生物医用材料探究进展
生物材料与医用材料

生物材料与医用材料生物材料与医用材料在现代医学和生物工程领域发挥着极为重要的作用。
它们的研发和应用为疾病治疗、组织修复和替代提供了新的解决方案。
本文将就生物材料与医用材料的定义、分类、研究进展以及在医学和生物工程领域中的应用进行探讨。
一、生物材料与医用材料的定义生物材料是指具有适合生物系统应用的物质,可以用于构建人工器官、修复组织、支持生命体等。
医用材料是指用于治疗、修复和增强人体功能的物质或设备。
生物材料和医用材料的研究和应用旨在提高人体健康水平,改善生活质量。
二、生物材料与医用材料的分类生物材料和医用材料可以按照其来源、构成和功能进行分类。
1.来源分类生物材料和医用材料可以分为天然材料和人工合成材料。
天然材料包括骨骼、皮肤、血管等人体组织,它们可以直接应用于医学和生物工程领域。
人工合成材料则是通过化学合成或生物技术手段制备的材料,如合成聚合物、金属合金、陶瓷等。
2.构成分类根据生物材料和医用材料的构成,可以分为无机材料、有机材料和复合材料。
无机材料包括金属、陶瓷等,有机材料则主要是聚合物,复合材料是由两种或多种材料组合而成。
3.功能分类生物材料和医用材料可以按照其功能进行分类,如生物支架、药物缓释系统、生物传感器等。
生物支架用于组织工程和器官替代,药物缓释系统用于控制药物释放,生物传感器则用于检测生物体内的生理指标。
三、生物材料和医用材料的研究进展随着科学技术的不断进步,生物材料和医用材料的研究呈现出蓬勃发展的态势。
以下是该领域的一些研究进展:1.生物材料的表面改性表面改性可以提高生物材料的生物相容性和功能性。
通过改变生物材料的表面形貌、化学结构和表面能等特性,可以调控细胞黏附、生物反应性和材料的耐磨性等性能。
2.生物材料的仿生设计仿生设计将生物材料与生物体的结构和功能相结合,可以制备出具有优异性能的生物材料。
比如,仿生多孔骨材料可以模拟人体骨骼的微观结构,增强材料的力学性能和生物活性。
3.医用材料的纳米技术应用纳米技术在医用材料的研究和应用中发挥着重要作用。
生物医用材料的研究进展

生物医用材料的研究进展生物医用材料是指可用于修复或替代受损组织或器官的具有生物相容性并可与人体组织长期稳定相处的医用材料。
随着人们对医疗技术和生物工程技术的不断深入研究和应用,生物医用材料的研究也日渐成熟,医疗技术得到了前所未有的进步。
本文将探讨当前生物医用材料研究的进展。
一、纳米近年来,随着纳米技术的飞速发展,纳米生物医用材料逐渐走进人们的视野之中,成为生物医用材料的重要研究方向。
纳米材料具有超强的比表面积和可调控的物理、化学性质,可以被设计成具有多种功能的纳米生物材料,从而实现生物医用领域的革命性突破。
例如,目前已经开发出了许多纳米生物医用材料,如纳米金粒子、纳米磁性材料、纳米有机材料等等,这些纳米生物材料可以用于体内分子成像、疾病治疗、药物传输等领域。
此外,研究人员还发现纳米生物材料在药物释放、组织工程、生物传感器等方面具有重要应用价值,是生物医学领域的重要研究方向。
二、生物可降解材料的研究进展生物可降解材料具有良好的生物相容性和降解性,可以逐渐降解为人体正常代谢物,不会对人体产生明显的毒性和副作用,是近年来重要的生物医用材料研究方向之一。
其中最有代表性的生物可降解材料就是聚乳酸(PLA)、聚己内酯(PCL)等聚酯类材料。
这些材料具有优良的生物相容性和机械性能,在心血管支架、骨修复、软组织修复、药物运载等领域得到广泛应用。
