人教版九年级数学上册全册综合测试

合集下载

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。

人教版九年级上册数学各单元测试卷及答案(全套)

人教版九年级上册数学各单元测试卷及答案(全套)

第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( ) A.12x x ==B .10x =,2x =-C.1x =2x =-D.1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

最新人教版九年级数学上册测试题及答案全套

最新人教版九年级数学上册测试题及答案全套

最新人教版九年级数学上册测试题及答案全套《一元二次方程》单元测试考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0B.k≥﹣1C.k≤﹣1且k≠0D.k≥﹣1或k≠02.一元二次方程x2=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.下列关于x的方程中,一定是一元二次方程的是()A.x﹣1=0B.x3+x=3C.x2+3x﹣5=0D.ax2+bx+c=04.下列方程中,为一元二次方程的是()A.x=2y﹣3B.C.x2+3x﹣1=x2+1D.x2=05.关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣166.若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1B.1C.﹣4D.47.方程2(x+3)(x﹣4)=x2﹣10化成一般形式ax2+bx+c=0后,a+b+c的值为()A.15B.17C.﹣11D.﹣158.一元二次方程x2+5x+6=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根9.若关于x的方程(m+2)x|m|+2x﹣=1=0是一元二次方程,则m等于()A.﹣2B.2C.﹣2或2D.110.一元二次方程x2﹣2x﹣7=0的两根之和是()A.2B.﹣2C.7D.﹣7二.填空题(共4小题)11.一元二次方程3x(x﹣3)=2x2+1化为一般形式为.12.用因式分解法解一元二次方程(4x﹣1)(x+3)=0时,可将原方程转化为两个一元一次方程,其中一个方程是4x﹣1=0,则另一个方程是.13.在某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有人.14.为积极响应国家提出的“大众创业,万众创新”号召,某市加大了对“双创”工作的支持力度,据悉,2015年该市此项拨款为1.5亿元,2017元的拨款达到2.16亿元,这两年该市对“双创”工作专项拨款的平均增长率为.三.解答题(共6小题)15.阅读下面的材料,解决问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请参照例题,解方程(x2+x)2﹣4(x2+x)﹣12=0.16.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.17.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?18.某地地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率?(2)按照(1)中收到捐款的增长率不变,该单位三天一共能收到多少捐款?19.如图所示,在长为32m、宽20m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块作试验田,要使试验田面积为570m2,问道路应多宽?20.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m的值.参考答案与试题解析一.选择题(共10小题)1.一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0B.k≥﹣1C.k≤﹣1且k≠0D.k≥﹣1或k≠0【分析】根据方程有实数根,得到根的判别式大于等于0,求出不等式的解集即可得到k的取值范围.【解答】解:∵一元二次方程kx2﹣2x﹣1=0有实数根,∴△=(﹣2)2+4k=4+4k≥0,且k≠0,解得:k≥﹣1,且k≠0,故选A.2.一元二次方程x2=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【分析】把a=1,b=0,c=0代入△=b2﹣4ac进行计算,再根据计算结果判断方程根的情况.【解答】解:∵a=1,b=0,c=0,∴△=b2﹣4ac=02﹣4×1×0=0,所以原方程有两个相等的实数.故选:A3.下列关于x的方程中,一定是一元二次方程的是()A.x﹣1=0B.x3+x=3C.x2+3x﹣5=0D.ax2+bx+c=0【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【解答】解:A、不是一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、a=0时,不是一元二次方程,故此选项错误;故选:C.4.下列方程中,为一元二次方程的是()A.x=2y﹣3B.C.x2+3x﹣1=x2+1D.x2=0【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案【解答】解:A、是二元一次方程,故A错误;B、是分式方程,故B错误;C、是一元一次方程,故C错误;D、是一元二次方程,故D正确;故选:D.5.关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣16【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.【解答】解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣=﹣1,=﹣2,∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.6.若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1B.1C.﹣4D.4【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.7.方程2(x+3)(x﹣4)=x2﹣10化成一般形式ax2+bx+c=0后,a+b+c的值为()A.15B.17C.﹣11D.﹣15【分析】根据化为一元二次方程的一般式即可求出答案.【解答】解:2(x+3)(x﹣4)=x2﹣10化成一般形式∴x2﹣2x﹣14=0,∴a=1,b=﹣2,c=﹣14,∴a+b+c=﹣15故选(D)8.一元二次方程x2+5x+6=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=1>0,进而可得出方程x2+5x+6=0有两个不相等的实数根,此题得解.【解答】解:∵△=52﹣4×1×6=25﹣24=1>0,∴方程x2+5x+6=0有两个不相等的实数根.故选C.9.若关于x的方程(m+2)x|m|+2x﹣=1=0是一元二次方程,则m等于()A.﹣2B.2C.﹣2或2D.1【分析】根据一元二次方程的定义求解即可.【解答】解:由题意,得|m|=2,m+2≠0,解得m=2,故选:B.10.一元二次方程x2﹣2x﹣7=0的两根之和是()A.2B.﹣2C.7D.﹣7【分析】根据根与系数的关系即可求出答案.【解答】解:设该方程的两个根为a,b,∴a+b=﹣=2故选(A)二.填空题(共4小题)11.一元二次方程3x(x﹣3)=2x2+1化为一般形式为x2﹣9x﹣1=0.【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:一元二次方程3x(x﹣3)=2x2+1化为一般形式为x2﹣9x﹣1=0,故答案为:x2﹣9x﹣1=0.12.用因式分解法解一元二次方程(4x﹣1)(x+3)=0时,可将原方程转化为两个一元一次方程,其中一个方程是4x﹣1=0,则另一个方程是x+3=0.【分析】利用因式分解法解方程可确定另一个方程.【解答】解:∵(4x﹣1)(x+3)=0,∴4x﹣1=0或x+3=0.即一个方程是4x﹣1=0,则另一个方程是x+3=0.故答案为x+3=0.13.在某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有9人.【分析】设参加这次聚会的有x人,每个人都与另外的人握手一次,则每个人握手(x﹣1)次,且其中任何两人的握手只有一次,因而共有x(x﹣1)次,设出未知数列方程解答即可.【解答】解:设参加这次聚会的有x人,根据题意列方程得,x(x﹣1)=36,解得x1=9,x2=﹣8(不合题意,舍去);答:参加这次聚会的有9人.故答案为9.14.为积极响应国家提出的“大众创业,万众创新”号召,某市加大了对“双创”工作的支持力度,据悉,2015年该市此项拨款为1.5亿元,2017元的拨款达到2.16亿元,这两年该市对“双创”工作专项拨款的平均增长率为20%.