2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (877)
合集下载
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (610).pdf

直角三角形全等;③有一边和锐角对应相等的两个直角形全等;④有一边相等的两个等腰
直角三角形全等;⑤有两直角边对应相等的两个直角三角形全等.其中正确的个数是
()
A.1 个
B.2 个
C.3 个
D.4 个
12.(2 分)等腰三角形的周长为 l8 cm,其中一边长为 8 cm,那么它的底边长为( )
A.2 cm
C.在等腰三角形中与顶角相邻的外角等于底角的 2 倍
D.等腰三角形是等边三角形
10.(2 分)如图,在等边△ABC 中,点 D 是边 BC 上的点,DE⊥AC 于 E,则∠CDE 的度
数为( )
A.90°
B.60°
C.45°
D.30°
11.(2 分)在下列几个说法中:①有一边相等的两个等腰三角形全等;②有一边相等的两个
20.(2 分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正
方形的边长为 7 cm ,则正方形 A、B、C、D 的面积的和为
cm2.
21.(2 分)如图,小红和弟弟同时从家中出发,小红以 4 km/h 的速度向正南方向的学校走 去,弟弟以 3 km/h 的速度向正西方向的公园走去,lh 后,小红和弟弟相距 km.
29.(7 分)如图,已知等腰直角三角形 ABC 中,∠BAC=90°,∠ABC 的平分线交 AC 于 D,过 C 作 BD 的垂线交 BD 的延长线于 E,交 BA 的延长线于 F,请说明: (1)△BCF 是等腰三角形; (2)△ABD≌△ACF; (3)BD=2CE.
30.(7 分)如图,在等边△ABC 中,D、E 分别是 AB、AC 上的一点,AD=CE,CD、BE 交 于点 F. (1)试说明∠CBE=∠ACD; (2)求∠CFE 的度数.
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (482).pdf

6.(2 分)如图,图中等腰三角形的个数为( )
A.2 个
B.3 个
C.4 个
D.5 个
7.(2 分)如果△ABC 是等腰三角形,那么∠A,∠B 的度数可以是( )
A.∠A=60°,∠B=50°
B.∠A=70°,∠B=40°
C.∠A=80°,∠B=60°
D.∠A=90°,∠B=30°
8.(2 分)在△ABC 中,AB = BC,∠A =80°, 则∠B 的度数是( )
14.(2 分)如图,若等腰三角形的两腰长分别为 x 和 2x − 6 ,则 x 的值为________.
Hale Waihona Puke 15.(2 分)如图,在长方形 ABCD 中,AB=6,BC=8,如果将该矩形沿对角线 BD 折叠,那 么图中重叠部分的面积是 .
16.(2 分)已知△ABC 的三边长分别是 8 cm,10 cm ,6 cm,则△ABC 的面积是 cm2. 17.(2 分)如图所示,在△ABC 中,∠ACB=90°,BC=5,D 是 AB 的中点,△BCD 的周 长是 l8,则 AB 的长是 .
A.∠BAD
B.∠C
C.∠CAD
D.没有这样的角
4.(2 分)如图,在△ABC 中,AB=AC,AD⊥BC 于 D,E 为 AC 的中点,AB=6,则 DE 的
长是( )
A.2
B.3
C.4
D.2.5
5.(2 分)要组成一个等边三角形,三条线段的长度可取( )
A.1,2,3
B.4,6,11 C.1,1,5 D.3.5,3.5,3.5
B.HL
C.SAS
D. AAA
2.(2 分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (487).pdf

11.(2 分)如下图,今年的冰雪灾害中,一棵大树在离地面 3 米处折断,树的顶端落在离树
杆底部 4 米处,那么这棵树折断之前的高度是
Байду номын сангаас米.
12.(2 分)如图,在长方形 ABCD 中,AB=6,BC=8,如果将该矩形沿对角线 BD 折叠,那 么图中重叠部分的面积是 .
