数学模型应用问题(三)(含答案)
数学建模答案 (3)

一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:为了某种特定的目的将原型的某一部分信息简化、压缩、提炼而构成的原型替代物。
如地图。
苯分子图等。
2.数学模型答:由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。
3.抽象模型答:通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓思维模型。
从实际的人、物、事和概念中抽取所关心的共同特性,忽略非本质的细节把这些特性用各种概念精确地加以描述。
二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类。
形象模型:直观模型,物理模型,分子模型等;抽象模型:思维模型,符号模型,数学模型等。
2.数学建模的基本步骤(1) 建模准备:确立建模课题的过程;(2) 建模假设:根据建模的目的将原型进行抽象,简化.有目的性的原则。
简明性原则,真实性原则和全面性原则。
(3) 构造模型:在模型假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻画实际问题的数学模型;(4) 模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;(5) 模型分析:根据建模的目的的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等;(6) 模型检验:模型分析符合要求之后,还必须回到客观中去对模型进行检验,看它是否符合客观实际;(7) 数学应用:模型应用是数学建模的宗旨,将其用于分析,研究和解决实际问题,充分发挥建模在生产和科研中的特殊作用。
3.数学模型的作用数学模型的根本作用在于他将客观原型化繁为简,化难为易,便于人们采用定量的方法去分析和解决实际问题。
正应为如此,数学建模在科学发展,科学预见,科学预测,科学管理,科学决策,驾控市场乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。
2020年九年级数学中考复习专题专题:函数模型的应用(含答案)

专题:函数模型的应用1.超市以每千克40元的价格购进夏威夷果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种夏威夷果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)超市要想获利2090元,则这种夏威夷果每千克应降价多少元?2.如图①,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图②所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.3.某智能品牌店,在销售某型号运动手环时,以高出进价的50%标价.已知按标价九折销售该型号运动手环8个与将标价直降100元销售7个获利相同.(1)求该型号运动手环的进价和标价分别是多少元?(2)若该型号运动手环的进价不变,按(1)中的标价出售,该店平均每月可售出38个;若每个运动手环每降价20元,每月可多售出2辆,求该型号运动手环降价多少元时,每月获利最大?最大利润是多少?4.一水果店以进价为每千克16元购进万荣苹果,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克,设销售单价为x(元),每天的销售量为y(千克),每天获利为w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;该苹果售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果商家规定这种苹果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?5.挂灯笼成为我国的一种传统文化. 小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?6.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50 kg时,价格为7元/kg;一次购买数量超过50 kg时,其中有50 kg的价格仍为7元/kg,超出50 kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为x kg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为________kg;②若小王在同一个批发店一次购买苹果的数量为120 kg,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.7.某工厂计划生产甲乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元,设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨,受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.8.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可销售出100件,根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每月少销售出2件,设每件商品的售价为x元.每个月的销售为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?9.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x 之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?10. 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价,周销售量,周销售利润w (元)的三组对应值如下表:(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是______元;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值.参考答案1. 解:(1)设一次函数解析式为y =kx +b , ∵当x =2,y =120;当x =4,y =140;∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140, 解得⎩⎪⎨⎪⎧k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100; (2)由题意得(60-40-x )(10x +100)=2090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9. ∵让顾客得到更大的实惠, ∴x =9,答:超市要想获利2090元,则这种夏威夷果每千克应降价9元.2. 解:(1)设y 关于x 的函数解析式为y =kx +b ,把点(0,6)(15,3)代入y =kx +b 得⎩⎪⎨⎪⎧6=b ,3=15k +b ,解得⎩⎪⎨⎪⎧k =-15,b =6,∴y 关于x 的函数解析式为y =-15x +6;(2)甲:当h =0时,得x =20.乙:当y=0时,得x=30.∵20<30,∴甲先到达一楼地面.3.解:(1)设该型号运动手环的进价为x元,根据题意得[(1+50%)x×0.9-x]×8=[(1+50%)x-100-x]×7,∴x=1000,∴(1+50%)x=1500元,∴该型号运动手环的进价为1000元,标价为1500元;(4分) (2)设该型号运动手环降价y元,利润为w元.根据题意得w=(38+y20×2)(1500-1000-y)=(38+0.1y)(500-y)=-0.1(y-60)2+19360,当y=60时,w有最大值19360.∴降价60元,每月获利最大,最大利润为19360元.4.解:(1)根据题意得y=50-5(x-20)=-5x+150;(2)根据题意得w=(x-16)(-5x+150)=-5x2+230x-2400,∴w与x的函数关系式为:w=-5x2+230x-2400=-5(x-23)2+245.∵-5 <0,∴当x=23时,w有最大值,最大值为245.(5分)答:w与x之间的函数关系式为w=-5x2+230x-2400.该苹果售价定为每千克23元时,每天销售利润最大,最大利润是245元;(3)根据题意得-5x+150≥40,解得x≤22.∵w=-5(x-23)2+245.∵-5<0,w≤23时,w随x增大而增大,∴当x=22时w有最大值,其最大值为-5×(22-23)2+245=240(元).答:商家每天销售利润的最大值是240元.5.解:(1)设甲种灯笼进价为x元/对,则乙种灯笼的进价为(x+9)元/对,由题意得3120 x=4200 x+9,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①y=(50+x-35)(98-2x)=-2x2+68x+1470,答:y与x之间的函数解析式为:y=-2x2+68x+1470;②∵a=-2<0,∴函数y有最大值,该二次函数的对称轴为:x=-b2a=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x=15时,y最大=2040.