【分析】设这两年该市对“双创”工作专项拨款的平均增长率为,根据等量关系:2015年该市此项拨款×(1+增长率)2=2017年该市此项拨款列出方程求解即可.【解答】解:设该市农村这两年人均纯收入的平均增长率为x,根据题意得:1.5(1+x)2=2.16,解得:x1=0.2,x2=﹣2.2(舍去).答:这两年该市对“双创”工作专项拨款的平均增长率为20%.故答案为20%.三.解答题(共6小题)15.阅读下面的材料,解决问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请参照例题,解方程(x2+x)2﹣4(x2+x)﹣12=0.【分析】根据题目中的例子和换元法解方程的方法可以解答本题.【解答】解:设x2+x=y,原方程可变为y2﹣4y﹣12=0,解得y1=6,y2=﹣2,当y=6时,x2+x=6,得x1=﹣3,x2=2,当y=﹣2时,x2+x=﹣2,得方程x2+x+2=0,∵△=b2﹣4ac=12﹣4×2=﹣7<0,此时方程无实根,所以原方程有两个根:x1=﹣3,x2=2.16.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.【分析】(1)先移项得到5x(x+1)﹣2(x+1)=0,然后利用因式分解法解方程;(2)利用求根公式法解方程.【解答】解:(1)5x(x+1)﹣2(x+1)=0,(x+1)(5x﹣2)=0x+1=0或5x﹣2=0,所以x1=﹣1,x2=;(2)△=(﹣3)2﹣4×(﹣1)=13,x=,所以x1=,x2=.17.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【分析】根据题意先判断出参加的人数在30人以上,设共有x名同学参加了研学游活动,再根据等量关系:(100﹣在30人基础上降低的人数×2)×参加人数=3150,列出方程,然后求解即可得出答案.【解答】解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设共有x名同学参加了研学游活动,由题意得:x[100﹣2(x﹣30)]=3150,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意;当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:共有35名同学参加了研学游活动.18.某地地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率?(2)按照(1)中收到捐款的增长率不变,该单位三天一共能收到多少捐款?【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第一天收到捐款钱数×(1+每次增长的百分率)=第二天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)第二天收到捐款为:10000×(1+10%)=11000(元).该单位三天一共能收到的捐款为:10000+11000+12100=33100(元).答:该单位三天一共能收到33100元捐款.19.如图所示,在长为32m、宽20m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块作试验田,要使试验田面积为570m2,问道路应多宽?【分析】设道路的宽为x米,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设道路为x米宽,由题意得:(32﹣2x)(20﹣x)=570,整理得:x2﹣36x+35=0,解得:x1=1,x2=35,经检验是原方程的解,但是x=35>20,因此不合题意舍去,答:道路为1m宽.20.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m的值.【分析】(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了m%”列方程解出即可.【解答】解:(1)解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8,=96÷0.8,=120(元),答:每个礼盒在花店的最高标价是120元;(2)假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+m%)+a[120×0.8(1﹣25%)﹣m](1+15m%)=120×0.8a(1﹣25%)×2(1+m%),72a(1+m%)+a(72﹣m)(1+15m%)=144a(1+m%),0.0675m2﹣1.35m=0,m2﹣20m=0m1=0(舍),m2=20,答:m的值是20.《二次函数》单元测试考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.下列关于二次函数y=﹣2(x﹣2)2+1图象的叙述,其中错误的是()A.开口向下B.对称轴是直线x=2C.此函数有最小值是1D.当x>2时,函数y随x增大而减小2.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值,则a,b的大小比较为()A.a>b B.a<b C.a=b D.不能确定3.若抛物线y=x2﹣2x+m的最低点的纵坐标为n,则m﹣n的值是()A.﹣1B.0C.1D.24.己知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是()A.1个B.2个C.3个D.4个5.若点M(﹣2,y1),N(﹣1,y2),P(8,y3)在抛物线上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.已知如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,化简的结果为①c,②b,③b﹣a,④a﹣b+2c,其中正确的有()A.一个B.两个C.三个D.四个7.下列说法中,正确的有()(1)的平方根是±5;(2)五边形的内角和是540°.(3)抛物线y=x2+2x+4与x轴无交点.(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm.A.2个B.3个C.4个D.5个8.已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m 的取值范围是()A.m>3B.m≥3C.m≤3D.m<39.函数y=x2+bx+c与y=x的图象如图所示,有以下结论①b2﹣4c≥0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.410.图中有相同对称轴的两条抛物线,下列关系不正确的是()A.h=m B.k>n C.k=n D.h>0,k>0二.填空题(共4小题)11.如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是.12.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s 的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.13.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是.(只填序号即可).14.二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2017在y轴的正半轴上,点B1,B2,B3,…,B2017在二次函数y=x2位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3,…,△A2016B2017A2017都为等边三角形,则等边△A2016B2017A2017的高为.三.解答题(共6小题)15.一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽4m,能否从该隧道内通过,为什么?16.某网店3月份经营一种热销商品,每件成本20元,发现三周内售价在持续提升,销售单价P(元/件)与时间t(天)之间的函数关系为P=30+t(其中1≤t≤21,t为整数),且其日销售量y(件)与时间t (天)的关系如下表(1)已知y与t之间的变化规律符合一次函数关系,请直接写出y(件)与时间t(天)函数关系式;(2)在这三周的销售中,第几天的销售利润最大?最大日销售利润为多少?(3)在实际销售的21天中,该网店每销售一件商品就捐赠a元利润(a<8)给“精准扶贫”的对象,通过销售记录发现,这21天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.17.某公司准备销售甲、乙两种材料中的一种,设年销售量为x(单位:吨)(x≤6),若销售甲种材料,每吨成本为10万元,每吨售价y(单位:万元)与x的函数关系是:y=﹣x+30,设年利润为W甲(单位:万元)(年利润=销售额﹣成本);若销售乙种材料销售利润S与x的函数关系是:S=﹣2x2+20x,同时每吨可获返利a万元(1≤a≤10),设年利润为W乙(单位:万元)(年利润=销售利润+返利).