2015年讲义高中数学步步高大一轮复习讲义(文科)压轴题目突破练——函数与导数
20192015年高中数学步步高大一轮复习讲义(文科)第二章2.7

题型分类·深度剖析
题型一 作函数的图像
思维启迪 解析 思维升华
【例 1】
分别画出下列函数
的图像: (1)y=|lg x|; (2)y=2x+2; (3)y=x2-2|x|-1; x+ 2 (4)y= . x- 1
2 x -2x-1 (3)y= 2 x +2x-1
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二 识图与辨图
思维启迪 解析 答案 思维升华
x3 【例 2】 (1)(2013· 四川)函数 y= x 3 -1 的图像大致是 ( )
(1)根据函数的定义域, 特殊点 和函数值的符号判断;
-2x,-1≤x≤0 (2)已知 f(x)= x,0<x≤1
思维启迪 解析 思维升华
【例 1】
分别画出下列函数
的图像: (1)y=|lg x|; (2)y=2
x +2 2
根据一些常见函数的图像, 通
;
过平移、 对称等变换可以作出 函数图像.
(3)y=x -2|x|-1; x+ 2 (4)y= . x- 1
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 作函数的图像
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
跟踪训练 1 作出下列函数的图像. x+2 (1)y=sin |x|;(2)y= . x+3
解
(1)当 x≥0 时,y=sin |x|与 y=sin x 的图像完全相同,
又 y=sin |x|为偶函数,其图像关于 y 轴对称,其图像如图.
x+2 1 (2)y= =1- ,该函数图像可由 x+3 x+3 1 函数 y=- 向左平移 3 个单位再向上平 x 移 1 个单位得到,如图所示.
2015年高中数学步步高大一轮复习讲义(文科)第一章 1.3

题型分类·深度剖析
(1)若命题 p:函数 y=x2-2x 的单调递增区间是[1, 1 +∞), 命题 q: 函数 y=x-x的单调递增区间是[1, +∞), 则( D ) 跟踪训练 2 A.p∧q 是真命题 C.綈 p 是真命题 B.p∨q 是假命题 D.綈 q 是真命题
必要不充分 条件. (2)“p 或 q”为真命题是“p 且 q”为真命题的___________
“綈 p”为真命题的个数是 A.1 B. 2
C.3 D.0
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二 含有逻辑联结词命题的真假判断
思维启迪 解析 答案 思维升华
【例 2】
命题 p:将函数 y=sin 2x π 的图像向右平移 个单位得到函数 3 π y=sin2x-3的图像; 命题 q: 函数 π π y = sin x+6 cos 3-x 的最小正周 期为 π, 则命题“p 或 q”“p 且 q” ( )
【例 1】 写出下列命题的否定, 并判断其真假: 1 (1)p: 任意 x∈R, x -x+ ≥0; 4
2
思维升华
(2)q:所有的正方形都是矩形; (3)r:存在 x0∈R,x2 0+2x0+劫 2≤0; (4)s:至少有一个实数 x0 ,使 x3 0+1=0.
基础知识 题型分类 思想方法 练出高分
真
假
假
真
假
假 假
真
真
真
真
真
真
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
夯基释疑
夯实基础 突破疑难
题号
1 2 3 4 5
答案
2015年高中数学步步高大一轮复习讲义(文科)中档题目强化练——三角函数讲义、解三角形

知道当 y2=m 在[1,2)上移动时,两个函数有两个交点.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
6.已知△ABC 的面积为 23,AC= 3,∠ABC=π3,则△ABC 的周长等于__3_+___3__.
解析 S=12acsin∠ABC= 23,得 ac=2;
精品
2015年高中数学步步高大一轮 复习讲义(文科)中档题目强化 练——三角函数、解三角形
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
1.已知角 A 是△ABC 的一个内角,若 sin A+cos A=173,则
tan A 等于
(A)
A.-152
B.172
3 2.
又因为 0<A<π,所以 A=56π.