∴15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.6.解:(Ⅰ)180,900,210,850;【解法提示】甲批发店花费:当x=30时,花费为30×6=180;当x=150时,花费为150×6=900.乙批发店花费:当x =30时,花费为30×7=210;当x =150时,花费为50×7+(150-50)×5=850.(Ⅱ)y 1=6x (x >0), 当0<x ≤50时,y 2=7x ;当x >50时,y 2=7×50+5(x -50),即y 2=5x +100;即y 2=⎩⎪⎨⎪⎧7x (0<x ≤50),5x +100(x >50).(Ⅲ)①100;②乙;③甲.【解法提示】①当0<x ≤50时,甲批发店和乙批发店花费不可能相同,则x >50时,令y 1=y 2,则6x =5x +100,解得x =100;②当x =120时,y 1=6×120=720,y 2=5×120+100=700,∵720>700,∴在乙批发店购买花费少;③对甲批发店而言:令y 1=360,则6x =360,解得x =60.对乙批发店而言:当x =50时,花费为350<360,则令5x +100=360,解得x =52,∵60>52,∴小王花费360元时,在甲批发店购买数量多.7. 解:(1)y =x ·0.3+(2500-x )·0.4=-0.1x +1000; (2)由题意得x ·0.25+(2500-x )·0.5≤1000,解得x ≥1000. 又∵x ≤2500, ∴1000≤x ≤2500. 由(1)可知,-0.1<0,∴y 的值随着x 的增加而减小,∴当x =1000时,y 取最大值,此时生产乙种产品2500-1000=1500(吨) 答:工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润. 8. 解:(1)根据题意得y = 100-2(x -60)=-2x +220(60≤x ≤110);(2)由题意可得:(-2x +220)(x -40)=2250. x 2-150x +5525=0, 解得x 1=65,x 2=85.答:当每件商品的售价定为65元或85元时,利润恰好是2250元; (3)设利润为W 元,∴W =(x -40)(-2x +220)=-2x 2+300x -8800=-2(x -75)2+2450. ∵a =-2<0, ∴抛物线开口向下. ∵60≤x ≤110,∴当x =75时,W 有最大值,W 最大=2450(元).答:当售价定为75元时,获得最大利润,最大利润是2450元. 9. 解:(1)设y 关于x 的函数关系式为y =kx +b (k ≠0),由图象可知,将点(1,7000),(5,5000)代入得⎩⎪⎨⎪⎧k +b =7000,5k +b =5000,解得⎩⎪⎨⎪⎧k =-500,b =7500,∴y 关于x 的函数关系式为y =-500x +7500; (2)设销售收入为W ,根据题意得 W =yp =(-500x +7500)·(12x +12),整理得W =-250(x -7)2+16000,∵-250<0,∴W 在x =7时取得最大值,最大值为16000元, 此时该产品每台的销售价格为-500×7+7500=4000元.答:第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元.10. 解:(1)①y =-2x +200; ②40,70,1800;(2)由题意可知w =(-2x +200)×(x -40-m )=-2x 2+(280+2m )x -8000-200m ,对称轴为直线x =140+m2,∵m >0,∴对称轴x =140+m2>70,∵抛物线开口向下,在对称轴左侧,y 随x 的增大而增大, ∴当x =65时,y max =1400,代入表达式解得m =5.。
初中数学经典几何模型03-一线三垂直模型构造全等三角形(含答案)

初中数学经典几何模型专题03 一线三垂直模型构造全等三角形【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转900,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。
【知识总结】过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:图1 图21、如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,设∠BCD=α,以D为旋转中心,将腰DC绕点D逆时针旋转90°至DE.当α=45°时,求△EAD的面积.当α=30°时,求△EAD的面积当0°<α<90°,猜想△EAD的面积与α大小有无关系,若有关,写出△EAD的面积S与α的关系式,若无关,请证明结论.2、如图,向△ABC的外侧作正方形ABDE,正方形ACFG,过A作AH⊥BC于H,AH的反向延长线与EG 交于点P,求证:BC=2AP3、已知:在△ABC中,∠BAC=90°,AB=AC,AE是多点A的一条直线,且BD⊥AE于D,CE⊥AE于点E.当直线AE处于如图1的位置时,有BD=DE+CE,请说明理由.当直线AE处于如图2的位置时,则BD、DE、CE的关系如何?请说明理由.4、如图,在△ABC中,∠ABC=45°,点F是△ABC的高AD、BE的交点,已知CD=4,AF=2,则线段BC 的长为()5、如图所示,直线α经过正方形ABCD的顶点A,分别过顶点B,D作DE⊥α于点F,若DE=4,BF=3,则EF的长为()6、如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()7、如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D,CE⊥BD的延长线于点E,求BD证:CE=12【基础训练】1、如图,在平面直角坐标系中,等腰R t△ABC有两个顶点在坐标轴上,求第三个顶点的坐标.2、已知点P为∠EAF平分线上一点,PB⊥AE于点B,PC⊥AF于C,点M、N分别是射线AE、AF上的点.如图1,当点M在线段AB上,点N在线段AC的延长线上,且PM=PN,求证BM=CN.在(1)的条件下,直接写出线段AM、CN与AC的数量关系_______3、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.当DC等于多少是,△ABD≌△DCE?请证明你的结论.4、如图,在△ABC中,AB=AC,∠A=90°,点D在线段BC上,∠BDE=1∠C,BE⊥DE,垂足为E,DE与AB2DF.交于点F,求证:BE=125、已知:在等腰直角△ABC中,∠BAC=90°,AB=AC,E是AC边上的点,AF⊥BE交BC于点D,如果AE=CD 证明:BF平分∠ABC证明:AB+AE=BC【巩固提升】1、如图,AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,且AP=PC,AP⊥PC,求证:△ABP≌△PDC2、如图,二次函数y=x2+bx+c的图象与x轴交于点A(-1,0)和点B(3,0),与y轴交于点N,以AB 为边在x轴上作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E。
数学建模-指数函数模型的应用(含答案解析)

数学建模-指数函数模型的应用学校:___________姓名:___________班级:___________考号:___________一、解答题1.观察实际情景,提出并分析问题(1)实际情景2022年2月,某地发生了新冠肺炎疫情,新冠肺炎是一种传染病,其传染过程的强度和广度分为:(1)散发:是指传染病在人群中散在发生;(2)流行:是指某一地区或某一单位,在某一时期内,某种传染病的发病率,超过了历年同期的发病水平;(3)大流行:指某种传染病在一个短时期内迅速传播、蔓延,超过了一般的流行强度;(4)暴发:指某一局部地区或单位,在短期内突然出现众多的同一种疾病的病人. 如果在新冠肺炎传染的过程中不认为介入,切断其传染链,则对整个社会经济的发展带来严重的后果.(2)提出问题如果没有人工干预,不同时间段内的病例数会按照怎样的规律进行增长呢,对于某个时间内新增的病例数是否可以预测,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失呢?(3)分析问题可以通过收集合适地区的新增病例数并结合建立适当的数学模型,找出病例数增长规律,并对一定时间后新增病例进行估计以支持卫生部门的防疫工作.2.收集数据利用互联网等信息技术,我们可以搜索到一些原始的数据.例如,我们搜集到某地区一周内的累计病例数,请结合上述数据建立合理的数学模型,并估计第9天新增病例数.3.分析数据累计病例数是时间的函数,但没有现成的函数模型.因此,可以先画出散点图,利用图象直观分析这组数据的变化规律,从而帮助我们选择函数类型,散点图如图所示:当然,我们可以利用信息技术,通过函数拟合的方法来帮助选择适当的函数模型. 4.建立模型根据散点图的形状可设函数模型近似为e at y k =,利用表中的数据可求0.221000e t y =. 5.