(1)当x=4时,W甲=;(2)当x=4,a=3时,W乙=;(3)求W甲与x的函数关系式,并求出x为何值时W甲最大,最大值是多少?(4)当x=5时,公司想要获得更多的年利润,通过计算说明应选择销售哪种材料?拓展应用:现公司决定销售甲种材料,并通过广告宣传提高销售,若一次性投入m(万元)(m>0)的广告费,则年销售量可提高m吨(提高后的销售量可突破6吨),此时的年利润为R(单位:万元),当m的值分别为4,8,10时,年利润的最大值分别记为R4、R8、R10,直接写出它们的大小关系:.18.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)19.如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P 点的坐标;若不存在,请说明理由.20.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y= x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.参考答案与试题解析一.选择题(共10小题)1.下列关于二次函数y=﹣2(x﹣2)2+1图象的叙述,其中错误的是()A.开口向下B.对称轴是直线x=2C.此函数有最小值是1D.当x>2时,函数y随x增大而减小【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=﹣2(x﹣2)2+1可知:a=﹣2<0,所以开口向下,顶点坐标为(2,1),对称轴为x=2,当x>2时,y随x的增大而增大,当x<2时,y随x的增大而减小,函数有最大值1,故A、B、D正确,C错误,故选C.2.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值,则a,b的大小比较为()A.a>b B.a<b C.a=b D.不能确定【分析】根据二次函数y=a(x﹣1)2+b(a≠0)有最大值,得出a的符号和b的值,即可比较出a,b 的大小.【解答】解:∵y=a(x﹣1)2+b有最大值,∴抛物线开口向下a<0,b=,∴a<b.故选B.3.若抛物线y=x2﹣2x+m的最低点的纵坐标为n,则m﹣n的值是()A.﹣1B.0C.1D.2【分析】依据二次函数求最值的纵坐标公式,可得==n,进而有m﹣1=n,于是m﹣n=1.【解答】解:∵y=x2﹣2x+m,∴==n,即m﹣1=n,∴m﹣n=1.故选C.4.己知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】①由x=2时,y<0即可判断;②方程ax2+bx+c=0两根分别为1,3;③当x<2时,函数为增函数y随x的增大而减小,当x>2时,函数为增函数y随x的增大而增大;④由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=2>0,b<0即可判断.【解答】解:①由x=2时,y=4a+2b+c,由图象知:y=4a+2b+c<0,故正确;②方程ax2+bx+c=0两根分别为1,3,都大于0,故正确;③当x<2时,由图象知:y随x的增大而减小,故错误;④由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选C.5.若点M(﹣2,y1),N(﹣1,y2),P(8,y3)在抛物线上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【分析】把点M、N、P的横坐标代入抛物线解析式求出相应的函数值,即可得解.【解答】解:x=﹣2时,y=﹣x2+2x=﹣×(﹣2)2+2×(﹣2)=﹣2﹣4=﹣6,x=﹣1时,y=﹣x2+2x=﹣×(﹣1)2+2×(﹣1)=﹣﹣2=﹣2,x=8时,y=﹣x2+2x=﹣×82+2×8=﹣32+16=﹣16,∵﹣16<﹣6<﹣2,∴y3<y1<y2.故选C.6.已知如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,化简的结果为①c,②b,③b﹣a,④a﹣b+2c,其中正确的有()A.一个B.两个C.三个D.四个【分析】先把A点坐标代入抛物线的解析式可得a﹣b+c=0,再根据抛物线的开口向下可得a<0,由抛物线的图象可知对称轴在x轴的正半轴可知﹣>0,抛物线与y轴相交于y轴的正半轴,所以c>0,根据此条件即可判断出a+c及c﹣b的符号,再根据二次根式的性质即可进行解答.【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴a﹣b+c=0,即a+c=b,∵抛物线的开口向下,∴a<0,∵对称轴在x轴的正半轴可知﹣>0,∴b>0,∵抛物线与y轴相交于y轴的正半轴,∴c>0,∴a+c=b>0,c>b,∴①原式=b+(c﹣b)=c,故①正确,④原式=a+c+c﹣b=a﹣b+2c,故④正确.③∵a﹣b+c=0∴原式=a﹣b+2c=a﹣b+c+c=0+c=c,故③正确.故其中正确的有三个.故选C.7.下列说法中,正确的有()(1)的平方根是±5;(2)五边形的内角和是540°.(3)抛物线y=x2+2x+4与x轴无交点.(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm.A.2个B.3个C.4个D.5个【分析】根据抛物线与x轴交点、平方根、三角形三边关系以及等腰三角形的性质等知识判断各个选项即可.【解答】解:(1)的平方根是±,错误;(2)五边形的内角和是540°,正确;(3)抛物线y=x2+2x+4与x轴无交点,△=4﹣16=﹣12<0,正确;(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm或14cm,错误;正确的有(2)(3),故选A.8.已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m 的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【分析】由当0<x1<x2时,有y1>y2,可得出m﹣3<0,解之即可得出m的取值范围.【解答】解:∵当0<x1<x2时,有y1>y2,∴m﹣3<0,∴m<3.故选D.9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论①b2﹣4c≥0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4【分析】①由抛物线与x轴没有交点,即可得出方程x2+bx+c=0没有实数根,利用根的判别式即可得出△=b2﹣4c<0,结论①不符合题意;②将点(1,1)代入抛物线解析式即可得出b+c=0,结论②不符合题意;③将(0,3)、(3,3)代入抛物线解析式求出b=﹣3、c=3,由此可得出3b+c+6=0,结论③符合题意;④观察两函数图象的上下位置关系即可得出当1<x<3时,x2+(b﹣1)x+c<0,结论④符合题意.综上即可得出结论.【解答】解:①∵抛物线y=x2+bx+c与x轴没有交点,∴方程x2+bx+c=0没有实数根,∴△=b2﹣4c<0,结论①不符合题意;②∵抛物线y=x2+bx+c过点(1,1),∴1=1+b+c,∴b+c=0,结论②不符合题意;③∵抛物线y=x2+bx+c过点(0,3)和(3,3),∴,∴,∴3b+c+6=0,结论③符合题意;④观察函数图象可知:当1<x<3时,函数y=x2+bx+c的图象在直线y=x的下方,∴x2+bx+c<x,即x2+(b﹣1)x+c<0,∴结论④符合题意.故选B.10.图中有相同对称轴的两条抛物线,下列关系不正确的是()A.h=m B.k>n C.k=n D.h>0,k>0【分析】根据二次函数的图象和性质进行解答.【解答】解:由解析式可知y=(x﹣h)2+k的顶点坐标为(h,k);y=(x﹣m)2+n的顶点坐标为(m,n).A、由于两抛物线有相同的对称轴,可得h=m,命题正确,故本选项错误;B、由两抛物线顶点位置可知,k>n,命题正确,故本选项错误;C、由两抛物线顶点位置可知,k=n,命题错误,故本选项正确;D、由y=(x﹣h)2+k的位置可知,h>0,k>0,命题正确,故本选项错误;故选C.二.填空题(共4小题)11.如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是②④⑤.【分析】由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=﹣时,y=a•(﹣)2+b•(﹣)+c=且a﹣b+c=0可判断④;由x=1时函数y取得最小值及b=﹣2a可判断⑤.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.12.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s 的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时。