(2)由(1)得 sin A=12,
又由正弦定理及 a= 3得
S=12absin C=12·assiinnAB·asin C=3sin Bsin C,
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
9.(2013·重庆)在△ABC 中,内角 A、B、C 的对边分别为 a、b、c,
9 10
3.已知函数 f(x)=2cos(ωx+φ)(ω>0)的图像关于直线 x=1π2对称,
且 f π3=0,则 ω 的最小值为
(A)
2015年高中数学步步高大一轮复习讲义(文科)第8讲函数与方程

第8讲函数与方程一、选择题1.设f(x)=e x+x-4,则函数f(x)的零点位于区间().A.(-1,0) B.(0,1)C.(1,2) D.(2,3)解析∵f(x)=e x+x-4,∴f′(x)=e x+1>0,∴函数f(x)在R上单调递增.对于A项,f(-1)=e-1+(-1)-4=-5+e-1<0,f(0)=-3<0,f(-1)f(0)>0,A不正确,同理可验证B、D不正确.对于C项,∵f(1)=e+1-4=e-3<0,f(2)=e2+2-4=e2-2>0,f(1)f(2)<0,故选C.答案 C2.函数f(x)=2x+3x的零点所在的一个区间是( ).A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)解析f(x)=2x+3x在R上为增函数,且f(-1)=2-1-3=-52,f(0)=1,则f(x)=2x+3x在(-1,0)上有唯一的一个零点.答案 B3.函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是().A.(1,3) B.(1,2)C.(0,3) D.(0,2)解析由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得0<a<3.答案 C4.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A .6B .7C .8D .9解析 当0≤x <2时,令f (x )=x 3-x =0,得x =0或x =1.根据周期函数的性质,由f (x )的最小正周期为2,可知y =f (x )在[0,6)上有6个零点,又f (6)=f (3×2)=f (0)=0,∴f (x )在[0,6]上与x 轴的交点个数为7. 答案 B5.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( ).A .5B .6C .7D .8解析 由题意知函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos(πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos(πx ),即x 2=|cos πx |.同理可以得到在区间⎣⎢⎡⎭⎪⎫-12,0,⎝ ⎛⎦⎥⎤12,1,⎝ ⎛⎦⎥⎤1,32上的关系式都是上式,在同一个坐标系中作出所得关系式等号两边函数的图像,如图所示,有5个根.所以总共有6个.答案 B6.方程x 2+2x -1=0的解可视为函数y =x +2的图象与函数y =1x的图象交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎪⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是( ).A .RB .∅C .(-6,6)D .(-∞,-6)∪(6,+∞) 解析 (转化法)方程的根显然x ≠0,原方程等价于x 3+a =4x,原方程的实根是曲线y =x 3+a 与曲线y =4x的交点的横坐标;而曲线y =x 3+a 是由曲线y=x 3向上或向下平移|a |个单位而得到的.若交点⎝ ⎛⎭⎪⎫x i,4x i (i =1,2,…,k )均在直线y =x 的同侧, 因直线y =x 与y =4x交点为:(-2,-2),(2,2);所以结合图象可得:⎩⎨⎧a >0,x 3+a >-2,x ≥-2,或⎩⎨⎧a <0,x 3+a <2,x ≤2,⇒a ∈(-∞,-6)∪(6,+∞);选D. 答案 D 二、填空题7.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0可得其中一个零点x 0∈______,第二次应计算________. 解析 ∵f (x )=x 3+3x -1是R 上的连续函数,且f (0)<0,f (0.5)>0,则f (x )在x ∈(0,0.5)上存在零点,且第二次验证时需验证f (0.25)的符号. 答案 (0,0.5) f (0.25)8.已知函数f (x )=⎩⎨⎧2x-1, x-x 2-2x x ≤0.若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出图象,令g (x )=f (x )-m =0,即f (x )与y =m 的 图象的交点有3个,∴0<m <1. 答案 (0,1)9.函数f(x)= 21x 2x ,x 02lgx 1,x 0⎧-+≤⎪⎨⎪->⎩的零点个数为_______.解析 作出函数f(x)的图象,从图象中可知函数f(x)的零点有4个.答案 410.