13.(2 分)在△ABC 中,若 AC2+AB2=BC2,则∠B+∠C= 度. 14.(2 分)如图,在 Rt△ABC 中,∠C=Rt∠,AC=6,AB=BC+2,则斜边 AB 长为 .
三、解答题
19.略 20.略
21.(1)解:图 2 中△ABE ≌△ACD .
证明如下:
△ABC 与 △AED 均为等腰直角三角形,
AB = AC , AE = AD, BAC = EAD = 90 . BAC + CAE = EAD + CAE ,即 BAE = CAD ,△ABE ≌△ACD . (2)证明:由(1)△ABE ≌△ACD 知 ACD = ABE = 45 ,又 ACB = 45 ,
28.(7 分)如图所示,在△ABC 中,∠B=∠C,AD 是△BAC 的平分线,点 E、F 分别是 AB、AC 的中点,问 DE、DF 的长度有什么关系?
29.(7 分)如图,已知线段 a,锐角∠α,画 Rt△ABC,使斜边 AB=a,∠A=∠α.
30.(7 分)如图,在等边△ABC 中,D、E 分别是 AB、AC 上的一点,AD=CE,CD、BE 交 于点 F. (1)试说明∠CBE=∠ACD; (2)求∠CFE 的度数.
15.(2 分)如果一个三角形一边上的中线恰好与该边上的高重合,那么这个三角形 (填 “一定”或“不一定”)是等腰三角形. 16.(2 分)在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm,则 AC= cm. 17.(2 分) 如图,在△ABC 中,AB=AC,D 是 AC 上的一点,使 BD=BC=AD,则∠A =.
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (450).pdf

A. 14 cm
B.4cm
C. 15 cm
D.3cm
7.(2 分)如图,直线 l1 、 l2 、 l3 表示三条相互交叉的公路,现要建一个货物中转站,要求 它到 三条公路的距离相等,则可选择的地址有( )
A.一处
B.两处
C.三处
D.四处
8.(2 分)设 M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角 三角形,下图中能表示它们之间关系的是 ( )
形是直角三角形
17.10
18.等腰 评卷人
得分
三、解答题
19.设小正方形的边长为 1. ∵, AB2 = 12 + 22 = 5 , BC2 = 22 + 42 = 20 , AC2 = 32 + 42 = 25 ,∴ AB2 + BC2 = AC2 ,∴
△ABC 是直角三角形 20.(1)略 (2) 略(3)△CFH 是等边三角形,理由略 21.证明△ACF≌△ECB 22.我所找的等腰三角形是:△ABC(或△BDC 或△DAB). 证明:在△ABC 中,∵∠A=36°,∠C=72°, ∴∠ABC=180°-(72°+36°)=72°.
求证:BE=AF.
22.(7 分)如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的一个等腰三角形,并给
予证明.
我找的等腰三角形是:
.
证明:
23.(7 分)如图,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作 BC 边上的中线 AD(保 留作图痕迹,不要求写作法、证明),并求 AD 的长.
平分线且相交于点 F,则图中的等腰三角形有( )
A.6 个
B.7 个
C.8 个
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (542).pdf

27.(7 分)如图所示,D、E 分别在等边三角形 ABC 的边 AC、AB 的延长线上,且 CD=AE,试说明 DB=DE.
28.(7 分)如图,在等边△ABC 中,点 D、E 分别是边 AB,AC 的中点,说明 BC=2DE 的 理由.
29.(7 分)如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中 A、B 之间的距 离),他从点 B 出发,沿着与直线 AB 成 80°角的 BC 方向(即∠CBD=80°)前进至 C,在 C 处测得∠C=40°,他量出 BC 的长为 20 米,于是就说这深沟的宽度也为 20 米,你认为陈 华同学的说法对吗?你能说出理由吗?
14. 2
2 15.6
16. 5
17.50°或 65° 18.52° 19.8 20.2.5 21.6 22.等腰
评卷人 得分
三、解答题
23.根据题意,得
2x
20
−
20 − 2x 2x 0
,
解得
5<x<10.