随着生物可降解材料的不断改进和完善,最大限度地降低了人体对材料的反应和损伤,也为人们提供了更加安全、有效的生物医用材料。
三、生物仿生材料的研究进展生物仿生医用材料是指模仿自然界中的生物材料进行设计和制造的材料。
这些仿生材料具有类似生物组织的结构和功能,可以更好的与人体组织相容,从而实现生物修复和再生。
生物仿生材料研究领域涉及材料科学、生物学、化学等多个学科,目前已经取得了一些重要的进展。
例如,利用仿生材料制造出类人软骨、肌肉等组织,不仅提高了医疗修复效果,而且为人体仿生技术的发展奠定了基础。
生物医用材料的研究与发展现状

生物医用材料的研究与发展现状生物医用材料是指应用于医疗领域的材料,其主要功能是作为医疗器械或药物的载体,或者作为组织修复和再生的支架。
随着现代医学的发展和技术的不断提高,生物医用材料的应用领域越来越广泛,对于提高医疗水平和改善人们生活质量起到了积极作用。
本文将从生物医用材料的分类、研究现状和发展趋势等方面进行探讨。
一、生物医用材料的分类生物医用材料的分类方式有很多种,按用途可分为功能性材料、修复性材料和组织再生材料;按来源可分为天然材料和合成材料;按形态可分为固态材料、流体材料和气相材料等。
下面将简要介绍其中几种常见的生物医用材料。
1. 金属材料金属材料是生物医用材料中应用最广泛的一类,其优点是强度高、稳定性好、可加工性强等。
目前常用的金属材料包括钛、钽、镁、锆、银等,在骨科、牙科、眼科、神经外科等领域得到了广泛应用。
2. 高分子材料高分子材料是一类含有大量重复单元的聚合物,其特点是生物相容性好、可加工性强、生物吸收性等。
常见的高分子材料有聚乳酸(PLA)、聚己内酯(PCL)、聚酯多元醇(PEU)、聚乳酸-羟基磷灰石(PLA/HA)等。
它们在骨组织修复、软组织修复、人工血管等方面也有较广泛应用。
3. 磁性材料磁性材料是一类具有一定磁性的材料,其主要应用是为了实现对其在体内的跟踪、定位和靶向治疗。
常见的磁性材料有氧化铁、钙钛矿等。
4. 生物陶瓷材料生物陶瓷材料是一类由无机物质制成的材料,其应用主要集中在骨组织修复、关节假体、牙科修复等方面。
生物陶瓷材料具有很高的生物相容性、无毒性、能促进骨组织重建等优点。
目前常用的生物陶瓷材料有氧化锆、氢氧化钙、氢氧化磷灰石等。
二、生物医用材料的研究现状生物医用材料研究是生物医学工程领域的重要分支之一,其发展与人类生命健康息息相关。
随着生物医学技术的不断发展,生物医用材料的研究也越来越深入。
下面我们将从材料表面纳米结构、基因修饰、生物打印等几个方面介绍生物医用材料的研究现状。
生物可降解医用材料的研究进展

生物可降解医用材料的研究进展一、本文概述随着医疗技术的不断进步和人们对生活质量要求的提高,医用材料在医疗领域的应用日益广泛。
然而,传统的非降解医用材料在植入人体后往往需要长期存在,甚至需要二次手术取出,这不仅给患者带来了痛苦,也增加了医疗成本。
因此,生物可降解医用材料的研究成为了医学材料领域的研究热点。
本文旨在综述近年来生物可降解医用材料的研究进展,探讨其应用领域和发展趋势,以期为医用材料的研发和应用提供新的思路和方法。
本文首先介绍了生物可降解医用材料的定义和分类,包括天然生物可降解材料和合成生物可降解材料两大类。
然后,重点综述了生物可降解医用材料在药物载体、组织工程、植入物以及再生医学等领域的研究进展,总结了其在体内的降解机制、生物相容性以及应用效果。