若直角坐标平面内两点P ,Q 满足条件:①P 、Q 都在函数f (x )的图象上;②P 、Q 关于原点对称,则称点对(P 、Q )是函数f (x )的一个“友好点对”(点对(P 、Q )与点对(Q ,P )看作同一个“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧2x 2+4x +1,x <0,2ex ,x ≥0,则f (x )的“友好点对”的个数是________.解析 设P (x ,y )、Q (-x ,-y )(x >0)为函数f (x )的“友好点对”,则y =2e x ,-y =2(-x )2+4(-x )+1=2x 2-4x +1,∴2e x +2x 2-4x +1=0,在同一坐标系中作函数y 1=2e x 、y 2=-2x 2+4x -1的图象,y 1、y 2的图象有两个交点,所以f (x )有2个“友好点对”,故填2. 答案 2 三、解答题11.若方程lg(-x 2+3x -m )=lg(3-x )在x ∈(0,3)内有唯一零点,求实数m 的取值范围.解析 原方程可化为-(x -2)2+1=m (0<x <3),设y 1=-(x -2)2+1(0<x <3),y 2=m , 在同一坐标系中画出它们的图像(如图所示).由原方程在(0,3)内有唯一解,知y 1与y 2的图像只有一个公 共点, 可见m 的取值范围是-3<m≤0或m =1.12.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点,已知函数f (x )=ax 2+(b +1)x +b -1(a ≠0) (1)当a =1,b =-2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围. 解析 (1)当a =1,b =-2时,f (x )=x 2-x -3, 由题意可知x =x 2-x -3,得x 1=-1,x 2=3 故当a =1,b =-2时,f (x )的不动点是-1,3.(2)∵f (x )=ax 2+(b +1)x +b -1(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +b -1,即ax 2+bx +b -1=0恒有两相异实根, ∴Δ=b 2-4ab +4a >0(b ∈R)恒成立. 于是Δ′=(4a )2-16a <0解得0<a <1,故当b ∈R ,f (x )恒有两个相异的不动点时,0<a <1. 13.已知二次函数f (x )=x 2-16x +q +3.(1)若函数在区间[-1,1]上存在零点,求实数q 的取值范围;(2)是否存在常数t (t ≥0),当x ∈[t,10]时,f (x )的值域为区间D ,且区间D 的长度为12-t (视区间[a ,b ]的长度为b -a ).解 (1)∵函数f (x )=x 2-16x +q +3的对称轴是x =8,∴f (x )在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有⎩⎨⎧f (1)≤0,f (-1)≥0,即⎩⎨⎧1-16+q +3≤0,1+16+q +3≥0,∴-20≤q ≤12. (2)∵0≤t <10,f (x )在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x =8.①当0≤t ≤6时,在区间[t,10]上,f (t )最大,f (8)最小, ∴f (t )-f (8)=12-t ,即t 2-15t +52=0,解得t =15±172,∴t =15-172;②当6<t ≤8时,在区间[t,10]上,f (10)最大,f (8)最小, ∴f (10)-f (8)=12-t ,解得t =8;③当8<t <10时,在区间[t,10]上,f (10)最大,f (t )最小, ∴f (10)-f (t )=12-t ,即t 2-17t +72=0,解得t =8,9, ∴t =9.综上可知,存在常数t =15-172,8,9满足条件. 14.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解 (1)法一:∵g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e,则g (x )=m 就有零点.法二:作出g (x )=x +e 2x(x >0)的大致图象如图:可知若使g (x )=m 有零点, 则只需m ≥2e. 法三:由g (x )=m 得x 2-mx +e 2=0. 此方程有大于零的根,故⎩⎨⎧m 2Δ=m 2-4e 2≥0等价于⎩⎨⎧m m ≥2e或m ≤-2e,故m ≥2e.(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g(x)=x+e2x(x>0)的大致图象.∵f(x)=-x2+2e x+m-1=-(x-e)2+m-1+e2.其图象的对称轴为x=e,开口向下,最大值为m-1+e2. 故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞)。
2015年高中数学步步高大一轮复习讲义(文科)第二章 2.3

当 x<0 时,f(-x)=(-x)2+2=-(-x2-2)=-f(x);
当 x=0 时,f(0)=0,也满足 f(-x)=-f(x).