∴腰长的取值范围是 5<x<l0.
24.(1)正确,理由略;(2)略
25.根据 S 四边形 BCC′D′=S△AC′D′+S△ABC+S△ACC′,说明 a2 + b2 = c2 26.24m2
△ABC 的边长长 3 cm,则△DEF 的周长为( )
A.27 cm
B.30 cm
C.33 cm
D.无法确定
评卷人 得分
二、填空题
11.(2 分)如图,∠BCA = ∠E = 90°,BC= E,要利用“HL”来说明 Rt△ABC≌Rt△
ADE,则还需要补充条件
.
12.(2 分)等腰三角形的一个角为 40°,则它的底角为 . 13.(2 分)在△ABC 中,到 AB,AC 距离相等的点在 上.
28.(7 分)如图,在等边△ABC 中,点 D、E 分别是边 AB,AC 的中点,说明 BC=2DE 的 理由.
29.(7 分)如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中 A、B 之间的距 离),他从点 B 出发,沿着与直线 AB 成 80°角的 BC 方向(即∠CBD=80°)前进至 C,在 C 处测得∠C=40°,他量出 BC 的长为 20 米,于是就说这深沟的宽度也为 20 米,你认为陈 华同学的说法对吗?你能说出理由吗?
14. 2
2 15.6
16. 5
17.50°或 65° 18.52° 19.8 20.2.5 21.6 22.等腰
评卷人 得分
三、解答题
23.根据题意,得
2x
20
−
20 − 2x 2x 0
,
解得
5<x<10.
∴腰长的取值范围是 5<x<l0.
24.(1)正确,理由略;(2)略
25.根据 S 四边形 BCC′D′=S△AC′D′+S△ABC+S△ACC′,说明 a2 + b2 = c2 26.24m2
△ABC 的边长长 3 cm,则△DEF 的周长为( )
A.27 cm
B.30 cm
C.33 cm
D.无法确定
评卷人 得分
二、填空题
11.(2 分)如图,∠BCA = ∠E = 90°,BC= E,要利用“HL”来说明 Rt△ABC≌Rt△
ADE,则还需要补充条件
.
12.(2 分)等腰三角形的一个角为 40°,则它的底角为 . 13.(2 分)在△ABC 中,到 AB,AC 距离相等的点在 上.
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (532).pdf

9.(2 分)已知一个三角形的周长为 39 cm,一边长为 12 cm,另一边长为 l5 cm,则该三角
形是( )
A.直角三角形
B.钝角三角形 C.等腰三角形 D.无法确定
10.(2 分)下列图形:①线段;②角;③数字 7;④圆;⑤等腰三角形;⑥直角三角形.其
中轴对称图形是( )
A.①②③④ 评卷人 得分
B.①③④⑤⑥ C.①②④⑤ 二、填空题
D.①②⑤
11.(2 分) 如图,将等腰直角三角形 ABC 沿 DE 对折后,直角顶点 A 恰好落在斜边的中点 F 处,则得到的图形(实线部分)中有 个等腰直角三角形.
12.(2 分)等腰三角形的一个角为 40°,则它的底角为 . 13.(2 分)在△ABC 中,若 AC2+AB2=BC2,则∠A= 度.
D.20°
5.(2 分)如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点 0,过点 O 作 EF∥BC,
交 AB 于点 E,交 AC 于点 F,△ABC 的周长是 24cm ,BC=10cm,则△AEF 的周长是
()
A.10 cm
B.12cm
C.14 cm
D.34 cm
6.(2 分)等腰三角形一边长等于 4,一边长等于 9,它的周长是( )
∴AD 是△ABC 的 BC 边上的中线,∴BD=CD= 1 BC. 2
∵BD=6cm,∴BC=12(cm) 25.40° 26.10 km 27.先说明 EG=DG,再利用三线合一说明 28.25 cm2 29.延长 AE 至 F,使 EF=AB,连接 DF,先证明△ADF 为等边三角形,再证明△ABD≌ △FED 30.略
11.3 12.70°或 40° 13.90
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (442).pdf

△ABC 的面积为( )
A.24 cm2 B.36 cm2 C.48 cm2 D.96 cm2
6.(2 分)如图,在△ABC 中,∠BAC=90°,点 D 是 AB 的中点,BC=14 cm,则 AD 的长
是( )
A.6 cm
B.7 cm
C.8 cm
D.9 cm
7.(2 分)我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )
25.(7 分)如图,一根旗杆在离地面 9 m 处的 B 点断裂,旗杆顶部落在离旗杆底部 12 m 处,旗杆折断之前有多高?
