(整理)材料力学中国建筑工业出版社第四章弯曲内力答案
工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。
(整理)工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:161.2R F N==1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 3R F KN== 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)由x =∑cos 450RA F P -=15.8RA F KN∴=由Y =∑sin 450RA RB F F P +-=7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由x=∑cos45cos450RA CBP F F--= 0Y=∑sin45sin450CB RAF F'-=联立后,解得:0.707RAF P=0.707RBF P=由二力平衡定理0.707 RB CB CBF F F P'===2-8解:杆AB,AC均为二力杆,取A点平衡由x=∑cos60cos300AC ABF F W⋅--= 0Y=∑sin30sin600AB ACF F W+-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及 ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。
材料力学弯曲变形答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。
( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力η必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
(完整word版)(整理)工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑ 12sin 140RY F Y P P N θ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故:223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin300ACAB FF -= 0Y =∑ cos300ACFW -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos700ACAB FF -= 0Y =∑ sin700ABFW -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos60cos300ACAB FF -= 0Y =∑ sin30sin600ABAC FF W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin30sin300ABAC FF -=0Y =∑ cos30cos300ABAC FF W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由x =∑22cos 45042RA F P -=+15.8RA F KN ∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 45010RA RB F F P --= 0Y =∑sin 45sin 45010RA RB F F P +-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑ cos45cos450RA CB P F F --=0Y =∑ sin 45sin 450CBRA F F '-=联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑ cos60cos300AC AB F F W ⋅--=0Y =∑ sin30sin600ABAC FF W +-=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑ sin cos 0DB T W αα-=0DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑ cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+ ⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑ sin75sin750AB AD F F -=0Y =∑ cos75cos750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑ cos5cos800AD ND F F '-=cos5cos80ND ADF F '=⋅由对称性及 AD AD F F '=cos5cos5222166.2cos80cos802cos75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O点,列O点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '-= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q2RE F Q '=(2)取ABCE 部分,对C 点列平衡x =∑ cos450RE RA F F -=0Y =∑ sin 450RBRA FF P --=且 RE RE F F '=联立上面各式得: 22RA F Q =2RB F Q P =+(3)取BCE 部分。