本文还讨论了生物可降解医用材料研究中存在的问题和挑战,如降解速率控制、力学性能优化以及生物安全性评价等。
本文展望了生物可降解医用材料的发展前景,提出了未来研究的方向和重点,以期推动生物可降解医用材料的研发和应用,为医疗事业的进步做出更大的贡献。
二、生物可降解医用材料的分类生物可降解医用材料是一类在生物体内能够被逐渐分解和吸收的材料,其在医疗领域的应用日益广泛。
根据不同的降解机制和材料特性,生物可降解医用材料可分为天然生物降解材料和合成生物降解材料两大类。
天然生物降解材料主要来源于自然界,如多糖类、蛋白质类、天然橡胶等。
这些材料具有良好的生物相容性和降解性,能够被生物体内的酶或微生物分解为无毒的物质。
例如,壳聚糖作为一种天然多糖,具有良好的生物相容性和生物活性,被广泛应用于药物载体、组织工程和伤口敷料等领域。
胶原蛋白作为一种天然蛋白质,具有良好的生物降解性和机械性能,被广泛应用于人工皮肤、血管和骨骼等组织的修复和再生。
合成生物降解材料则是通过化学合成或生物合成的方法制备的,如聚乳酸(PLA)、聚己内酯(PCL)等聚酯类材料。
这些材料具有可控的降解速率和良好的加工性能,可以通过调整分子结构和合成条件来优化其性能。
纳米生物医用材料的进展研究

生物医用材料的研究进展生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料,它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。
研究动态迄今为止,被详细研究过的生物材料已有一千多种,医学临床上广泛使用的也有几十种,涉及到材料学的各个领域。
目前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料,具体体现在以下几个方面:1. 提高生物医用材料的组织相容性途径不外乎有两种,一是使用天然高分子材料,例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表达;二是在材料表面固定有生理功能的物质,如多肽、酶和细胞生长因子等,这些物质充当邻近细胞、基质的配基或受体,使材料表面形成一个能与生物活体相适应的过渡层。
2. 生物医用材料的可降解化组织工程领域研究中,通常应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。
其中组织工程材料除了具备一定的机械性能外,还需具有生物相容性和可降解性。
英国科学家发明了一种可降解淀粉基聚合物支架。
以玉米淀粉为基本材料,分别加入乙烯基乙烯醇和醋酸纤维素,再分别对应加入不同比例的发泡剂(主要为羧酸),注塑成型后就可以获得支撑组织再生的可降解支架。
3. 生物医用材料的生物功能化和生物智能化利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面,通过表面修饰构建新一代的分子生物材料,来引发我们所需的特异生物反应,抑制非特异性反应。
例如将一种名叫玻璃粘连蛋白(VN)的物质固定到钛表面,发现固定VN的骨结合界面上有相对多的蛋白存在。
4.开发新型医用合金材料生物适应性优良的Zr、Nb、Ta、Pd、Sn合金化元素被用于取代钛合金中有毒性的Al、V等,如Ti -15Zr - 4Nb - 2Ta和Ti - 12Mo - 6Zr - 2Fe等合金的生物亲和性显著提高,,耐蚀及机械性能也有较大改善,Ti-Ni 和Cu、Zn、Al等形状记忆合金由于具有形状记忆和超弹性双重功能,在脊椎校正、断骨固定等方面有特殊的应用。