故该函数为奇函数.
题型二 函数周期性的应用
例 2 (1)定义在 R 上的函数 f(x)满足 f(x+6)=f(x),当-3≤x<-1 时,f(x)=-(x+2)2;
1. 判断下面结论是否正确(请在括号中打“√”或“×”)
(1)函数 f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.
(2)若函数 y=f(x+a)是偶函数,则函数 y=f(x)关于直线 x=a 对称.
(3)若函数 y=f(x+b)是奇函数,则函数 y=f(x)关于点(b,0)中心对称.
x (4)若函数 f(x)=x-2x+a为奇函数,则 a=2.
D.2
( × )
( √ )
( √ )
( √ )
( √ )
答案 A
解析 f(-1)=-f(1)=-(1+1)=-2.
3. 已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b 的值是
1 A.-3
答案 B
B.3
解析 依题意 b=0,且 2a=-(a-1),
1
∴a=3,则 a+b=3.
(-1,0)∪Βιβλιοθήκη 1,+∞).题型一 判断函数的奇偶性 例 1 判断下列函数的奇偶性:
(1)f(x)= 9-x2+ x2-9; 1-x
(2)f(x)=(x+1) 1+x; 4-x2
(3)f(x)=|x+3|-3. 思维启迪 确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2015步步高一轮文科第二篇2.9

解析
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
二次函数模型
【例 1】 某跳水运动员在一次跳水训练时 的跳水曲线为如图所示的抛物线的一段, 已知跳水板 AB 长为 2 m,跳水板距水面 CD 的高 BC 为 3 m,CE=5 m,CF=6 m, 为安全和空中姿态优美,训练时跳水曲线 应在离起跳点 h m(h≥1)时达到距水面最大高度 4 m,规定:以 CD 为横轴,CB 为纵轴建立直角坐标系. (1)当 h=1 时,求跳水曲线所在的抛物线方程; (2)若跳水运动员在区域 EF 内入水时才能达到压水花的训练要 求,求达到压水花的训练要求时 h 的取值范围.
项目能否获利?如果获利,求 题目中月处理成本与月处理量
出最大利润;如果不获利,则
的关系为分段函数关系,项目
国家每月至少需要补贴多少元
才能使该项目不亏损?
获利和月处理量的关系也是分
(2)该项目每月处理量为多少吨 段函数关系.
时,才能使每吨的平均处理成
本最低?
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
分段函数模型
(1)当 x∈[200,300]时,判断该 项目能否获利?如果获利,求 出最大利润;如果不获利,则
思维启迪 解析 思维升华
①当 x∈[120,144)时,xy=13x2-80x +5 040=13(x-120)2+240,
国家每月至少需要补贴多少元 才能使该项目不亏损? (2)该项目每月处理量为多少吨 时,才能使每吨的平均处理成 本最低?
基础知识
2015年高中数学步步高大一轮复习讲义(文科)第二章-2.5

对数的底数)的最大值是 m,且 f(x)
是偶函数,则 m+μ=________.