材料力学第四版课后答案课件

02 材料力学基础知识
CHAPTER
详细描述
材料力学是工程学科中的一门基础学科,主要研究材料在力作用下的行为,包括材料的 变形、断裂、疲劳等。对于工程师来说,了解材料力学的基本原理和知识是必不可少的
,因为这些原理和知识被广泛应用于各种工程领域,如建筑、机械、航空航天等。
材料力学的基本假设与原理
总结词
材料力学基于一些基本假设和原理,如连续性、均匀 性、各向同性等,通过这些假设和原理来描述材料的 力学行为。
材料力学第四版课后答案课件
目录
CONTENTS
• 材料力学概述 • 材料力学基础知识 • 材料力学基本分析方法 • 材料力学中的能量方法 • 材料力学的应用实例 • 材料力学第四版课后答案解析
01 材料力学概述
CHAPTER
材料力学的定义与重要性
总结词
材料力学是研究材料在力作用下变形、破坏和恢复的学科,对于工程设计和安全至关重 要。
材料力学的发展历程
• 总结词:材料力学的发展经历了多个阶段,从最早的实验观察到现代的数值模拟和智能化技术应用。
• 详细描述:材料力学的发展历程可以追溯到古代,当时的人们通过实践经验积累了一些关于材料性质的认识。然而,真正的材料力学研究始于18世纪,当时的一些科学家开始系统地研 究材料的力学行为。随着科学技术的发展,材料力学的研究也不断深入,涉及到更广泛的应用领域。现代的材料力学研究已经与数学、物理、化学等多个学科交叉融合,形成了许多新 的研究方向和应用领域。同时,随着计算机技术和数值模拟方法的快速发展,现代的材料力学研究也更加依赖于计算机模拟和智能化技术。这些技术的发展为材料力学的研究提供了更 广阔的空间和更深入的认识。
详细描述
材料力学的研究基于一些基本假设和原理。连续性假 设认为材料可以被看作连续的介质,而不是由单个原 子或分子组成。均匀性假设则认为在材料的宏观尺度 上,材料的性质是均匀的,不会因位置的不同而有所 变化。是相同的,不会因方向的不同而有所变化。这些 基本假设和原理为材料力学的研究提供了基础。
《材料力学》第4章弯曲内力 课后答案

0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F
,
M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql
,
∑
M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=
−
3 8
ql
2
;
FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞
⎝
2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞
⎝
2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2
⎠
45
M (x) =
FA x +
FB
⎜⎛ ⎝
x
−
l 2
⎟⎞ ⎠
,
FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8
↑
( ) ∑ Fy
= 0 , FB
材料力学-北京交通大学-4章答案

第四章弯曲内力4.4 设已知题4.4图(a)~(p)所示各梁的载荷 F 、q 、e M 和尺寸a ,(1)列出梁的剪力方程和弯矩方程;(2)作剪力图和弯矩图;(3)确定maxSF 及max M 。
解:(a)如题4.4图(a)所示。
剪立如题4.4图(a 1)所示坐标系。
(1)列剪力方程和弯矩方程。
应用题4.1(a)解法二提供的列剪力方程和弯矩方程的方法。
AC 段 ()()20S F x F x a =<<()()()20M x F x a x a =-<≤CB 段 ()()02S F x a x a =≤≤()()2M x Fa a x a =≤<(2)作剪力图、弯矩图,如题4.4图(a 2)所示。
(3)梁的最大剪力和弯矩为max2SF F =, max M Fa =(b) 如题4.4图(b)所示。
解法同4.4(a)。
剪立题4.4图(b 1)所示坐标系。
(1)列剪力方程和弯矩方程。
AC 段 ()()0S F x qx x a =-≤≤()()2102M x qx x a =-≤≤CB 段 ()()2S F x qa a x a =-≤<()()22a M x qa x a x a ⎛⎫=--≤< ⎪⎝⎭(2) 作剪力图、弯矩图,如题4.4图(b 2)所示。
(3) 梁的最大剪力和弯矩为maxSF qa =, 2max32Mqa =(c) 如题4.4图(c)所示。
解法同4.4(a)。
剪立题4.4图(c 1)所示坐标系。
(1)列剪力方程和弯矩方程。
CB 段 ()()023S F x a x a =≤≤()()223M x qa a x a =≤<AC 段 ()()()202S F x q a x x a =-<≤()()()2212022M x q a x qa x a =--+<≤(2) 作剪力图、弯矩图,如题4.4图(c 2)所示。
工程力学(静力学材料力学)第四版习题答案