抗菌水凝胶敷料的研究进展

抗菌水凝胶敷料的研究进展一、本文概述抗菌水凝胶敷料作为一种新型的生物医用材料,近年来在医疗领域的应用日益广泛。
其独特的抗菌性能以及良好的生物相容性使得其在伤口愈合、感染控制等方面展现出巨大的潜力。
本文旨在全面综述抗菌水凝胶敷料的研究进展,从抗菌水凝胶敷料的定义、分类、抗菌机制、制备方法以及临床应用等方面进行详细阐述。
本文还将对目前抗菌水凝胶敷料研究中存在的问题和挑战进行探讨,并展望其未来的发展趋势和应用前景。
通过本文的综述,旨在为相关领域的研究人员提供全面的参考和借鉴,推动抗菌水凝胶敷料的研究和发展。
二、抗菌水凝胶敷料的基础理论抗菌水凝胶敷料的研究与应用,根植于材料科学、生物医学、微生物学等多个学科交叉的理论基础。
其核心在于将水凝胶的高吸水、保水性能与抗菌剂的抗菌效果相结合,创造出一种既能提供湿润环境促进伤口愈合,又能有效抑制细菌感染的新型敷料。
水凝胶是一种由亲水性高分子通过化学或物理交联形成的三维网络结构,能够在水中迅速吸收并保留大量水分而不溶解。
这种特性使其成为理想的伤口敷料材料,因为它能够在伤口表面形成一个湿润的环境,有利于上皮细胞的迁移和增殖,促进伤口愈合。
抗菌水凝胶敷料的关键在于其抗菌性能的实现。
这通常通过在水凝胶中添加抗菌剂来实现,抗菌剂可以是无机抗菌剂(如银离子、锌离子等)、有机抗菌剂(如季铵盐、抗生素等)或天然抗菌剂(如壳聚糖、蜂胶等)。
这些抗菌剂通过破坏细菌的细胞壁、抑制细菌的代谢或干扰细菌的DNA复制等方式,达到杀灭或抑制细菌生长的目的。
抗菌水凝胶敷料还需要具备良好的生物相容性和生物降解性。
生物相容性是指材料在与生物体接触时,不会引起生物体的排异反应或毒性反应。
生物降解性则是指材料能够在生物体内或体外环境中逐渐分解,避免对生物体造成长期负担。
抗菌水凝胶敷料的研究进展不仅取决于水凝胶和抗菌剂的性能优化,还需要关注敷料的生物相容性和生物降解性。
未来,随着材料科学和生物医学的不断发展,抗菌水凝胶敷料有望在伤口愈合领域发挥更大的作用。
生物医用材料的研究现状与发展趋势是什么?

生物医用材料的研究现状与发展趋势是什么?生物医用材料是一类用于诊断、治疗、修复或替换人体组织、器官或增进其功能的新型高技术材料,其应用不仅挽救了数以千万计危重病人的生命,而且降低了心血管病、癌症、创伤等重大疾病的死亡率,在提高患者生命质量和健康水平、降低医疗成本方面发挥了重要作用。
伴随着临床的成功应用,生物医用材料及其制品产业已经形成,它不但是整个医疗器械产业的基础,而且是世界经济中最有生机的朝阳产业。
随着社会经济的发展,生活水平的提高,以及人口老龄化、新技术的注入,生物医用材料产业以高于20%的年增长率持续增长,正在成长为世界经济的支柱性产业。
发展生物医用材料科学与产业不仅是社会、经济发展的迫切需求,而且对国防事业以及国家安全也具有重要意义。
正如美国21世纪陆军战略技术报告中指出的,生物技术如战场快速急救、止血、创伤、手术机器人等技术,是未来30年增强战斗力最有希望的技术。
而生物医用材料,则是生物技术的重要组成部分。
作为一个人口大国,我国对生物医用材料和制品有巨大的需求,市场年增长率已高达30%以上。