检验模型画出函数的图形,对比散点图,吻合度很好.6.问题解决该地区病例数y 与时间t 基本满足0.221000e t y =的函数关系,第9天时,预计新增病例数为:0.2291000e 7242y ⨯=≈,我们会发现累计病例数急剧增加,需卫生防疫部门及时介入,采取相应阻断措施.7.问题拓展在上述模型的建立的过程中,我们根据散点图选择了函数模型,然后利用其中的两个点求出模型的两个参数,随着点的选择的不同,所得函数的模型也相异,那么请同学利用课余时间思考如何评价不同模型的优劣?2.大气压强p =压力受力面积,它的单位是“帕斯卡”(Pa ,21Pa 1N/m =),已知大气压强()Pa p 随高度()m h 的变化规律是0e kh p p -=,0p 是海平面大气压强,10.000126m k -=.当地高山上一处大气压强是海平面处大气压强的13,求高山上该处的海拔.3.牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数型函数,若牛奶放在0℃的冰箱中,保鲜时间约是192h ,而在22℃的厨房中则约是42h.(1)写出保鲜时间y (单位:h )关于储藏温度x (单位:℃)的函数解析式;(2)利用(1)中结论,指出温度在30℃和16℃的保鲜时间;(参考数据15110.125732⎛⎫ ⎪≈⎝⎭,81170.32832⎛⎫≈ ⎪⎝⎭,精确到1h )(3)运用上面的数据,作此函数的图象.二、单选题4.我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c (t )(单位:mg/L )随着时间t (单位:h )的变化用指数模型()0e ktc c t -=描述,假定某药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量02000mg/L c =,且这种新药在病人体内的血药含量不低于1000mg/L 时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为( )(参考数据:ln20.693,ln3 1.099≈≈)A .5.32hB .6.23hC .6.93hD .7.52h 5.2021年,郑州大学考古科学队在荣阳官庄遗址发现了一处大型青铜铸造作坊.利用碳14测年确认是世界上最古老的铸币作坊.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足5730012t N N ⎛⎫=⋅ ⎪⎝⎭(0N 表示碳14原有的质量).经过测定,官庄遗址青铜布币样本中碳14的质量约是原来的2至34,据此推测青铜布币生产的时期距今约多少年?()(参考数据:2log 3 1.6≈) A .2600年 B .3100年 C .3200年D .3300年参考答案:1.略【详解】略2.约为8719m 【分析】解方程001e 3kh p p -=即可得解. 【详解】解:由001e 3kh p p p -==可得ln3kh -=-,可得()ln 38719m h k =≈. 3.(1)22719232x y ⎛⎫=⋅ ⎪⎝⎭()0x(2)储藏温度为30C ︒保鲜时间约24小时;储藏温度为16C ︒保鲜时间约为63小时.(3)图象见解析【分析】(1)设(0x y k a k =≠,0a >且1)a ≠,则利用牛奶放在0C ︒的冰箱中,保鲜时间约为192h ,放在22C ︒的厨房中,保鲜时间约为42h ,即可得出函数解析式; (2)将30x =与16x =代入函数解析式,求值即可;(3)根据函数解析式画出函数草图.(1)解:设(0x y k a k =≠,0a >且1)a ≠,则有2219242?k k a =⎧⎨=⎩,∴1221927()32k a =⎧⎪⎨=⎪⎩,22719232xy ⎛⎫∴=⋅ ⎪⎝⎭()0x .(2)解:30x =时,30227192()3242y =≈,即储藏温度为30C ︒保鲜时间约24小时;16x =时,16227192()6332y =≈,即储藏温度为16C ︒保鲜时间约为63小时.(3)解:因为22719232x y ⎛⎫=⋅ ⎪⎝⎭()0x ,函数图象如下所示:.4.C【分析】利用已知条件()0.100e e 200kt t t c c --==,该药在机体内的血药浓度变为1000mg/L 时需要的时间为1t ,转化求解即可.【详解】解:由题意得:()0.100e e 200kt t t c c --==设该要在机体内的血药浓度变为1000mg/L 需要的时间为1t()10.1120001000e t t c -=≥10.12e 1t -≥ 故0.1ln 2t -≥-,ln 2 6.930.1t ≤≈ 故该新药对病人有疗效的时长大约为6.93h故选:C5.A【分析】根据题意列出不等式,求出22922865t <<,从而求出正确答案.57300001324t N N N ⎛⎫<⋅< ⎪⎝⎭,解得:22922865t <<,故选A. 故选:A。
《数学模型》参考答案

《 数学模型 》试卷参考答案一、填空题(4分/题×10题=40分)1~5:A C D D C 6~10:B D C A D二、填空题(2分/空×10空=20分)1、“商人怎样安全过河”模型中状态随决策变化的规律是k k k k d s s )1(1-+=+。
2、“公平的席位分配”模型中的Q 值法计算公式是)1(2+=i i i i n n p Q 。
3、“存贮模型”的平均每天的存贮费用计算公式为=)(T C 221rT c T c +,当=T rc c 212时,)(T C 最小。
4、LINGO 中,表示决策变量x 是0-1变量的语句是 @gin(x) 。
5、一阶自治微分方程()x f x =的平衡点是指满足 ()0f x = 的点,若 '()0f x < 成立,则其平衡点是稳定的。
6、市场经济中的蛛网模型中,只有当f K < g K 时,平衡点 0P 才是稳定的。
7、“传染病模型”中SIS 模型是指被传染者康复以后,还有可能再次感染该传染病。
8、传送系统的效率模型中,独立地考虑每个钩子被触到的概率为p ,则共有n 个钩子的系统中,一周期内被触到k 个钩子的概率为 (1)kk n k n C p p -- 。
三、问答题(40分)1、请用简练的语言全面的描述数学建模的过程和数学模型的特点。
(10’)答:(1)建模过程:模型准备→模型假设→模型构成→模型求解→模型检验→模型应用。
(2)数学模型的特点:逼真性和可行性;渐进性;强健性;可转移性;非预制性;条理性;技艺性;局限性;2、某家具厂生产桌子和椅子两种家具,桌子售价50元/个,椅子销售价格30元/个,生产桌子和椅子要求需要木工和油漆工两种工种。
生产一个桌子需要木工4小时,油漆工2小时。
生产一个椅子需要木工3小时,油漆工1小时。
该厂每个月可用木工工时为120小时,油漆工工时为50小时。
问该厂如何组织生产才能使每月的销售收入最大?(建立模型不计算)(10’) 解:(1)确定决策变量:x1=生产桌子的数量x2=生产椅子的数量 4分 (2)确定目标函数:家具厂的目标是销售收入最大max z=50x1+30x2(3)确定约束条件:4x1+3x2<120(木工工时限制) 2x1+x2>50(油漆工工时限制)(4)建立的数学模型为:max S=50x1+30x2 s.t. 4x1+3x2<120 2x1+ x2>50 x1, x2 >03、有四个工人,要分别指派他们完成四项不同的工作,每人做各项工作所消耗的时间如下表所示,问应如何指派工作,才能使总的消耗时间为最少?(建立模型不计算)(10’) 解:令0,1,ij i j x i ⎧=⎨⎩指派第人完成第项工作不指折派第项工作目标函数:111231421222431323334414244min 1518212419231826171619192117Z x x x x x x x x x x x x x x =++++++++++++约束条件:1121314112223242132333431424344411..11x x x x x x x x st x x x x x x x x +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩4、结合自身的实际情况,谈谈数学建模的方法和自身能力的培训。
数学模型-第03章(第五版)

存在恰当的x,使f1(x), f2(x)之和最小.
分析
• 关键是对B(t)作出合理的简化假设.
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻t森林烧毁面积B(t)的大致图形.
B
分析B(t)比较困难, 转而讨论单位时间 烧毁面积 dB/dt (森林烧毁的速度).
第三章
材料强度最大
简单优化模型
利润最高 风险最小
优化——工程技术、经济管理、科学研究中的常见问题. 运输费用最低
用数学建模方法解决优化问题的过程 优化目标与决策 模型假设与建立 数学求解与分析
简单优化模型归结为函数极值问题,用微分法求解. 属于数学规划的优化模型在第四章讨论.
第 三 章 简 单 优 化 模 型
3.2 森林救火
问题
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
分析
记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.
啤酒杯重心s(x)只与质量比a有关 对于每个a, s(x) 有一最小点. a=0.3, x=0.35左右 s最小, 即重心最低.