人教版九年级数学上册第21-第22章综合测试 含答案

人教版九年级数学上册第21-第22章综合测试  含答案

人教版九年级数学上册第21-第22章综合测试 含答案九年级数学试卷一、选择题(每小题3分,共30分)01.把一元二次方程223x x =-化为一般形式,若二次项系数为1,则一次项系数及常数项分别为( ) A.2、3 B.-2、3 C.2、-3 D.-2、-3 02.方程2(1)x +=4的解是( )A.1x =2,2x =一2B. 1x =3,2x =-3C. 1x =1,2x =-3D. 1x =l ,2x =-2 03.用配方法解方程243x x --=0,下列变形正确的是( )A.2(4)x - =19B. 2(2)x -=7C. 2(2)x -=1D. 2(2)x +=704.二次函数264y x x =++图象的对称轴是直线( )A.x =-3B.x =-6C.x =6D.x =4 05.已知一个直角三角形的两条直角边长恰好是方程214480x x -+==0的两根,则此三角形的斜边长为( )A.6B.8C.10D.1406.将抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A.23(1)2y x =--B. 23(1)2y x =+-C. 23(1)2y x =++D. 23(1)2y x =-+07.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支。

若主干、支干和小分支的总数是57,则每个支干长出( )根小分支。

A.5根B.6根C.7根D.8根08.若点1P (-1,1y ),2P (3,2y ),2P (5,3y )均在二次函数22y x x c =-++(c 为常数)的图象上,则1y , 2y , 3y 的大小关系是( )A. 1y >2y >3yB. 3y >1y =2yC. 3y >2y >1yD. 1y =2y >3y09.设a 、b 是方程220180x x +-=的两个实数根,则22a a b ++的值是( ) A.2016 B.2017 C.2018 D.201910.如图,已知二次函数2y ax bx c =++(a 、b 、c 为常数,且a ≠0)的图象与x 轴的交点的横坐标分别为-1、3,则下列结论:①abc <0②2a +b =0; ③3a +2c >0;④对于任意x 均有2ax a bx b -+-≥0,正确个数有( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.关于x 的方程2160x ax ++==0有两个相等的实数根,则a 的值为__________.12.已知1x ,2x 是方程22530x x --=的两个根,则1211x x +=_______.13.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t -1.2t 2,飞机着陆后滑行__秒才能停下来.14.如图,在□ABCD 中,E 、F 是对角线AC 上两点,AE =AF =CD ,∠ADF =90°,∠BCD =63°,则∠ADE的大小是______________.15. 抛物线2y ax bx c =++经过点A (-3,0)、B (4,0)两点,则关于x 的一元二次方2(1)a x c b bx -+=-的解是 .16.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE . 问题解决:如图2,在△MNG 中,MN =6,∠M=75°,MG =O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是 .图1图2三、解答题(共72分)17.(8分)解方程:22410x x -+=.18.(8分)已知二次函数23y x x =---.(1)用配方法求函数图象的顶点坐标、对称轴,并写出图象的开口方向; (2)在所给网格中建立平面直角坐标系并直接画出此函数的图象.19.(8分)用一条长40厘米的绳子围成一个矩形,设其一边长为x 厘米。