思维启迪 解析 答案 思维升华
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
指数函数的图像、性质
【例 2】 (1)函数 f(x)=ax-b 的图像如
思维启迪 解析 答案 思维升华
图所示,其中 a,b 为常数,则下列
数学 北(文)
§2.5 指数与指数函数
第二章 函数概念与基本初等函数Ⅰ
基础知识·自主学习
要点梳理
知识回顾 理清教材
1.分数指数幂
mn (1)规定:正数的正分数指数幂的意义是 a n =
am
(a>0,m,
1
n∈N+,且
n>1);正数的负分数指数幂的意义是
m
an
n =
am(a>0,m,n NhomakorabeaN+,且 n>1);0 的正分数指数幂等于 0 ;0 的负 分数指数幂 没有意义 .
2
a
3
10a 2
2b
3
b2
2
=85.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
指数函数的图像、性质
【例 2】 (1)函数 f(x)=ax-b 的图像如
图所示,其中 a,b 为常数,则下列
结论正确的是
()
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(2)若函数 f (x) e-(x)2 (e 是自然
2015步步高一轮文科常考题型强化练——函数

解析 函数定义域为{x∈R|x≠±1}, 令 u(x)=xx- +11=1-+1x+-+x21+2x1<- -11或 <xx<>11,,
B组 专项能力提升
1
2
3
4
5
6
2.下列关于函数 f(x)=logaxx- +11(0<a<1)的说法正确的为_①__.(填序号)
6
4.(2012·江苏)设 f(x)是定义在 R 上且周期为 2 的函数,在区间[-1,1]
ax+1,-1≤x<0, 上,f(x)=bxx++12,0≤x≤1,
其中 a,b∈R.若 f12=f32,则
a+3b 的值为_-__1_0____.
所以-a+1=b+2 2,即 b=-2a.
2
3
4
5
6
1.函数 y=12x+1 的图象关于直线 y=x 对称的图象大致是下列 中的________.(填序号)
B组 专项能力提升
1
2
3
4
5
6
解析 函数 y=12x+1 的图象如图所示,关于 y=x 对称的 图象大致为①所对应的图象.
答案 ①
B组 专项能力提升
1
2
3
数学 苏(文)
常考题型强化练——函数
第二章 函数概念与基本初等函数Ⅰ
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
1.若
f(x)=
log
1
1 (2
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3cos 2
θ·x2+tan
θ,其中
θ∈0,51π2,
则导数 f′(1)的取值范围是_[__2_,__2_]_.
解析 ∵f′(x)=sin θ·x2+ 3cos θ·x, ∴f′(1)=sin θ+ 3cos θ=2sinθ+π3. ∵θ∈0,152π,∴θ+3π∈π3,34π,
∴sinθ+π3∈ 22,1.∴f′(1)∈[ 2,2].
则函数 f(x)在区间54π,43π上为减函数, ∵54π<4<43π,∴f(43π)<f(4)<f(54π), 又函数 f(x)为偶函数,∴f(43π)<f(-4)<f(-54π).
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
8.把一个周长为 12 cm 的长方形围成一个圆柱,当圆柱的体积最大 时,该圆柱的底面周长与高的比为__2__∶__1__.
解析 设圆柱高为 x,底面半径为 r,
则
r
=
6-x 2π
,
圆
柱
体
积
V
=
π
6-x 2π
2x
=
1 4π
(x3
-
12x2
+
36x)(0<x<6),
V′=43π(x-2)(x-6).
当 x=2 时,V 最大.
此时底面周长为 6-x=4,4∶2=2∶1.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
9.(2013·重庆)设 f(x)=a(x-5)2+6ln x,其中 a∈R,曲线 y=f(x) 在点(1,f(1))处的切线与 y 轴相交于点(0,6). (1)确定 a 的值; (2)求函数 f(x)的单调区间与极值.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
4.点 P 是曲线 x2-y-2ln x=0 上任意一点,则点 P 到直线
4x+4y+1=0 的最短距离是
A. 22(1-ln 2)
B. 22(1+ln 2)
C.