0.5
s
0.45 a=1 0.4 a=0.5 0.35 a=0.3 0.3
0.25 a=0.1 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
建立啤酒杯重心模型一
啤酒杯重心模型一
x
s=s(x) ~ 液面高度x的啤酒杯重心
五年级下册数学教案-3.1 列方程解应用题(三)-盈亏问题 ▏沪教版

五年级下册数学教案-3.1 列方程解应用题(三)-盈亏问题▏沪教版教学内容本节课将引导学生运用列方程的方法解决盈亏问题。
盈亏问题是一类经典的应用题,它通常涉及两个或多个数量的增减,通过设定未知数,列出方程,进而求解。
教学内容包括理解盈亏问题的概念,掌握列方程解盈亏问题的步骤,并能够灵活运用到实际情境中。
教学目标1. 让学生理解盈亏问题的基本概念和实际背景。
2. 培养学生通过设定未知数、列出方程解决盈亏问题的能力。
3. 引导学生将数学知识与生活实际相结合,增强数学应用意识。
教学难点教学难点在于如何引导学生从实际问题中抽象出数学模型,即如何将盈亏问题转化为方程,以及如何求解这些方程。
此外,如何让学生理解方程解的物理意义,并将其应用于实际问题,也是教学中的一个挑战。
教具学具准备- 教学课件或黑板,用于展示问题和方程的列写。
- 纸和笔,供学生做笔记和练习。
- 盈亏问题的实际案例,如商品买卖、水量调配等。
教学过程1. 导入:通过一个简单的盈亏问题实例引入本节课的主题,激发学生的兴趣。
2. 问题分析:与学生一起分析盈亏问题的特点,讨论如何将其转化为数学方程。
3. 方程列写:指导学生如何设定未知数,并列出相应的方程。
4. 方程求解:教授学生解方程的方法,并让他们尝试自己解决一些简单的盈亏问题。
5. 案例练习:提供一些实际的盈亏问题案例,让学生独立或分组解决。
6. 讨论与总结:全班讨论解决问题的方法,总结解决盈亏问题的步骤和策略。
7. 反馈与评价:对学生的理解和应用能力进行评价,并提供反馈。
板书设计板书设计将包括以下内容:- 盈亏问题的定义和例子。
- 列方程解决盈亏问题的步骤。
- 重要的公式和方程。
- 学生练习题的示例。
作业设计作业将包括几个不同难度的盈亏问题,要求学生独立完成。
这些问题将覆盖课堂教授的内容,并鼓励学生将所学应用到新的情境中。
课后反思课后反思将关注学生在解决盈亏问题时的常见错误和难点,以及如何改进教学方法以提高学生的理解和应用能力。
数学建模中的二种模型与真题训练(解析版)

数学建模中的二种模型与真题训练所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。
笔者以一次函数的应用为例,探讨几种不同的数学建模过程。
一、直接给出模型二、猜测建立模型 三、实际推导模型我国著名的数学家华罗庚曾经指出:“人们对于数学产生枯燥无味、神秘难懂的印象,原因之一便是脱离实际。
”因此,每一位数学教师都应该善于挖掘身边的生活实例,将它们作为有效的教学资源,让学生在做数学、体验数学的实践活动中,自主构建数学模型,感受数学的魅力,提高学生学习数学的兴趣,并增强学习数学的自信心。
题型一:建立方程模型解决实际问题一.选择题(共2小题) 1.(2022秋•江北区校级月考)在一个三角形中,若其中一个内角等于另外两个内角的差,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .都有可能【分析】根据三角形的内角和可求解△ABC 的一内角为90°,进而可判断三角形的形状.【解答】解:设这个三角形为△ABC ,且∠A =∠B ﹣∠C ,则∠A +∠C =∠B ,∵∠A +∠C +∠B =180°,∴∠B =90°,∴△ABC 为直角三角形,故选:A .【点评】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.2.(2022春•合肥期末)在新冠肺炎疫情防控期间,某药房第一次用7000元购进一次性医用口罩若干个,第二次又用8000元购进该款口罩,但第二次每个口罩的进价是第一次的1.2倍,且购进的数量比第一次少200个.设第一次购进一次性医用口罩的数量为x 个,则根据题意可列方程为( )A .=× 1.2B .×1.2=技巧方法 题型归纳C.×1.2=D.×1.2=【分析】第一次购进一次性医用口罩的数量为x个,则第二次购买一次性医用口罩(x﹣200)个,利用单价=总价÷数量,结合第二次购买每个口罩的价格是第一次购买价格的1.2倍,即可得出关于x的分式方程.【解答】解:第一次购进一次性医用口罩的数量为x个,则第二次购买一次性医用口罩(x﹣200)个,由题意得.故选:C.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二.填空题(共5小题)3.(2022•浦江县模拟)如图1是某一遮阳篷支架从闭合到完全展开的一个过程,当遮阳篷支架完全闭合时,支架的若干支杆可看作共线.图2是遮阳篷支架完全展开时的一个示意图,支杆MN固定在垂直于地面的墙壁上,支杆CE与水平地面平行,且G,F,B三点共线,在支架展开过程中四边形ABCD始终是平行四边形.(1)若遮阳棚完全展开时,CE长2米,在与水平地面呈60°的太阳光照射下,CE在地面的影子有2米(影子完全落在地面).(2)长支杆与短支杆的长度比(即CE与AD的长度比)是+1.【分析】(1)过C作与水平地面呈60°的直线KC交MN的延长线于K,分别过K、E作KS∥CE,ES∥CK可得四边形CESK是平行四边形,然后根据平行四边形的性质求得KS的长即可.(2)由题意可知:CB=FB=GF,GH=HB,则FH⊥GB,进而证明△MOK∽△FOH,再证明GH=GF,最后找到CE与AD的长度比即可.【解答】解:(1)过C作与水平地面呈60°的直线KC交MN的延长线于K,分别过K、E作KS∥CE,ES∥CK,∴四边形CESK是平行四边形,∴KS=CE=2,即CE在地面上影子的长为2米.故答案为:2.(2)连结FH,设DE=a,CD=b,由题意可知:BC=a,BF=a,GF=a,BH=b,GH=b,在△GHB中,HB=GH,GF=FB,∴FH⊥GB,又∵MK⊥GB,∴MK∥FH,∴△MOK∽△FOH.∵FK=MH,∴OH=OF,∴∠OFH=∠OHF,又∵∠GFH=90°,即∠GFO+∠OFH=90°,∴∠GFO+∠OHF=90°,又∵∠FGO+∠OHF=90°,∴∠GFO=∠FGO,即OG=OF,∴OH=OF=OG,∴∠FGH=45°,∴GH=GF.即:b=a,∴===+1,∴CE:AD=+1.故答案为:+1.【点评】本题主要考查了三角形相似的判定与性质、折叠的性质等知识点,灵活运用相关知识成为解答本题的关键.4.(2022春•南海区校级月考)如图,直角三角形ABC中,AC+BC=5,S△ABC=,则AC2+BC2的值是19.【分析】由三角形的面积公式求得AC•BC=3;结合完全平方公式的变形公式得到AC2+BC2=(AC+BC)2﹣2AC•BC,代入求值即可.【解答】解:∵S△ABC=,AC•BC=S△ABC,∴AC•BC=,∴AC•BC=3.∴AC2+BC2=(AC+BC)2﹣2AC•BC=52﹣2×3=19.故答案为:19.【点评】本题主要考查了勾股定理,解题时,利用了完全平方公式的转化公式,巧妙的得到AC2+BC2=(AC+BC)2﹣2AC•BC.5.