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。

人教版九年级数学上册第二十五章综合测试卷含答案

人教版九年级数学上册第二十五章综合测试卷含答案

人教版九年级数学上册第二十五章综合测试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列事件中,是必然事件的是()A.五个人分成四组,这四组中有一组有两人B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.打开手机就有未接电话2.(2023河北)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()3.(2023娄底)从367,3.141 592 6,3.3·,4,5,-38,39中随机抽取一个数,此数是无理数的概率是()A.27 B.37 C.47 D.574.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是()A.13 B.12 C.14 D.165.如图,四张卡片除正面标有的数字不同外,其余完全相同,将四张卡片背面朝上,事件“从A,B,C三张卡片中先抽取一张记下数字后放回,洗匀后再抽取一张记下数字,两张卡片数字之和为正数”的概率为P1,事件“从A,B,C,D四张卡片中抽取一张,卡片数字为奇数”的概率为P2,则P1与P2的大小关系为()A.P1>P2B.P1<P2C.P1=P2D.无法确定(第5题)(第6题)6.如图,正方形ABCD是一块绿化带,其中四边形EOFB,四边形GHMN(阴影部分)都是正方形的花圃,已知自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.1732 B.12 C.1736 D.17387.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,“”恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13 B.38 C.12 D.238.(2024成都月考)小明和小亮在一次大量重复试验中,统计了某一结果出现的频率,绘制出如图所示的统计图,符合这一结果的试验可能是()A.掷一枚质地均匀的骰子,朝上的一面是3点B.掷一枚质地均匀的硬币,正面朝上C.从分别标有1,1,2,2,3,3的6张纸条中,随机抽出一张纸条上的数字是偶数D.从一道单项选择题的四个备选答案中随机选一个答案,选中正确答案(第8题)(第10题)9.(2023随州一模)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上、中、下三个等级的三匹马综合指标数如表,每匹马只赛一场,两综合指标数相比,大数为胜,三场两胜则赢,已知齐王的三匹马的出场顺序为6,4,2.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为() 马匹等级下等马中等马上等马齐王 2 4 6田忌 1 3 5A.13 B.16 C.19 D.11210.向上抛掷质地均匀的骰子(如图),落地时向上的面点数为a(a的可能取值为1,2,3,4,5和6),则关于x的不等式1-ax3-x>2有不大于2的整数解的概率为()A.23 B.12 C.13 D.16二、填空题(本题有5小题,每小题4分,共20分)11.“八月十五云遮月,正月十五雪打灯”是一句谚语,意思是说如果八月十五晚上阴天的话,正月十五晚上就下雪,你认为谚语描述的事件是____________(填“必然事件”“不可能事件”或“随机事件”).12.周末期间,小燕在学习之余与妈妈要玩一次转盘游戏,选项与所占比例如图所示,则小燕不看电视的可能性为________.(第12题)13.(2023济南)围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒中棋子的总个数是________个.14.用图中两个可自由转动的转盘做“配紫色”游戏:转盘A红色区域对应的圆心角度数为120°,转盘B被分成面积相等的四个扇形,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色(若指针停在分割线上,则重新转动转盘),那么可配成紫色的概率是________.15.(2023菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,该两位数是偶数的概率为________.三、解答题(本题有5小题,共70分,各小题都必须写出解答过程)16.(12分)(2024淮安月考)某运动员进行打靶练习,对该名运动员打靶正中靶心的情况进行统计,并绘制成了如图所示的统计图,请根据图中信息回答问题:(1)该名运动员正中靶心的频率在________附近摆动,他正中靶心的概率估计值为________.(2)如果一次练习时他一共打了150枪.①试估计他正中靶心的枪数.②如果他想要在这次练习中打中靶心160枪,请计算出他还需要打大约多少枪?17.(14分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种蔬菜被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.18.(14分)某市今年中考理、化实验操作考试,采用学生抽签决定自己的考试内容的方式.规定:每名考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用列表法或画树状图法表示所有可能出现的结果.(2)小刚物理实验B和化学实验F不会做,那么他这两个实验一个也抽不到(记作事件M)的概率是多少?19.(15分)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是-6,-1,5,转盘B上的数字分别是6,-7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是________;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜.请用列表法或画树状图法说明这个游戏是否公平.20.(15分)某校计划成立五个兴趣活动小组(每名学生只能参加一个活动小组):A.音乐;B.美术;C.体育;D.阅读;E.人工智能.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图.根据图中信息,完成下列问题:(1)①补全条形统计图(要求在条形图上方注明人数);②扇形统计图中的圆心角α的度数为________;(2)若该校有3 600名学生,估计该校参加E组(人工智能)的学生人数;(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四名同学中随机抽取两名同学参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生和一名女生的概率.答案一、1.A 2.B 3.A 4.A 5.B 6.C7.B8.C9.B点拨:当田忌的三匹马随机出场时,双方马的对阵情况如下表:齐王的马6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 田忌的马5,3,1 5,1,3 3,5,1 3,1,5 1,5,3 1,3,5 共有6种等可能的对阵情况,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为16.故选B.10.A点思路:将a为1,2,3,4,5和6分别代入不等式中,求出对应不等式的解集,判断是否有不大于2的整数解即可.二、11.随机事件12.85%13.1214.5 1215.59三、16.解:(1)0.8;0.8(2)①150×0.8=120(枪).∴估计他正中靶心的枪数为120枪.②160÷0.8=200(枪),200-150=50(枪).∴他还需要打大约50枪.17.解:(1)画树状图如下.共有9种等可能的结果,分别为(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C).(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=39=13.18.解:(1)画树状图如下.共有9种等可能的结果,分别是AD,AE,AF,BD,BE,BF,CD,CE,CF.(2)从树状图可以看出,共有9种等可能的结果,其中物理实验B和化学实验F一个也抽不到的结果有4种,所以物理实验B和化学实验F一个也抽不到的概率P(M)=4 9.19.解:(1)1 3(2)列表如下.-6 -1 56 0 5 11-7 -13 -8 -24 -2 3 9由表格可知,一共有9种等可能的结果,其中a+b>0的结果有4种,a+b<0的结果有4种,∴P(小聪获胜)=49,P(小明获胜)=49.∴P(小聪获胜)=P(小明获胜).∴这个游戏公平.20.解:(1)①补全条形统计图如图.②120°(2)易知被调查的学生有300名.3 600×60300=720(名).∴估计该校参加E组(人工智能)的学生有720名.(3)画树状图如下.由树状图知,共有12种等可能的结果,其中抽到一名男生和一名女生的结果有8种,所以恰好抽到一名男生和一名女生的概率为812=23.。