2212+ln
2
D.12(1+ln 2)
()
解析 将直线 4x+4y+1=0 平移后得直线 l:4x+4y+b=0,
1
2
3
4
5
6
7
8
9 10
5.函数 f(x)在定义域-32,3内的图像如图所示,记 f(x)的导函数
为 f′(x),则不等式 f′(x)≤0 的解集为
()
A.-32,12∪[1,2) B.-1,12∪43,83 C.-13,1∪[2,3) D.-32,-13∪12,43∪43,3
A组 专项基础训练
1
∴当 a<x<b 时 f(x)-g(x)>f(a)-g(a), ∴f(x)+g(a)>g(x)+f(a).
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
3.三次函数 f(x)=mx3-x 在(-∞,+∞)上是减函数,则 m 的取
值范围是
( A)
A.m<0
B.m<1
C.m≤0
D.m≤1
解析 f′(x)=3mx2-1,依题可得 m<0.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
7.已系知为函__数__f(_f4(_3xπ_))_=<_f(_x-_s_in4_)_x<_,f_(-_x_∈5_4π_R)_,__则(用f(“-<4”),连f(接43π)).,f(-54π)的大小关
解析 ∵f′(x)=sin x+xcos x,
当 x∈54π,43π时,sin x<0,cos x<0, ∴f′(x)=sin x+xcos x<0,
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
2.设 f(x),g(x)在[a,b]上可导,且 f′(x)>g′(x),则当 a<x<b
时,有 A.f(x)>g(x)
( C)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)
解析 ∵f′(x)-g′(x)>0,∴(f(x)-g(x))′>0, ∴基础训练
1
2
3
4
5
6
7
8
9 10
9.(2013·重庆)设 f(x)=a(x-5)2+6ln x,其中 a∈R,曲线 y=f(x) 在点(1,f(1))处的切线与 y 轴相交于点(0,6). (1)确定 a 的值; (2)求函数 f(x)的单调区间与极值.
解 (1)因为 f(x)=a(x-5)2+6ln x, 故 f′(x)=2a(x-5)+6x. 令 x=1,得 f(1)=16a,f′(1)=6-8a,
所以曲线 y=f(x)在点(1,f(1))处的切线方程为 y-16a=(6-8a)(x-1), 由点(0,6)在切线上可得 6-16a=8a-6,故 a=12.
C.x+3y+2=0
D.x-3y-2=0
解析 设切点的坐标为(x0,x03+3x20-1),
则由切线与直线 2x-6y+1=0 垂直, 可得切线的斜率为-3, 又 f′(x)=3x2+6x,故 3x02+6x0=-3, 解得 x0=-1,于是切点坐标为(-1,1), 从而得切线的方程为 3x+y+2=0.
2
3
4
5
6
7
8
9 10
解析 不等式 f′(x)≤0 的解集即为函数 f(x)的单调递减区间,
从图像中可以看出函数 f(x)在-13,1和[2,3)上是单调递减的,
所以不等式 f′(x)≤0 的解集为-13,1∪[2,3),答案选 C. 答案 C
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
6.设函数 f(x)=sin3 θx3+
使直线 l 与曲线切于点 P(x0,y0), 由 x2-y-2ln x=0 得 y′=2x-1x, ∴直线 l 的斜率 k=2x0-x10=-1 ⇒x0=12或 x0=-1(舍去),
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
4.点 P 是曲线 x2-y-2ln x=0 上任意一点,则点 P 到直线
4x+4y+1=0 的最短距离是
A. 22(1-ln 2)
B. 22(1+ln 2)
C.
2212+ln
2
D.12(1+ln 2)
(B)
∴P12,14+ln
2,
所求的最短距离即为点
P12,14+ln
2到直线
4x+4y+1=0
的
距离 d=|2+1+44l2n 2+1|= 22(1+ln 2).
A组 专项基础训练
2015年高中数学步步高大一轮复习讲 义(文科)压轴题目突破练——函数与导 数
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
1.与直线 2x-6y+1=0 垂直,且与曲线 f(x)=x3+3x2-1 相
切的直线方程是
(A)
A.3x+y+2=0
B.3x-y+2=0