(2022•龙岗区模拟)如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.在测量AB的投影时,同时测量出DE在阳光下的投影长为4.2m,则DE的长为7m.【分析】利用同一时刻物体高度与影长比值相等进而得出答案.【解答】解:∵AB=5m,某一时刻AB在阳光下的投影BC=3m,EF=4.2m,∴=,则=,解得DE=7,即DE的长为7m.故答案是:7m.【点评】此题主要考查了相似三角形的应用和平行投影的性质,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.6.(2022秋•北碚区校级期中)在新冠疫情下,口罩作为重要的防疫物资,国家投入了大量的资金和工厂进行口罩的生产,每个工厂生产的口罩型号,颜色均有差异.某商店共有a种不同型号的口罩,每种口罩都有红、白、蓝三种颜色,并且货源充足,每种型号的口罩红色的价格均为每包50元,白色的价格均为每包b 元,蓝色的价格均为每包c元,且满足66≤b<c≤74,b、c均为正整数.A、B、C三人每人都将每种型号的口罩各买一包,且对于同种型号的口罩,三人选择的颜色各不相同.结账时,A、B都花了1200元,且他们买的蓝色口罩数量不同,C花了1400元,三种颜色的口罩皆有购买,请问C用于购买白色、蓝色的口罩最多一共花费1350元.【分析】由题意可得a(50+b+c)=3800,再由a,b,c均为正整数,且66≤b<c≤74,求出b+c=140,a=20,则满足条件的有四种情况:①b=67,c=73;②b=68,c=72;③b=69,c=71;④a=66,b=74;设A、B购买红色型号的口罩x包,白色型号的口罩y包,蓝色型号的口罩(40﹣x﹣y)包,分别列出方程求解讨论即可.【解答】解:A、B、C三人将a种不同型号的口罩三种颜色的口罩各买一包,共花了1200+1200+1400=3800(元),即a(50+b+c)=3800,∵a,b,c均为正整数,且66≤b<c≤74,∴185=50+67+68≤50+b+c≤50+72+73=195,∴50+b+c=190,a=20,即b+c=140,a=20,∴有四种情况:①b=67,c=73;②b=68,c=72;③b=69,c=71;④a=66,b=74;设A、B购买红色型号的口罩x包,白色型号的口罩y包,蓝色型号的口罩(40﹣x﹣y)包,①,整理得23x+6y=520,∵x≤20,y≤20,且x、y是整数,∴,∴C只购买了白色和蓝色口罩,不符合题意;②,整理得11x+2y=240,∵x≤20,y≤20,且x、y是整数,∴,∴C只购买了白色和蓝色口罩,不符合题意;③,整理得21x+2y=440,∵x≤20,y≤20,且x、y是整数,∴,∴C只购买了白色和蓝色口罩,不符合题意;④,整理得3x+y=70,∵x≤20,y≤20,且x、y是整数,∴或或或,∴当x=19,y=13时,C用于购买白色、蓝色的口罩最多,1400﹣50=1350(元);综上所述:C用于购买白色、蓝色的口罩最多一共花费1350元,故答案为:1350.【点评】本题考查二元二次方程的实际应用,能够理解题意,根据题意列出方程,根据所给的取值范围,求解不定方程是解题的关键.7.(2022春•沙坪坝区校级期中)“如果华佗再世,崇洋都被医治,外邦来学汉字,激发我民族意识…”最近,刘畊宏的键身操刷爆全网,掀起了一股全民健身热潮,《本草纲目》健身操让众多网友直呼酸爽.最出圈的《公公偏头疼》、《龙拳》、《本草纲目》三首曲目每分钟卡路里的消耗量之比为4:3:6,三首曲目时长之比为3:2:2.走红以后,根据众多网友的反馈,刘教练对健身操的动作与曲目时长都进行了重新编排.重新编排后,《龙拳》每分钟卡路里的消耗量比之前降低了,《本草纲目》每分钟卡路里的消耗量为之前的《公公偏头疼》和《本草纲目》的卡路里每分钟消耗量总和,《龙拳》的卡路里总消耗量减少,《公公偏头疼》增加的卡路里消耗量与《龙拳》减少的卡路里消耗量之比为2:3,《本草纲目》增加的卡路里消耗量是《公公偏头疼》增加的卡路里消耗量的2倍,且占三首曲目卡路里消耗总量的10%,则重44:89.【分析】设《公公偏头疼》、《龙拳》、《本草纲目》三首曲目每分钟卡路里的消耗量分别为4k,3k,6k,三首曲目时长分别为3t,2t,2t,根据题意,分别求出《龙拳》卡路里的总消耗量为2bk,《公公偏头疼》卡路里的总消耗量为8kc,《本草纲目》增加的卡路里的消耗量为k(3t﹣2b),再根据题意建立方程,求解方程即可.【解答】解:设《公公偏头疼》、《龙拳》、《本草纲目》三首曲目每分钟卡路里的消耗量分别为4k,3k,6k,三首曲目时长分别为3t,2t,2t,∴总消耗的热量为4k•3t+3k•2t+6k•2t=30kt,则重新编排后,《龙拳》每分钟卡路里的消耗量为3k•(1﹣)=2k,《本草纲目》每分钟卡路里的消耗量为6k•=8k,设重新编排后,《公公偏头疼》、《龙拳》、《本草纲目》三首曲目三首曲目时长分别为a、b、c,∴《龙拳》卡路里的总消耗量为2bk,《公公偏头疼》卡路里的总消耗量为8kc,∴《龙拳》减少的卡路里的消耗量为3k•2t﹣2kb=6kt﹣2kb,∵《公公偏头疼》增加的卡路里的消耗量与《龙拳》减少的卡路里的消耗量之比为2:3,∴《公公偏头疼》增加的卡路里的消耗量为(6kt﹣2bk)=k(3t﹣2b),∵《本草纲目》增加的卡路里消耗量是《公公偏头疼》增加的卡路里消耗量的2倍,∴《本草纲目》增加的卡路里的消耗量为k(3t﹣2b),∴重新编排后三首曲目卡路里消耗总量为3k•2t﹣(6kt﹣2kb)+4k•3t+k(3t﹣2b)+6k•2t+k(3t﹣2b)=6k(6t﹣b),∴k(3t﹣2b)=6k(6t﹣b)×10%,∴t=b,∴8kc﹣12kt=k(3t﹣2b),解得b:c=44:89,故答案为:44:89.【点评】本题考查了方程的实际应用,能够根据题意建立方程是解题的关键.三.解答题(共5小题)8.(202214倍,求这个多边形的边数;(2)已知一个多边形的每一个内角的度数都等于144°,求这个多边形的边数.【分析】由多边形的内角和定理:(n﹣2)•180°(n≥3且n为整数),多边形的外角和等于360°,即可求解.【解答】解:(1)设这个多边形的边数为n,(n﹣2)×180°=4×360°,∴n=10,答:这个多边形的边数是10.(2)∵这个多边形的每一个内角的度数都等于144°,∴这个多边形的每一个外角的度数都等于180°﹣144°=36°,∴这个多边形的边数为:360°÷36°=10.【点评】本题考查多边形的有关知识,关键是掌握多边形的内角和定理:(n﹣2)•180°(n≥3且n为整数);多边形的外角和等于360°.9.(2023春•潜江月考)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是20肘尺(肘尺是古代的长度单位),另外一棵高16肘尺;两棵棕榈树的树干间的距离是30肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?【分析】根据题意画出图形,利用勾股定理建立方程,求出x的值即可.【解答】解:通过建模把距离转化为线段的长度.