人教版九年级数学上册期末综合测试题(含答案)

人教版九年级数学上册期末综合测试题(含答案)
11.
12.
13.
14.
15.20
16.(1)解: ,




∴ , ;
(2)解: ,


或 ,
∴ , ;
(3)解: ,
化简整,得 ,

或 ,
∴ , .
17.(1)解:∵参与 活动的人数为36人,占总人数 ,
∴总人数 人,
则参与 活动的人数为: (人);
补全统计图如下:
(2)解:扇形 的圆心角为: ,
A.18°B.28°C.37°D.58°
10.如图,某公司准备在一个等腰直角三角形 的绿地上建造一个矩形的休闲书吧 ,其中点P在 上点N,M分别在 , 上,记 , ,图中阴影部分的面积为S,若 在一定范围内变化,则y与x,S与x满足的函数关系分别是()
A.一次函数关系,一次函数关系B.二次函数关系,一次函数关系
(3)解: 与 相交于 点,如图3,

为 的直径,
四边形 是 的神奇四边形,

, , ,
, ,
在 中, ,

设 ,则 ,
在 中, ,
解得 ,
即 ,
在 中, ,



23.(1)பைடு நூலகம்明:∵ ,
∴ ,
∴ ,
∴弦 平分圆周角 ,
∴圆中存在“爪形 ”;
(2)延长 至点E,使得 ,连接 ,
∵ ,
∴ ,
∵ , ,
根据以上信息,解答下列问题:
(1)参与此次抽样调查的学生人数是______人,补全统计图①;
(2)图②中扇形C的圆心角度数为______度;
(3)若参加成果展示活动的学生共有3600人,估计其中最喜爱“测量”项目的学生人数是多少;