26.(7 分)已知△ABC 中,∠C=Rt∠,BC=a,AC=b. (1)若 a=1,b=2,求 c; (2)若 a=15,c=17,求 b.
27.(7 分)在△ABC 中,如果∠A=∠B= 1 ∠C,试判断△ABC 的形状,并说明理由. 2
22.(7 分)试判断:三边长分别为 2n2 + 2n , 2n +1 、 2n2 + 2n +1(n>O)的三角形是否是直角三
角形?并说明理由. 23.(7 分)如图所示,Rt△ABC 中,∠C=90,分别以 AC、BC、AB 为直径向外画半圆,这 三个半圆的面积之间有什么关系?为什么?
24.(7 分)如图所示,铁路上 A、B 两站相距 25 km,C.D 为村庄,DA⊥AB 于 A,CB⊥ AB 于 B,已知 DA=15 km,CB=10 km,现在要在铁路的 A、B 两站间建一个土产品收购 站 E,使得 C、D 两村到 E 站的距离相等,则 E 站应建在离 A 站多远处?
A.50°
B.40°
C.25°
D.20°
2.(2 分)若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (382).pdf

29.(7 分)如图,C 表示灯塔,轮船从 A 处出发以每小时 21 海里的速度向正北(AN 方向)航 行,在 A 处测得么∠NAC=30°,3 小时后,船到达 B 处,在 B 处测得么∠NBC=60°,求 此时 B 到灯塔 C 的距离.
30.(7 分)如图,在△ABC 中,CA=CB,CD 是高,E、F 分别是 AB、BC 上的点,求作点 E、F 关于直线 CD 的对称点(只要求作出图形).
28.DE=DF,理由略
29.63 海里
30.略
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.C 2.A 3.D 4.C 5.B 6.B 7.B 8.D 9.C 10.B
11.D 12.C
评卷人
得分
二、填空题
13.121°
14. 202
15.60, 25 3 4
16.70°或 40° 17.100 18.90 19.30 20.2.5 21.6 22.l2
15.(2 分)如图,在 Rt△ABC 中,CD 是斜边上的中线,CE 是高.已知 AB=10cm, DE=2.5 cm,则∠BDC= 度,S△BCD= cm2
16.(2 分)等腰三角形的一个角为 40°,则它的底角为 . 17.(2 分)如图,以直角三角形中未知边为边长的正方形的面积为 .
18.(2 分)在△ABC 中,若 AC2+AB2=BC2,则∠B+∠C= 度.
A.三个角都相等的三角形是等边三角形
B.有两个角是 60。的三角形是等边三角形
C.有一个角是 60°的等腰三角形是等边三角形
D.有两个角相等的等腰三角形是等边三角形
4.(2 分)某等腰三角形的两条边长分别为 3cm 和 6cm,则它的周长为( )
30.(7 分)如图,在△ABC 中,CA=CB,CD 是高,E、F 分别是 AB、BC 上的点,求作点 E、F 关于直线 CD 的对称点(只要求作出图形).
28.DE=DF,理由略
29.63 海里
30.略
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.C 2.A 3.D 4.C 5.B 6.B 7.B 8.D 9.C 10.B
11.D 12.C
评卷人
得分
二、填空题
13.121°
14. 202
15.60, 25 3 4
16.70°或 40° 17.100 18.90 19.30 20.2.5 21.6 22.l2
15.(2 分)如图,在 Rt△ABC 中,CD 是斜边上的中线,CE 是高.已知 AB=10cm, DE=2.5 cm,则∠BDC= 度,S△BCD= cm2
16.(2 分)等腰三角形的一个角为 40°,则它的底角为 . 17.(2 分)如图,以直角三角形中未知边为边长的正方形的面积为 .