多年来在国家相关科技计划支持下,我国生物医用材料的研究得到了快速发展,但与国际领先水平差距较大,占世界市场份额不到3%,生物医用高技术产品仍基本依靠进口,已成为导致我国医疗费用大幅度增加的重要原因之一。
生物医用材料科学的显著特点是多学科交叉,包括材料学、化学(特别是高分子化学与物理学)、生物学、医学/临床医学、药学及工程学等10余个学科。
因此,生物医用材料种类较多、应用范围广,是典型的小品种、多批量。
故本文简要概述生物医用材料的研究及应用现状与发展趋势。
生物医用材料的分类较多,可以从材料特性、使用范围等不同角度进行分类,本文从材料研究角度进行分类,主要包括高分子材料(含聚合物基复合材料)、金属、陶瓷(包括碳、陶瓷和玻璃)、天然材料(包括动植物材料)。
一、高分子材料1.高分子材料种类由于人体绝大部分组织与器官都是由高分子化合物构成,因此高分子材料在生物医学上具有独特的功效和重要的作用,是临床上应用最广的一类生物材料。
丝素蛋白做为生物医用材料的研究进展

丝素蛋白作为生物医用材料的研究进展前言生物医用材料是以生物医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的材料。
金属材料、合成高分子材料在生物医用材料中多有应用,但金属材料的生物力学性能不匹配,合成高分子材料的生物相容性较差以及生物降解性能可调性差限制了其作为生物医用材料的应用。
丝素蛋白是由蚕茧缫丝脱胶而得的纤维状蛋白[1],是一种性能优异的天然高分子材料。
丝素蛋白分子结构独特,除具备良好的生物相容性和稳定的生物安全性、出色的机械性能之外还具备吸湿保湿性能、透氧透气性能、细胞附着性。
因此,丝素蛋白在人造皮肤、人工角膜、人工肺、隐形眼镜、酶固定化载体、药物缓释载体、细胞培养基等生物医药领域有诸多潜在应用[2-3]。
1 丝素蛋白的结构组成丝素蛋白中含有18种氨基酸,其中侧基较小的氨基酸残基,如甘氨酸、丙氨酸和丝氨酸等按照一定序列排成较为规则的链段,构成结晶区,构成了丝素蛋白高强度力学的基础;带有较大侧基的苯氨酸、酪氨酸和色氨酸等构成非结晶区,赋予了丝素蛋白较高的弹性和较好的韧性[4-5]。
丝素蛋白有四种分子构象,分别是无规卷曲、sil kⅠ、sil kⅡ、sil kⅢ:丝素蛋白分子链按照α-螺旋和β-平行折叠构象交替堆积构成sil kⅠ型构象,其晶胞属于正交晶系;分子链按照反平行β折叠则形成sil kⅡ型构象;分子链按照β-折叠螺旋形成sil kⅢ型构象,其晶胞为六方晶系。
sil kⅠ型丝素蛋白亲水性较好,不宜形成沉淀;sil kⅡ型丝素蛋白则亲水性差,易结晶沉淀,是丝素蛋白的主要晶型。
以β-折叠为基础,丝素蛋白可以形成直径大约为10nm的微纤维,微纤维又可以密切结合程直径大约1μm的细纤维,进而细纤维沿长轴排列可构成直径为10-18μm的丝素蛋白纤维[4]。
2 丝素蛋白的性能特点丝绸的生产在中国已有千年的历史,真丝绸穿着舒适、手感柔软滑爽、色泽和谐、华丽高贵,同时,还具备保健功能,被称为保健性纤维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医用羟基磷灰石的研究进展摘要:羟基磷灰石(HA)是人体骨、牙无机组成的主要成分,组成生物体骨、牙组织的磷灰石晶体为纳米级、低结晶度、非化学当量和被多种离子的置换的针状纳米微晶.纳米羟基磷灰石由于与生物硬组织结构成分相似,以及在结构上的可模拟性,在生物医用材料研究中占据着重要的地位,并以各种应用形式出现在各类医学研究中。