静力学部分第一章基本概念受力图工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学汤2-1 解:由解析法,23co s 80R X F X P P Nθ==+=∑12sin 140R Y F YP P Nθ==+=∑故:161.2R F N==1(,)a rc c o s 2944R Y R RF F P F '∠==工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123co s 45co s 453R X F X P P P K N==++=∑13sin 45sin 450R Y F YP P ==-=∑故:3R F K N== 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:X =∑sin 300A C AB F F -=Y=∑co s 300A C F W -=0.577A B F W=(拉力)1.155A C F W=(压力)(b ) 由平衡方程有:X =∑co s 700A C AB F F -=Y=∑sin 700A B F W -=1.064A B F W=(拉力)0.364A CF W=(压力)(c ) 由平衡方程有:X =∑co s 60co s 300A C AB F F -=Y=∑sin 30sin 600A B A C F F W +-=0.5A B F W= (拉力)0.866A C F W=(压力)(d ) 由平衡方程有:X =∑sin 30sin 300A B A C F F -=Y=∑co s 30co s 300A B A C F F W +-=0.577A B F W= (拉力)0.577A C F W= (拉力)工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤2-4 解:(a )受力分析如图所示:由x =∑4c o s 450R A F P ⋅-=15.8R A F K N∴=由0Y =∑s in 450R A R B F F P ⋅+-=7.1R B F K N∴=(b)解:受力分析如图所示:由x =∑c o s 45c o s 450R A R B F F P ⋅--=Y=∑s in 45s in 450R A R B F F P ⋅+-=联立上二式,得:22.410R A R B F K N F K N==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5R A F K N= (压力)5R B F K N=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2A C F G =由x =∑c o s 0A C r F F α-=12c o s G G α∴=由0Y =∑s in 0A C N F F W α+-=工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤2s in N F W G W α∴=-⋅=-2-7解:受力分析如图所示,取左半部分为研究对象由x =∑co s 45co s 450R A C B P F F --=Y=∑sin 45sin 450C B R A F F '-=联立后,解得:0.707R A F P=0.707R B F P=由二力平衡定理0.707R B C B C B F F F P'===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑co s 60co s 300A C AB F F W ⋅--=Y=∑sin 30sin 600A B A C F F W +-=联立上二式,解得: 7.32A BF K N=-(受压)27.3A CF K N=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑s in c o s 0D B T W αα-=D B T W c tg α∴==(2)取B 点列平衡方程:由Y=∑s in c o s 0B D T T αα'-=230B D T T ctg W ctg K Nαα'∴===2-10解:取B 为研究对象:工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤宏宇 整理由Y=∑s in 0B C F P α-=sin B C P F α∴=取C 为研究对象:由x =∑c o s s in s in 0B C D C C E F F F ααα'--=由0Y =∑s in c o s c o s 0B C D C C E F F F ααα--+=联立上二式,且有B C B CF F '= 解得:2c o s 12s in c o s C E P F ααα⎛⎫=+ ⎪⎝⎭取E 为研究对象:由0Y =∑c o s 0N H C E F F α'-=C E C EF F '= 故有:22c o s 1c o s 2s in c o s 2s in N H P P F ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750A B A D F F -=Y=∑co s 75co s 750A B A D F F P +-=联立后可得: 2c o s 75A D AB P F F ==取D 点平衡,取如图坐标系:x =∑co s 5co s 800AD N D F F '-=c o s 5c o s 80N D A DF F '=⋅由对称性及A D A DF F '=工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤宏宇 整理c o s 5c o s 5222166.2c o s 80c o s 802c o s 75N N D A D P F F F K N'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑co s co s 300R A D C F F P α+-=Y=∑sin sin 300R A F P α-=联立上二式得:2.92R A F K N=1.33D C F K N=(压力)列C 点平衡x =∑405D C A C F F -⋅=Y=∑305B C A C F F +⋅=联立上二式得:1.67A C F K N=(拉力)1.0B CF K N=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑R D R E F F '=Y =∑R D F Q =联立方程后解得:R D F =2R E F Q'=(2)取ABCE 部分,对C 点列平衡x =∑co s 450R E R A F F -=Y=∑sin 450R B R A F F P --=工程力学(静力学与材料力学)第四版习题答案全解由新疆大学&东华大学 汤宏宇 整理且 R ER EF F '=联立上面各式得:R AF =2R B F Q P=+(3)取BCE 部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:分别先后用1-1、2-2、3-3截面将杆切开,取右边部分研究,整个构件是平衡的,则脱离体也应该平衡。
受力如图(b)、(c)、(d)所示。
内力一定要表标成正方向,剪力绕脱离体内任一点有顺时转动趋势;而表弯矩时,可视杆内任点为固定,使下侧纤维受拉
的变矩为正。
如图(b ):
如图(c ):
如图(d ):
4-1c 求指定截面的剪力和弯矩。
4-2cfh 写出下列各梁的剪力方程、弯矩方程,并作剪力图和弯矩图。
题4-2c
V M
kN ·
M
V 题4-2f
·
题4-2h
2
30q l 27
(a )(b )
M P 1111
10
000()0O Y V qa V qa M qa M M F ⎧=-==⎧⎧⎪→→⎨
⎨⎨-⋅∆===⎩⎩⎪⎩∑∑2(e )
M (d )
(c )
3332
33000()0O Y V qa V qa M qa a M qa M F ⎧==-=⎧⎧⎪⎪→→⎨⎨⎨+⋅==-=⎪⎩⎩⎪⎩
∑∑
2222
20
000()0O Y V qa V qa M M qa a M M F ⎧=-==⎧⎧⎪→→⎨
⎨⎨--⋅===⎩⎩⎪⎩∑∑
4-3dfgh 用微分关系作下列各梁的剪力图和弯矩图
4kN ·m
+
题4-3d
10.25
M
kN ·m)
V
kN)-
-
1243.5-1
0.25
-
+
3
2
2
+
-题4-3f
M 图
8
5Pl 8
3Pl 16
Pl P/4
-43.5
--12
M
kN ·m)
V kN)
24+
+
-
26.25
7.57.5
题4-3g
5P/4
+
P=15kN
+-24
313.875
3
13.875
qa
M 图
V 图2
qa +
-
2
+
-2qa
+-qa
2qa
题4-3h
M
kN ·V kN)
3.125
4-6 起吊一根自重为q (N/m )的等截面钢筋混凝土梁,问起吊点的合理位置x 应为多少(令梁在吊点处和中点处的最大正负弯矩的绝对值相等)
M
kN ·m)
V kN)
题4-6
+
2
ql(l-2x)/4-q l /8
qx/2
2
qx/2qx ql/2-qx ql/2-qx
qx
-
-+
--
+
q
2
2
qx/8
qx/8
2
题4-7
4-7天车梁上小车轮距为c ,起重量为P ,问小车走到什么位置时,梁弯矩最大?并求出最大弯矩。
解:(1)求反力
⎪⎪⎩⎪⎪⎨⎧⋅+⋅=⋅-⋅-=→⎪⎪⎩⎪⎪⎨⎧
=+-⋅-⋅=--+-+⋅-→⎪⎩⎪⎨
⎧==∑∑c l P x l P Y c l P x l P P Y c x P x P l Y c x l P x l P l Y F m F m B A B A A B 220)(220)(2)(20)(0)(
由于
022
=+⨯-
=∑B A Y P
Y Y ,故所求反力无误。
(2)求最大弯矩
最大弯矩只可能出现在两轮子所到之处。
由对称性只算C 轮便可。
⎥
⎦⎤⎢⎣⎡-+-+-=--⋅⎪⎭⎫ ⎝⎛⋅+⋅=--⋅=⎥
⎦⎤⎢⎣⎡---+-=-+-=⋅⎪⎭⎫ ⎝⎛
⋅-⋅-=⋅=22)23()(2)()24()24()2(222222c cl x c l x l P c x l c l P x l
P
c x l Y M l c l c x l P lx x c x l P x c l P x l P P x Y M B D A C
令c l x c l x l P M D 4
3
20)232('
-=→=-+-=, 当4
2c l x -=
时,22max ,)2(4)24(0l c
l P l c l P M C -=⎥⎦⎤⎢⎣⎡---=
当4
3242c l c c l x +=+-=
时,22max ,)2(4)24(0l c
l P l c l P M D -=⎥⎦⎤⎢⎣⎡---=
4-8用叠加法绘制下列各梁的剪力图和弯矩图。
0.5P
0.5P
题4-8a
M
kN V 图(kN)
5
15
-+
V 图
+
+
-5
题4-8b
+
20
题4-8c
题4-10b
M V 图
8=
M
kN ·m)
V 图
4-10b 作图示连续梁的剪力图和弯矩图。