由题意得:AB=20,DC=16,BC=30,设BE为x肘尺,EC为(30﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+x2,DE2=DC2+EC2=162+(30﹣x)2,又∵AE=DE,∴202+x2=162+(30﹣x)2,∴x=12.6,答:这条鱼出现的地方离比较高的棕榈树的树根12.6肘尺.【点评】本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.10.(2022春•锦江区期末)成都是一座休闲又充满幸福感的城市,眼下露营正成为成都人民一种新的周末休闲娱乐方式,经营户外用品店的小明决定采购一批帐篷进行销售,已知防晒帐篷的采购价是普通帐篷的2倍,且用4500元购买的防晒帐篷比用1500元购买的普通帐篷多5件.(1)求防晒帐篷和普通帐篷的采购价;(2)小明准备拿出7500元全部用于采购防晒帐篷和普通帐篷并进行销售,设防晒帐篷采购a件,普通帐篷采购b件.①用含a的式子表示b;②经过市场调研,小明决定将防晒帐篷售价定为380元/件,普通帐篷售价定为180元/件.若采购的普通帐篷不超过30件且采购的普通帐篷数量多于防晒帐篷数量,为了使销售完采购的帐篷时所获得的利润最大,请你为小明制定采购方案并求出最大利润.【分析】(1)设普通帐篷的采购价位x元,则防晒帐篷的采购价为2x元,以购买帐篷的数量为等量关系列出分式方程解答即可;(2)①根据购买普通帐篷和防晒帐篷的总价是7500列出式子整理即可;②列出利润w关于a的函数关系式,然后根据不等关系得出a的取值范围,计算w即可.【解答】解:(1)设普通帐篷的采购价位x元,则防晒帐篷的采购价为2x元,由题意得,,解得x=150,经检验x=150是原分式方程的根并符合实际意义,所以2x=2×150=300,答:普通帐篷的采购价为150元,防晒帐篷的采购价为300元.(2)①根据题意可知:300a+150b=7500,整理得:b=50﹣2a;②设销售利润为w元,则w=(380﹣300)a+(180﹣150)b=80a+30(50﹣2a)=20a+1500,w是关于a的一次函数,a>0,所以w随着a的增大而增大,∵采购的普通帐篷不超过30件且采购的普通帐篷数量多于防晒帐篷数量,∴,解得10,a为正整数,所以当a=16时利润最大,最大利润w=20×16+1500=1820,所以购买16件防晒帐篷,18件普通帐篷,可以获得最大利润1820元.【点评】本题考查分式方程和一元一次不等式组的应用,分析题意,找到合适的等量关系或不等关系是解决问题的关键.11.(2022秋•宜兴市期末)好学的丽丽用所学知识测量路灯的高度.如图,丽丽和爸爸站在路灯AD下,爸爸的身高EF=1.8m,丽丽的身高MN=1.6m.爸爸的影子BF=3m,丽丽的影子CN=2m,两人相距FN=16m,求路灯AD的高度.【分析】根据相似三角形△EBF∽△ABD的对应边成比例可得答案.【解答】解:∵EF∥AD,∴△EBF∽△ABD.∴.∴=.∴.同理:,∴,∴.∴.∴AD=7.2m.答:路灯AD的高度为7.2m.【点评】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.12.(2022春•武汉期末)如图1,已知直线l1∥l2,点A、B在直线l1上,点C、D在l2上,线段AD交线段BC于点E,且∠BED=60°.(1)求证:∠ABE+∠EDC=60°;(2)如图2,当F、G分别在线段AE、EC上,且∠ABF=2∠FBE,∠EDG=2∠GDC,标记∠BFE为∠1,∠BGD为∠2.①若∠1﹣∠2=16°,求∠ADC的度数;【分析】(1)利用平行线的性质和三角形的外角的性质解答即可;(2)①设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y,利用方程的思想方法,依据已知条件列出方程组即可求解;②利用①中的方法,设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y,通过计算k∠1+∠2,令计算结果中的x的系数为0即可求得结论.【解答】(1)证明:∵l1∥l2,∴∠ABE=∠ECD.∵∠BED=∠ECD+∠EDC,∠BED=60°,∴∠ABE+∠EDC=60°;(2)解:①∵∠ABF=2∠FBE,∠EDG=2∠GDC,∴设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y.∴∠ABE=3x,∠EDC=3y.∴3x+3y=60°,∴x+y=20°.∵∠1+∠FBE=∠BED=60°,∠2+∠EDG=∠BED=60°,∴∠1+∠FBE=∠2+∠EDG,∴∠1﹣∠2=∠EDG﹣∠FBE,∵∠1﹣∠2=16°,∴2y﹣x=16°.∴,解得:.∴∠ADC=3y=36°.设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y.∴∠ABE=3x,∠EDC=3y.由①知:x+y=20,∴y=20﹣x,∵∠1=∠BED﹣∠FBE=60﹣x,∠2=∠BED﹣∠EDG=60﹣2y,∴k∠1+∠2=k(60﹣x)+60﹣2y=60k﹣kx+60﹣2(20﹣x)=(2﹣k)x+60k+20,∵k∠1+∠2为定值,∴2﹣k=0,∴k=2,∴此时k∠1+∠2=60×2+20=140°,∴当k=2时,(k∠1+∠2)为定值,此时定值为140°.故答案为:2;140°.【点评】本题主要考查了平行线的性质,三角形的外角的性质,利用方程或方程组的思想解答是解题的关键.题型二:建立函数模型解决实际问题一.选择题(共4小题)1.(2023度)不同而有不同的数值,某次实验测得音速y(米/秒)与气温x(℃)的部分数据如表:气温x(℃)05101520…音速y(米/秒)331334337340343…下列说法不正确的是()A.气温是因变量,音速是自变量B.y随x的增大而增大C.当气温是25℃时,音速是346米/秒D.气温每升高5℃,音速增加3米/秒【分析】结合表格信息运用函数的概念进行求解.【解答】解:由题意得,气温是自变量,音速是因变量;而y随x的增大而增大,气温每升高5℃,音速增加3米/秒,故当气温是25℃时,音速是346米/秒,故选:A.【点评】此题考查了运用函数的概念解决实际问题的能力,关键是能准确理解并运用该知识.2.(2022秋•亳州期中)已知一个长方形的周长为50cm,相邻两边分别为xcm,ycm,则它们的关系为是()A.y=50﹣x(0<x<50)B.y=50﹣x(0≤x≤50)C.y=25﹣x(0<x<25)D.y=25﹣x(0≤x≤25)【分析】根据长方形周长的计算方法进行列式、求解.【解答】解:由题意得2(x+y)=50,解得y=25﹣x(0<x<25),故选:C.【点评】此题考查了根据实际问题列函数解析式的能力,关键是能正确理解问题间数量关系进行求解.3.(2022•涧西区一模)如图①,点A、B是⊙O上两定点,圆上一动点P从圆上一定点B出发,沿逆时针方向匀速运动到点A,运动时间是x(s),线段AP的长度是y(cm).图②是y随x变化的关系图象,则图中m的值是()A.B.C.5D.【分析】从图2看,当x=2时,y=AP=6,即此时A、O、P三点共线,则圆的半径为AP=3,当x=0时,由勾股定理逆定理可知,OA⊥OB,则点P从点B走到A、O、P三点共线的位置时,此时t=2,走过的角度为90°,可求出点P运动的速度,当t=m时,AP=OA=OB,即△OAP是等边三角形,进而求解.