡的附加压力)与气泡的半径r 、液体表面张力σ之间的关系可又拉普拉斯(Laplace )公式表示,即2p r σ∆=(1)显然,在气泡形成过程中,气泡半径由大变小,再由小变大,所以压力差△p 则由小变大,然后再由大变小。

当气泡半径r 等于毛细管半径R 时,压力差达到最大值max p ∆。

因此max 2p R σ∆=(2)由此可见,通过测定R 与max p ∆,即可求得液体的表面张力。

由于毛细管的半径较小,直接测量R 误差较大。

通常用一已知表面张力为0σ的液体(如水、甘油等)作为参考液体,实验测得其对应的最大压力差为0,maxp ∆。

可得被测液体的表面张力σ1=σ2*(△p1/△p2)=K △p1 (3)本实验中用DMP-2B 型数字式微压差测量仪测量,该仪器可直接显示以Pa 为单位的压力差。

对纯溶剂而言,表面层与内部的组成是相同的,但对溶液来说却不然。

当加入溶质后,溶剂的表面张力会发生变化。

根据能量最低原则,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部的大,反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低。

这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。

显然,在指定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入溶质的量(即溶液的浓度)有关,从热力学方法可知它们间的关系遵守吉布斯吸附方程:(4)式中:Γ吸附量(mol/m2);σ为表面张力(N/m );T 为绝对温度;c 为溶液浓度(mol/m3);R 为气体常数,R=8.314J ·mol -1·K -1。

表面吸附量的测定

表面吸附量的测定

实验十二 表面吸附量的测定一、 实验目的1、 用气泡最大压力法测定十六烷基三甲基溴化铵水溶液的表面张力。

从而计算溶液在某一浓度C 时的表面吸附量Γ; 2、 学会使用表面张力试验组合装置; 3、 学会σ对lnC 作图求Γ。

二、 实验原理1、 在指定温度下,纯液体的表面张力是一定的,如果在液体中加入溶质而成溶液时,情况就发生了变化。

我们说溶液的表面张力不仅与温度有关,而且也与溶液的种类,溶液浓度有关。

这是由于溶液中部分溶质分子进入到溶液表面,使表面层的分子组成发生了改变,分子间引力起了变化,因而表面张力也随着改变,根据实验结果证明,加入溶质以后表面张力发生改变的同时还发现溶液表面层的浓度与内部浓度有何差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液浓度表面吸附作用。

按吉布斯吸附等温式Cd d RTdcd RTC ln 1σσ∙-=∙-=Γ,其中Γ代表溶液浓度为C 时的表面吸附量(mol/cm 2),C 代表平衡时溶液浓度(mol/1),R 为气体常数(8315×107mol ·K ),T 为吸附时的温度。

由上(1)式可看出,在一定温度时,溶液表面吸附量Γ是与平衡时溶液浓度C 和表面活度dcd σ或cd d ln σ成正比关系。

当dcd σ<0时,Γ>0,表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸附。

我们把能产生显著正吸附的物质(即有显著降低溶液表面张力的物质)称为表面活性物质。

本实验用表面活性物质十六烷基三甲基溴化铵配制成一系列不同浓度的水溶液,分别测定这些溶液的表面张力σ,然后以σ对lgC 作图,得一曲线,求曲线上某一点的斜率(d σ/dlgC ),可计算相应于该点浓度时溶液的表面吸附量Γ。

2、 本实验测定各溶液的表面张力采用气泡最大压力法,此法原理的当毛细管与液面相接触时,由毛细管内加压(或在溶液体系内减压)则可以在液面的毛细管出口处形成气泡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档