人教版初中数学九年级上册全册配套习题

人教版初中数学九年级上册全册配套习题

第一章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题.2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______.5.若-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______.二、选择题7.下列方程中,一元二次方程的个数为( ).(1)2x 2-3=0(2)x 2+y 2=5(3)(4)A .1个B .2个C .3个D .4个8.在方程:3x 2-5x =0,7x 2-6xy +y 2=0,=0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ).A .2个B .3个C .4个D .5个9.x 2-16=0的根是( ).A .只有4B .只有-4C .±4D .±8x x m -m+-222)(542=-x 2122=+x x ,5312+=+x x 322,052222--=+++xx x x ax10.3x 2+27=0的根是().A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确三、解答题(用直接开平方法解一元二次方程)11.2y 2=8.12.2(x +3)2-4=0.13.14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______.17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______.二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个.25)1(412=+x x x x +=-2232,01=+xx ,5)3(21,42122=+=-+x x x19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是().A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关20.如果是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a的解是( ).A .B .±1C .±2D .21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为().A .B .C .D .无实数解三、解答题(用直接开平方法解下列方程)22.(3x -2)(3x +2)=8.23.(5-2x )2=9(x +3)2.24.25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为().21=x 5±2±kk +kk -kk -±.063)4(22=--xA.2或-2B.2C.-2D.以上都不正确28.已知关于x的一元二次方程(m-1)x2+2x+m2-1=0有一个根是0,求m的值.29.三角形的三边长分别是整数值2cm,5cm,k cm,且k满足一元二次方程2k2-9k-5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1._________=(x -__________)2.2.+_________=(x -_________)2.3._________=(x -_________)2.4.+_________=(x -_________)2.5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程应该先变形为( ).A .B .C .D .8.用配方法解方程x 2+2x =8的解为( ).A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=29.用公式法解一元二次方程,正确的应是( ).A .B .C .D .10.方程mx 2-4x +1=0(m <0)的根是().A .B .C .D .+-x x 82x x 232-+-px x 2x a b x -201322=--x x 9831(2=-x 9831(2-=-x 910)31(2=-x 032(2=-x x x 2412=-252±-=x 252±=x 251±=x 231±=x 41m m-±42mm-±422mmm -±42三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0.12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程)13.x 2+4x -3=0.14.五、解方程(自选方法解一元二次方程)15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程化为标准形式是______________________,其中a =______,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是.03232=--x x x x x 32332-=++______.二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为().A .-2B .-4C .-6D .2或620.4x 2+49y 2配成完全平方式应加上().A .14xy B .-14xy C .±28xyD .021.关于x 的一元二次方程的两根应为().A .B .,C .D .三、解答题(用配方法解一元二次方程)22.3x 2-4x =2.23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.ax a x 32222=+22a±-a 2a 22422a ±a2±xx 32132=+拓广、探究、思考27.解关于x的方程:x2+mx+2=mx2+3x.(其中m≠1)28.用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x 取何值时,代数式x2-4x+5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac ,(1)当b 2-4ac ______0时,方程有两个不相等的实数根;(2)当b 2-4ac ______0时,方程有两个相等的实数根;(3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______.3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______.4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______.二、选择题5.方程x 2-3x =4根的判别式的值是( ).A .-7B .25C .±5D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ).A .正数B .负数C .非负数D .零7.下列方程中有两个相等实数根的是( ).A .7x 2-x -1=0B .9x 2=4(3x -1)C .x 2+7x +15=0D .8.方程有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根2322=--x x 03322=++x x三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程都有两个不相等的实根.02)1(2=++-mx m x综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是().A .B .C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是().A .k <1B .k <-1C .k ≥1D .k >114.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为().A .-4B .3C .-4或3D .或15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m的取值范围是( ).A .B .且m ≠1C .且m ≠1D .16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c 为边长的三角形是( ).A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.242ac b b -±-ac b 42-2132-23<m 23<m 23≤m 23>m18.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.19.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.20.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.拓广、探究、思考21.若a,b,c,d都是实数,且ab=2(c+d),求证:关于x的方程x2+ax+c=0,x2+bx+d=0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根)1.x (x -3)=0.______2.(2x -7)(x +2)=0.______3.3x 2=2x .______4.x 2+6x +9=0.______5.______6.______7.(x -1)2-2(x -1)=0.______.8.(x -1)2-2(x -1)=-1.______二、选择题9.方程(x -a )(x +b )=0的两根是( ).A .x 1=a ,x 2=bB .x 1=a ,x 2=-bC .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是().A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程)11.3x (x -2)=2(x -2).12..03222=-x x .)21()21(2x x -=+.1,3221==∴x x .32x x =*13.x 2-3x -28=0.14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3.*16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18..______________________.19.(x -2)2=(2x +5)2.______________________.二、选择题0222=-x x20.方程x (x -2)=2(2-x )的根为().A .-2B .2C .±2D .2,221.方程(x -1)2=1-x 的根为().A .0B .-1和0C .1D .1和022.方程的较小的根为().A .B .C .D .三、用因式分解法解下列关于x 的方程23.24.4(x +3)2-(x -2)2=0.25.26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m 的值.043)(21()43(2=--+-x x x 43-218543.2152x x =-.04222=-+-b a ax x测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根)1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________3.3x 2-5x +2=0.__________________4.x 2-4x -6=0.__________________二、选择题5.方程x 2-4x +4=0的根是( ).A .x =2B .x 1=x 2=2C .x =4D .x 1=x 2=46.的根是( ).A .x =3B .x =±3C .x =±9D .7.的根是( ).A .B .C .x 1=0,D .8.(x -1)2=x -1的根是( ).A .x =2B .x =0或x =1C .x =1D .x =1或x =2三、用适当方法解下列方程9.6x 2-x -2=0.10.(x +3)(x -3)=3.5.27.0512=+x 3±=x 072=-x x 77=x 77,021==x x 72=x 7=x11.x2-2mx+m2-n2=0.12.2a2x2-5ax+2=0.