18.(2 分)在△ABC 中,若 AC2+AB2=BC2,则∠B+∠C= 度.
A.三个角都相等的三角形是等边三角形
B.有两个角是 60。的三角形是等边三角形
C.有一个角是 60°的等腰三角形是等边三角形
D.有两个角相等的等腰三角形是等边三角形
4.(2 分)某等腰三角形的两条边长分别为 3cm 和 6cm,则它的周长为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.(2 分)某同学从学校出发向南走了 10 米,接着又向东走了 5 米到达文化书店,则学校 与文化书店之间的距离是 米. 13.(2 分) Rt△ARC 中,∠C=90°,若 CD 是 AB 边的中线,且 CD=4cm,则 AB= cm, AD= BD= cm.
14.(2 分)在△ABC 中,若 AC2+AB2=BC2,则∠A= 度. 15.(2 分)如图,B、C 是河岸两点,A 是对岸一点,测得∠ABC=45°,BC=60m ,∠ ACB=45°,则点 A 到岸边 BC 的距离是 m.
B.有两个角是 60°的三角形是等边三角形
C.有一个角是 60°的等腰三角形是等边三角形
D.有两个角相等的等腰三角形是等边三角形
8.(2 分)如果△ABC 是等腰三角形,那么∠A,∠B 的度数可以是( )
A.∠A=60°,∠B=50°
B.∠A=70°,∠B=40°
C.∠A=80°,∠B=60°
D.∠A=90°,∠B=30°
9.(2 分)如图,∠A =15°,AB=BC=CD=DE=EF,则∠DEF 等于( )
A.90°
B.75°
C.60°
D.45°
10.(2 分)在△ABC 中,AB = BC,∠A =80°, 则∠B 的度数是( )
A.100°
B.80°
C. 20
D. 80°或 20°
评卷人 得分
二、填空题
11.(2 分)如图,AB⊥BC,BC⊥CD,当 时,Rt△ABC≌Rt△DCB(只需写出一个条件).
21. ( 2)n
22.36° 评卷人
得分
三、解答题
23.如图所示.可以作 8 个
24.在△ABC 中.∵AB=AC,∠A=38,∴∠ABC=∠C= 1 ×(180°-∠A)=71°. 2
在△DBC 中,∵BD=BC,∴∠BDC=∠C=71°. ∴∠D8C=180°-∠BDC-∠C=180°-71°-71°=38°. 25.480m 26.方法一:测量 BD、ED 的长度,看是否相等;方法二:测量∠B、∠C 的度数,看是 否相等 27.(1)正确,理由略;(2)略 28.4
22.(2 分) 如图,在△ABC 中,AB=AC,D 是 AC 上的一点,使 BD=BC=AD,则∠A =.
评卷人 得分
三、解答题
23.(7 分) 如图,在 5×5 的正方形网格中,小正方形的边长为 1,横、纵线的交叉点称为 格点,以 AB 为其中一边作等腰三角形,使得所作三角形的另一个顶点也在格点上,可以 作多少个?请一一作出.
ACB,CE、BD 相交于点 F,∠EFB=65°,则∠A=( )
A.30°
B.40°
C.45°
D.50°
6.(2 分)在△ABC 中,∠A:∠B:∠C=2:3:5,则△ABC 是( )
A.锐角三角形
B.钝角三角形 C.直角三角形 D.无法确定
7.(2 分)下列说法错误的是( )
A.三个角都相等的三角形是等边三角形
16.(2 分)如图,以直角三角形中未知边为边长的正方形的面积为 .