羟基磷灰石[Calo(P04)6(0H)2】(hydroxyapatite,HAp)是一种生物活性材料,具有独特的生物相容性,是人体和动物骨骼、牙齿的主要无机成分【I】,基于HAp良好的生物活性以及生物相容性,使其成为理想的硬组织替代材料,广泛应用于硬组织修复、药物载体和抗肿瘤活性的研究。
关键词:羟基磷灰石;特性;医用功能前言:生物材料是生命科学和材料科学的交叉边缘学科,成为现代医学和材料科学的匿要领域之一.预计生物材料的发展将成为21世纪国际经济的主要支柱产业之一。
生物医学材料的历史与人类的历电一样漫长,最初人们用木、金属、动物牙齿作为牙齿种植修复的材料.到19世纪,金、镀、锦等开始用T-口腔修复中,而陶瓷作为骨种植材料具有意义的研究是smitll在20世纪印年代开始的。
70年代玻璃陶瓷、羟基磷灰石等进入n舱临床以后,把口腔种植修复推向丁新阶段,特别是80年代以来各种复合材料的H}现,使几腔种植的临床应用更加广泛。
纳米羟基磷灰石是人体骨、牙无机组成的主要成分,具有骨引导作用,在较短的时间内能与骨坚固结合,结合了生物材料和纳米材料的优点,临床已广泛应用,在生物医用材料中也占据着重要的地位.羟基磷灰石(HA)具有骨引导作用,在较短的时间内能与骨坚固结合,临床已广泛应用.生物体内天然羟基磷灰石以纳米晶体的形式存在,为65~80 nm的针状结晶体.根据“纳米效应”理论,单位质量的纳米级粒子的表面积明显大于微米级粒子,使得处于粒子表面的原子数目明显增加,提高了粒子的活性,十分有利于组织的结合.目前人工合成的纳米羟基磷灰石直径在1—100 nm之间,钙磷比值约为1.67,因而与人骨的结构和成分很相似,是一种理想的组织植入材料.然而以羟基磷灰石作为骨植入材料因强度偏低,尤其是脆性太大尚难直接应用于人体承载部位。
正文:羟基磷灰石概念:羟基磷灰石制备方法:1.高温分解法2.煅烧磷酸钙法3.干法合成4.湿法合成:包括(1)沉淀法;(2)水热合成法:(3)微乳液法;(4)溶胶.凝胶法和(5)电沉积法。
功能:羟基磷灰石与人骨有着良好的生物相容性,在体内有一定的溶解度,能释放对机体无毒害的某些离子,参与机体代谢,对骨质增生有刺激或诱导作用,能促进缺损组织的修复[]。
优点:HA的Zr02(3Y)增韧陶瓷对生物体无毒、无刺激吐、无溶血反应及诱变厦应.也无细咆毒性.娃一种生物相容性较好的惰性生物陶瓷。
含}L~的生物陶瓷具有良好的生物相容性,尤毒性及免疫原性,不影响骨组织生长。
研究进展:1.1.1与生物降解性高分子材料复合自然骨中的羟基磷灰石晶体相互连接,形成连接的有支持力的类胶原纤维样结构,并与胶原纤维平行.纳米羟基磷灰石/胶原骨(NHAC)材料,模仿天然骨成分及结构特性,为细胞提供与天然骨类似的微环境,有助于骨系统的粘附、增值和功能发挥.DU等【2_]将一定比例的胶原与纳米羟基磷灰石混合成具有三维空闻结构的复合材料,体外实验发现骨细胞可粘附生长.国内黄永辉【4J等应用胶原骨作为植骨替代物对21例骨折后骨缺损患者进行治疗,临床观察表明胶原骨具有良好的生物相容性和骨传导性.壳聚糖(chitosan,简称CS)是一类重要的碱性天然多糖,其具有良好的生物再生性、生物降解性、生物相容性、无毒及生物功能性,在生物医学领域应用广泛.张利等【5】用粒子沥滤法制备出了NHA/CS复合多孔材料,其抗压强度达17 MPa,可满足骨组织工程支架材料的要求.从理论上讲NHA/CS复合体与成骨活性物如骨形态发生蛋白类(BMP),骨髓基质细胞(MSC)的复合是较为理想的移植材料,但目前还未见到国内外上述复合组织工程化人工骨在动物实验和临床研究的相关报道,有待于进一步研究.1.1.2与非天然有机生物材料复合【6】纳米羟基磷灰石/聚酰胺66复合材料体外浸泡研究显示该复合材料表现出良好的稳定性和生物活性.【7】研究NHA/PA66对入胚胎纤维细胞可能存在的细胞毒性,体外实验结果显示。