【解答】解:从图2看,当x=2时,y=AP=6,即此时A、O、P三点共线,则圆的半径为AP=3,当x=0时,OB2+OA2=AP2,∴△OAB是直角三角形,且OA⊥OB,则点P从点B走到A、O、P三点共线的位置时,如图所示,此时x=2,走过的角度为90°,则走过的弧长为×2π×r=,∴点P的运动速度是÷2=(cm/s),当t=m时,AP=OA=OB,即△OAP是等边三角形,∴∠AOP=60°,∴∠BOP=360°﹣90°﹣60°=210°,此时点P走过的弧长为:×2π×r=,∴m=÷=,故选:D.【点评】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系.4.(2021秋•梁溪区校级期中)如图,在一张白纸上画1条直线,最多能把白纸分成2部分(如图1),画2条直线,最多能把白纸分成4部分(如图2),画3条直线,最多能把白纸分成7部分(如图3),当在一张白纸上画15条直线,最多能把白纸分成的部分是()A.120B.121C.122D.123【分析】设直线的条数为x,最多能把白纸分成了y部分,当x=1时,y=2,当x=2时,y=4,当x=3时,y =7,所以y与x满足了二次函数,然后进行计算即可.【解答】解:设直线的条数为x,最多能把白纸分成了y部分,由题意得:y=ax2+bx+c,则,解得:,y=x2+x+1,∴当x=15时,代入y=x2+x+1得,y=121,故选:B.【点评】本题考查了规律型:图形的变化类,根据数据判断它们满足的是什么函数是解题的关键.二.填空题(共3小题)5.(2021春•北镇市期中)如图,在长方形ABCD中,AB=8cm,AD=6cm,点M,N从A点出发,点M沿线段AB运动,点N沿线段AD运动(其中一点停止运动,另一点也随之停止运动).若设AM=AN=xcm,阴影部分的面积为ycm2,则y与x之间的关系式为y=﹣x2+48.【分析】因为空白部分面积可表示为x2,长方形ABCD的面积为8×6,则可表示出该函数解析式为y=﹣x2+48.【解答】解:由题意得,该阴影部分的面积为6×8﹣x2=﹣x2+48,故答案为:y=﹣x2+48.【点评】此题考查了根据实际问题写出相关函数表达式的能力,关键是能准确理解题目间的数量关系.6.(2021春•普宁市期中)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,D是线段AB上一个动点,以BD为边在△ABC外作等边△BDE.若F是DE的中点,则CF的最小值为9.【分析】连接BF,依据等边三角形的性质,即可得到点F在∠DBE的角平分线上运动;当点D在CF上时,∠CFB=90°,根据垂线段最短可知,此时CF最短,最后根据CB的长即可得到CF的长.【解答】解:如图所示,连接BF,∵等边△BDE中,F是DE的中点,∴BF⊥DE,BF平分∠DBE,∴∠DBF=30°,即点F在∠DBE的角平分线上运动,∴当点D在CF上时,∠CFB=90°,根据垂线段最短可知,此时CF最短,又∵∠ABC=30°,∴∠CBF=60°,∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,∴BC=AC=6 ,∴Rt△BCF中,CF=BC×sin∠CBF=6 ×=9.故答案为:9.【点评】本题考查的是等边三角形的性质,即等边三角形的三个内角都相等,且都等于60°.连接BF,得到点F在∠DBE的角平分线上运动是解决问题的关键.7.(2022秋•青羊区期末)已知矩形ABCD中,AB=2AD=8,点E、F分别是边AB、CD的中点,点P为AD边上动点,过点P作与AB平行的直线交AF于点G,连接PE,点M是PE中点,连接MG,则MG的最小值=.【分析】方法一:如图,过点M作MN⊥PG于点N,取AP的中点H,连接MH,EF,设AP=x,则AH=PH=x,利用矩形性质和三角形中位线定理可得:MH=AE=2,再证明四边形MNPH是矩形,可得:PN=MH=2,MN=PH=x,再证得△APG是等腰直角三角形,得出PG=AP=x,推出NG=PG﹣PN=x﹣2,运用勾股定理可得MG2=MN2+NG2=(x)2+(x﹣2)2=(x﹣)2+,再运用二次函数性质即可求得答案.方法二:如图,以点D为原点,直线CD为x轴,直线AD为y轴建立平面直角坐标系,设P(0,t),运用中点坐标公式可得M(﹣2,),利用待定系数法求得直线AG的解析式为y=x+4,进而可得G(t﹣4,t),再运用两点间距离公式即可求得答案.【解答】解:方法一:如图,过点M作MN⊥PG于点N,取AP的中点H,连接MH,EF,设AP=x,则AH=PH=x,∵四边形ABCD是矩形,且AB=2AD=8,∴AB=CD=8,AD=4,∠BAD=∠D=90°,AB∥CD,∵PG∥AB,∴PG∥CD,∴∠APG=∠D=90°,∵点E、F分别是边AB、CD的中点,AB=2AD=8,∴AE=AD=DF=4,∵点M是PE中点,点H是AP的中点,∴MH∥AB,MH=AE=2,∴∠PHM=∠BAD=90°,∵MN⊥PG,∴∠MNP=∠MNG=90°=∠PHM=∠APG,∴四边形MNPH是矩形,∴PN=MH=2,MN=PH=x,∵AD=DF,∠D=90°,∴△ADF是等腰直角三角形,∴∠AFD=45°,∵PG∥CD,∴∠AGP=∠AFD=45°,∵∠APG=90°,∴△APG是等腰直角三角形,∴PG=AP=x,∴NG=PG﹣PN=x﹣2,在Rt△MNG中,MG2=MN2+NG2=(x)2+(x﹣2)2=(x﹣)2+,∵>0,∴当x=时,MG2取得最小值,∵MG===,∴MG的最小值为,故答案为:.方法二:如图,以点D为原点,直线CD为x轴,直线AD为y轴建立平面直角坐标系,∵四边形ABCD是矩形,且AB=2AD=8,∴A(0,4),B(﹣8,4),C(﹣8,0),D(0,0),∵点E、F分别是边AB、CD的中点,∴E(﹣4,4),F(﹣4,0),设P(0,t),∵点M是PE中点,∴M(﹣2,),设直线AG的解析式为y=kx+b,则,解得:,∴直线AG的解析式为y=x+4,∵PG∥x轴交AF于G,∴G(t﹣4,t),∴MG2=[(t﹣4)﹣(﹣2)]2+(t﹣)2=t2﹣6t+8=(t﹣)2+,∵>0,∴MG2有最小值,∵MG>0,∴MG的最小值为=,故答案为:.【点评】本题考查了矩形性质,三角形中位线定理,等腰直角三角形性质,勾股定理,运用待定系数法求一次函数解析式,两点间距离公式,二次函数的最值等知识,解题关键是运用函数思想解决几何问题.三.解答题(共7小题)8.(2022春•顺德区校级期中)甲、乙两地打电话需付的电话费y(元)是随时间t(分钟)的变化而变化的,试根据下表列出的几组数据回答下列问题:123456…通话时间t(分钟)0.150.300.450.60.750.9…电话费y(元)(1)自变量是t,因变量是y.(2)写出电话费y(元)与通话时间t(分钟)之间的关系式.(3)若小明通话15分钟,则需付话费多少元?(4)若小明某次通话后,需付话费6元,则小明通话多少分钟?【分析】(1)根据函数的定义即可确定自变量与因变量;(2)根据表格信息可得每通话1分钟需付话费0.15元可求得此题结果;(3)将t=15代入该函数解析式进行求解即可;(4)将y=6代入该函数解析式进行求解即可.