17.(2 分)在 Rt△ABC 中,∠C=90°,∠A=37°,∠B= . 18.(2 分)等边三角形三个角都是 . 19.(2 分)如图,在△ABC 中,AB=AC=BC,若 AD⊥BC,BD=5 cm,则 AB=
cm.
20.(2 分) 等腰三角形△ABC 中,AB=AC,∠BAC=70°,D 是 BC 的中点,则∠ ADC= ,∠BAD= . 21.(2 分)已知△ABC 是边长为 1 的等腰直角三角形,以 Rt△ABC 的斜边 AC 为直角边, 画第二个等腰 Rt△ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ ADE,…,依此类推,第 n 个等腰直角三角形的斜边长是 .
浙教版初中数学试卷
2019-2020 年八年级数学上册《特殊三角形》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二三 总分得分Fra bibliotek评卷人 得分
一、选择题
1.(2 分)下列说法中,错误的是( )
A.等边三角形是特殊的等腰三角形
28.(7 分)如图,在△ABC 中,AB=AC=5,BC=6,AD⊥BC,求 AD 的长.
29.(7 分)已知△ABC 中,∠C=Rt∠,BC=a,AC=b. (1)若 a=1,b=2,求 c; (2)若 a=15,c=17,求 b.
30.(7 分)如图,用同样大小的四个等边三角形,可以拼成一个轴对称图形,你能再拼出一 种轴对称图形吗?
构成一个直角三角形三边的线段是( )
A.CD、EF、GH
B.AB、EF、GH
C.AB、CD、GH
D.AB、CD、EF
4.(2 分)将直角三角形的三边都扩大 3 倍后,得到的三角形是( )
A.直角三角形
B.锐角三角形 C.钝角三角形 D.无法确定
5.(2 分)如图所示,已知直角三角形 ABC 中,∠ABC=90°,BD 平分∠ABC,CE 平分∠
24.(7 分)如图,AB=AC,BD=BC. 若∠A = 38°,求∠DBC 的度数.
25.(7 分)如图,某人从点 A 出发欲横渡一条河,由于水流影响,实际上岸地点 C 偏离欲 到达的地点 B 有 140 m(AB⊥BC),结果他在水中实际游了 500 m,求这条河的宽度为多 少米?
26.(7 分)如图是斜拉桥的剖面图.BC 是桥面,AD 是桥墩,设计大桥时工程师要求斜拉的 钢绳 AB= AC.大桥建成以后,工程技术人员要对大桥质量进行验收,由于桥墩 AD 很 高,无法直接测量钢绳 AB、AC 的长度.请你用两种方法检验 AB、AC 的长度是否相等, 并说明理由.
B.等腰三角形底边上的中线是等腰三角形的对称铀
C. 有一个角为 45°的直角三角形是等腰直角三角形
D.等腰三角形的顶角可以是锐角、直角或钝角
2.(2 分)如图,CD 是 Rt△ABC 斜边 AB 上的高,∠A=40°,则∠1=( )
A.30°
B.40°
C.45°
D.60°
3.(2 分)如图,在单位正方形组成的网格图中标有 AB、CD、EF、GH 四条线段,其中能
29.(1) 5 ;(2)8 30.略
27.(7 分)仅用一块没有刻度的直角三角板能画出任意角的平分线吗? (1)小明想出了这样的方法:如图所示,先将三角板的一个顶点和角的顶点 0 重合,一条直 角边与 OA 重合,沿另一条直角边画出直线 l1 ,再将三角板的同一顶点与 0 重合,同一条 直角边与 0B 重合,又沿另一条直角边画出直线 l2 , l1 与 l2 交于点 P,连结 OP,则 0P 为 ∠AOB 的平分线,你认为小明的方法正确吗?为什么? (2)你还有别的方法吗?请叙述过程并说明理由.
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.B 2.B 3.B 4.A 5.D 6.C 7.D 8.B 9.C 10.C
评卷人 得分
二、填空题
11.答案不唯一,如 AB=CD
12. 125
13.8.4 14.90 15.30 16.100 17.53° 18.60° 19.10 20.90°,35°