(a≠0)四、解下列方程(先将你选择的最佳解法写在括号中)13.5x2=x.(最佳方法:______) 14.x2-2x=224.(最佳方法:______) 15.6x2-2x-3=0.(最佳方法:______) 16.6-2x2=0.(最佳方法:______) 17.x2-15x-16=0.(最佳方法:______) 18.4x2+1=4x.(最佳方法:______)综合、运用、诊断一、填空题20.若分式的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________.二、选择题22.方程3x 2=0和方程5x 2=6x 的根().A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是().A .B .C .D .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2.25.(y -5)(y +3)+(y -2)(y +4)=26.26.27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求的值.1872+--x x x ba x ab x 2,221==ba x a bx ==21,0,2221=+=x abb a x .02322=+-x x yx yx +-29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为__________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值:①②③|x 1-x 2|;④⑤(x 1-2)(x 2-2).,24,221aacb b x x -±-=;1121x x +;2221x x +;221221x x x x +测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级(上)数学综合测试试卷一.选择题(本大题共10小题,每小题3分,共30分.每小题的4个选项中,只有一个选项是符合题目要求的)1.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 2.下列图形中,是中心对称图形的是()A.B.C.D.3.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是()A.2B.1C.0D.﹣14.下列事件中,是必然事件的是()A.足球运动员梅西射门一次,球射进球门B.随意翻开一本数学书,这页的页码是偶数C.相等的圆心角所对的弧也相等D.任意画一个圆内接四边形,其对角互补5.如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的面积为2,则纸片的剩余部分拼成的五边形的面积为()A.5B.6C.8D.106.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD于E,连接CO、AD,∠BAD=20°,则下列说法正确的个数是()①AD=2OB;②CE=DE;③∠BOC=2∠BAD;④∠OCE=50°A.1B.2C.3D.47.已知二次函数y=ax2+bx+c的部分图象如图所示,下列关于此函数图象的描述中,正确的个数是()①对称轴是直线x=1;②当x<0时,函数值y随x的增大而增大;③方程ax2+bx+c=0的解为x1=﹣1,x2=3;④当x<﹣1或x>3时,ax2+bx+c<0.A.1B.2C.3D.48.如图,△ABC绕点A按逆时针方向转动一个角度后成为△A′B′C′,在下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;(3)∠ABC=∠A′B′C′;④.其中正确的个数是()A.3个B.2个C.1个D.0个9.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b 的大致图象可能是()A.B.C.D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)≤a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤二、填空题(本大题共10小题,每小题3分,共30分)11.已知x=﹣1是方程x2﹣mx+6=0的一个根,则=.12.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.13.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.14.若一个半径为cm的扇形面积等于一个半径为cm的圆的面积,则扇形的圆心角为.15.如图,一只小虫在⊙O内自由爬行(可视为点P),则它进入阴影区域,即正方形AOBC 内(C在圆上)的概率为.16.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2),则求不等式x2+bx+c≤x+m的解集.17.如图,⊙O与抛物线y=x2交于A,B两点,且AB=2,则⊙O的半径等于.18.在平面直角坐标系xOy中,我们把对称轴相同的抛物线叫做同轴抛物线.已知抛物线y =﹣x2+6x的顶点为M,它的某条同轴抛物线的顶点为N,且MN=10,那么点N的坐标是.19.如图,⊙C半径为1,圆心坐标为(3,4),点P(m,n)是⊙C内或⊙C上的一个动点,则m2+n2的最小值是.20.在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,若线段MA绕点M旋转得到线段MA′(1)如图①,当线段MA绕点M逆时针旋转60°时,线段AA′的长=;(2)如图②,连接A′C,则A′C长度的最小值是.三.解答题(本大题共8小题,共60分)21.(6分)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.22.(6分)如图,用一段长为30米的篱笆围成一个一边靠墙的矩形菜园ABCD,(1)在墙的长度不限的条件下,当AB边长为多少米时,菜园的面积最大为多少?(2)在墙的长度为14米的条件下,当AB边长为多少米时,菜园的面积最大为多少?23.(6分)在图中网格上按要求画出图形,并回答问题:(1)如果将三角形ABC平移,使得点A平移到图中点D位置,点B、点C的对应点分别为点E、点F,请画出三角形DEF;(2)画出三角形ABC关于点D成中心对称的三角形A1B1C1;(3)三角形DEF与三角形A1B1C1(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O.24.(6分)小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)25.(8分)在“十一”黄金周期间,某商店购进一优质湖产品,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该湖产品一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系销售量y(千克)…34.83229.628…售价(x)(元/千克)…22.62425.226…(1)填空:若这种湖产品的售价为30元/千克,则该湖产品的销售量是.(2)如果某天销售这种湖产品获利150元,那么该天湖产品的售价为多少元?26.(9分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O 上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB为菱形,当弧CD长为时,四边形ADCB为矩形.27.(9分)小明在探究问题“正方形ABCD内一点E到A、B、C三点的距离之和的最小值”时,由于EA、EB、EC比较分散,不便解决.于是将△ABE绕点B逆时针旋转60°得△A′BE′,连接EE′.(1)△EBE′是三角形;(2)若正方形ABCD的边长为2,则AE+BE+CE的最小值是.28.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣5ax+c交x轴于点A,点A的坐标为(4,0).(1)用含a的代数式表示c.(2)当a=时,求x为何值时y取得最小值,并求出y的最小值.(3)当a=时,求0≤x≤6时y的取值范围.(4)已知点B的坐标为(0,3),当抛物线的顶点落在△AOB外接圆内部时,直接写出a的取值范围.参考答案一.选择题1.B.2.D.3.A.4.D.5.D.6.C.7.D.8.A.9.B.10.C.二、填空题11.4.12.(30﹣3x)(24﹣2x)=480.13.15.14.60°.15..16.1≤x≤317..18.(3,﹣1)或(3,19).19.16.20.(1)1;(2)﹣1.三.解答题21.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=322.解:(1)设AB边的长为x米,菜园的面积为y平方米,则BC边的长为(30﹣x)米,根据题意得:y=(30﹣x)x=﹣x2+15x=﹣(x﹣15)2+,∵a=﹣<0,∴当x=15时,y取最大值,最大值为.答:当AB边长为15米时,菜园的面积最大为平方米.(2)∵在0≤x≤14中,y值随x值的增大而增大,∴当x=14时,y取最大值,最大值为112.答:当AB边长为14米时,菜园的面积最大为112平方米.23.解:(1)如图所示,△DEF即为所求.(2)如图所示,△A1B1C1即为所求;(3)如图所示,△DEF与△A1B1C1是关于点O成中心对称,故答案为:是.24.解:画树状图如下:由树状图可知,共有12种等可能结果,其中能围成三角形的结果共有10种,所以能搭成三角形的概率为=.25.解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(24,32),(26,28)代入y=kx+b,得:,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=30时,y=﹣2×30+80=20.故答案为:20.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=25,x2=35.∵20≤x≤32,∴x=25.答:如果某天销售这种湖产品获利150元,那么该天湖产品的售价为25元.26.解:(1)如图连接OB、BC.∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB+∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线.(2)①的长为cm时,四边形ADPB是菱形.∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的长==cm.②当四边形ADCB是矩形时,易知∠COD=120°,∴的长==cm.故答案为cm,cm;27.解:(1)∵△ABE绕点B逆时针旋转60°得△A′BE′,∴BE=BE′,∠EBE′=60°,∴△EBE′为等边三角形;(2)连结A′C,如图,∵△EBE′为等边三角形,∴EE′=BE,∵△ABE绕点B逆时针旋转60°得△A′BE′,∴A′E′=AE,BA′=BA=2,∠ABA′=60°,∵A′E′+E′E+EC≥A′C,∴AE+BE+CE≥AC(当且仅当点E′、点E在AC上时,取等号),∴AE+BE+CE有最小值,最小值为A′C的长,作A′H⊥BC于H,如图,在Rt△A′BH中,∠A′BH=30°,∴A′H=A′B=1,BH=A′H=,∴CH=2+,在Rt△A′CH中,A′C=====+.∴AE+BE+CE的最小值是+.故答案为:等边,+.28.解:(1)将A(4,0)代入y=ax2﹣5ax+c,得:16a﹣20a+c=0,解得:c=4a.(2)当a=时,c=2,∴抛物线的解析式为y=x2﹣x+2=(x﹣)2﹣.∵a=>0,∴当x=时,y取得最小值,最小值为﹣.(3)当a=时,c=﹣2,∴抛物线的解析式为y=x2﹣x﹣2=(x﹣)2﹣.∵a=>0,∴当x=时,y取得最小值,最小值为;当x=0时,y=﹣2;当x=6时,y=×62﹣×6﹣2=1.∴当0≤x≤6时,y的取值范围是≤y≤1.(4)∵抛物线的解析式为y=ax2﹣5ax+4a=a(x﹣)2﹣a,∴抛物线的对称轴为直线x=,顶点坐标为(,﹣a).设线段AB的中点为O,以AB为直径作圆,设抛物线对称轴与⊙O交于点C,D,过点O作OH⊥CD于点H,如图所示.∵点A的坐标为(4,0),点B的坐标(0,3),∴AB=5,点O的坐标为(2,),点H的坐标为(,).在Rt△COH中,OC=AB=,OH=,∴CH=,∴点C的坐标为(,+).同理:点D的坐标为(,﹣),∴,解得:﹣﹣<a<﹣+且a≠0.。

相关文档
最新文档