【解答】解:(1)由题意可得,自变量是t,因变量是y,故答案为:t,y;(2)由题意可得,每通话10.15元,∴电话费y(元)与通话时间t(分钟)之间的关系式是y=0.15t;(3)当t=15时,得y=0.15×15=2.25,故小明通话15分钟,则需付话费2.25元;(4)当y=6时,得0.15t=6,解得t=40,故小明通话40分钟.【点评】此题考查了运用函数的概念解决实际问题的能力,关键是能结合题意与函数的概念进行列式、计算.9.(2022春•云岩区期中)你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低(特别是二氧化碳)的排放量的一种生活方式.排碳计算公式:家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785开私家车的二氧化碳排放量(kg)=耗油量(L)×2.7家用天然气二氧化碳排放量(kg)=天然气使用量(m3)×0.19家用自来水二氧化碳排放量(kg)=自来水使用量(t)×0.91(1)设家居用电的二氧化碳排放量为y(kg),耗电量为x(kW•h),则家居用电的二氧化碳排放量可以用关系式表示为y=0.785x;(2)在上述关系式中,耗电量每增加1kW•h,二氧化碳排放量增加0.785kg;当耗电量从1kW⋅h增加到100kW•h时,二氧化碳排放从0.785kg增加到78.5kg;(3)小明家本月家居用电大约110kW•h,天然气20m3,自来水5t,开私家车耗油75L,请你计算一下小明家这几项的二氧化碳排放量.【分析】(1)根据家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785可得此题结果;(2)由家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785可解得此题结果;(3)分别按照表中提供信息分别进行求解.【解答】解:(1)由题意可得y=0.785x,故答案为:y=0.785x;(2)∵家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785,∴耗电量每增加1kW•h,二氧化碳排放量增加0.785kg,当耗电量1kW⋅h时二氧化碳排放量为0.785kg,当耗电量100kW⋅h时二氧化碳排放量为78.5kg,故答案为:0.785kg,78.5kg;(3)110×0.785=86.35(kg),0.19×20=3.8(kg),0.91×5=4.55(kg),2.7×75=202.5(kg),答:小明家用电的二氧化碳排放量是86.35kg,天然气的二氧化碳排放量是3.8kg,自来水的二氧化碳排放量是4.55kg,开私家车的二氧化碳排放量是202.5kg.【点评】此题考查了运用函数解决实际问题的能力,关键是能正确理解问题间数量关系,并正确运用函数知识进行求解.10.(2023春•中原区期中)已知梯形上底的长是x,下底的长是15,高是8,梯形的面积记为y.(1)求梯形的面积y与上底长x之间的关系式;(2)请将下面的表格补充完整,并说明当x每增加1时,y如何变化;底长x…23456…面积y…6872768084…(3)当x=0时,y的值表示的含义是什么?【分析】(1)结合题意,运用梯形面积公式进行列式、化简;(2)分别将对应x的值代入(1)题所求函数解析式进行求解;(3)当x=0时该梯形就变成了一个三角形,y的值表示的含义是就是该三角形的面积.【解答】解:(1)由题意得,y=×(x+15)×8,化简得y=4x+60,∴该梯形的面积y与上底长x之间的关系式是y=4x+60;(2)当x=3时,y=4×3+60=12+60=72;当x=6时,y=4×6+60=24+60=84,故答案为:84;(3)当x=0时,该图形就变成了一个三角形,∴y的值表示的含义是就是一个底为15,高是8的三角形的面积.【点评】此题考查了运用函数解决实际问题的能力,关键是能准确理解题意,正确地列式、计算.11.(2022春•碑林区校级期中)大剧院举行专场音乐会,成人票每张20元,学生票每张8元.暑假期间,为了丰富广大师生的业余文化生活,大剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的80%付款,两种方案只能选择其中一种,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y与x的关系式;(2)若听音乐会的学生人数为12人,请通过计算确定选择哪种方案更优惠.【分析】(1)根据两种消费方式分别列出对应的函数解析式;(2)将x=12分别代入两个函数解析式进行计算比较.【解答】解:(1)由题意得,方案1中y与x的关系式为:y=20×4+8×(x﹣4),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:应用题的一般处理思路是什么?
问题2:应用题中建立数学模型常见的关键词和隐含数学关系有哪些?
数学模型应用问题(三)
一、单选题(共5道,每道20分)
1.今年我市水果大丰收,A,B两个水果基地分别收获水果380箱、320箱,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每箱40元和20元,从B基地运往甲、乙两销售点的费用分别为每箱15元和30元,现甲销售点需要水果400箱,乙销售点需要水果300箱.
(1)设从A基地运往甲销售点x箱水果,总运费为W元,请用含x的代数式表示W,并写出x的取值范围.( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一次函数的应用
2.(上接第1题)若总运费不超过18300元,且A地运往甲销售点的水果不低于200箱,试求出最低运费.( )
A.6000
B.7600
C.18200
D.11200
答案:C
解题思路:
试题难度:三颗星知识点:一次函数的应用
3.在“十一”期间,某公司组织318名员工外出旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租用甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.
(1)旅行社的租车方案有( )
A.1种
B.2种
C.3种
D.4种
答案:B
解题思路:
试题难度:三颗星知识点:一元一次不等式组的应用
4.(上接第3题)(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,则在租车方案中最少的租金为( )
A.5800元
B.6000元
C.6200元
D.3400元
答案:B
解题思路:
试题难度:三颗星知识点:一次函数的应用
5.(上接第3,4题)(3)旅行前,一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车恰好坐满,则旅行社的租车方案是( )
A.65座的1辆,45座的5辆,30座的1辆
B.65座的2辆,45座的3辆,30座的2辆
C.65座的3辆,45座的1辆,30座的3辆
D.65座的1辆,45座的4辆,30座的2辆
答案:B
解题思路:
试题难度:三颗星知识点:不定方程。