NHA/PA66与人胚胎纤维细胞相容性好.【8】NHA/PA66复合人工骨修复犬下颌骨缺损研究显示NHA/PA66具有骨引导和潜在骨诱导作用.[8]混旋聚乳酸2纳米羟基磷灰石(PDLLA2nanoHA)复合板动物实验,复合板在体内降解速度适中,对骨折愈合过程无不良影响,比纯PDLLA板更适用于颌骨骨折.1.1.3多相复合材料纳米羟基磷灰石胶原材料(NHACK/PLA)是NHA与胶原及聚乳酸三种成分复合而成,扫描电镜观察,可见材料孔径较大,孔隙率及孔隙交通率高,有利于细胞增殖.赵基栋等分离培养人骨髓间充质干细胞(MSCs)。
与纳米羟基磷灰石复合材料于体外联合培养,X片摄片动态观察,见骨缺损处连接良好.双相钙磷生物陶瓷是由一类羟基磷灰石HA和目一磷酸三钙(B—TCP)按不同比例组成的硬组织修复材料,通过控制其比例来控制其降解速度,以达到临床应用目的.JOHNSON等【10j发现在胶原中加入NHA和TCP制得复合物,其骨再生能力得到明显提高.1.2纳米羟基磷灰石胶层植入体金属基纳米羟基磷灰石涂层材料既具有金属的强度、韧性,又具有纳米材料的组织相似性和生物材料的生物相容性,将它作为植入材料和机体在纳米尺度上的结合能十分有效地改善生物相容性、可植入性、结合强度以及电、热等的绝缘性.谭延斌等[11】对NHA梯度涂层植入体在动物体内的成骨情况和植入体一骨界面的细胞因子的表达进行研究,结果植入体一骨界面能快速地达到骨性结合,TNF-a、IL取IL-6表达水平较低,IL-10水平明显高于钛合金组,说明NHA材料能减少炎性细胞因子的表达,增加抑炎性因子的表达,同时植入体一骨面剪切强度优于钛合金组.涂平生等n2】通过NHA涂层人工关节治疗犬骨质疏松症的实验研究,证明含NHA涂层人工关节柄周围结构较好.2人工软骨改性及人工角膜支架聚乙烯醇(PvA)水凝胶具有弹性高、易于成型、无毒副作用及良好的生物相容性【l引,在生物医学领域具有广泛应用,如作为人工软骨【H】.但是聚乙烯醇人工软骨假体与骨基底的结合性能差,影响了软骨的固定和修复功能,采用聚乙烯酵与纳米羟基磷灰石复合,可大幅度提高人工软骨与骨基底的结合性能.许风兰等Its]用纳米羟基磷灰石与聚乙烯醇制备了一种新型的人工角膜,光学中心用柔韧透明的聚乙烯醇水凝胶。
周边支架采用纳米羟基磷灰石与聚乙烯醇复合的多孔水凝胶.动物实验术后进行裂隙灯和组织学观察表明复合人工角膜生物相容性好,支架与宿主角膜可发生生物性愈合.CRLEON应用纳米羟基磷灰石制作人工角膜支架,支架能与角膜基质生成生物性结合Ll引.3抗肿瘤作用和药物载体纳米羟基磷灰石作为骨组织的无机成分,具有良好的生物相容性,且能被组织细胞消化分解,是理想的药物基因载体或搞癌药物的材料.纳米羟基磷灰石粒子由于粒径小,具有较大的表面能,因而易被恶性肿瘤细胞所吞噬,其可以通过细胞膜和核膜导致DNA损伤,对细胞周期有阻断,并抑制癌基因c2myc的表达.1966年起,shipu等报道了羟基纳米磷灰石粒子对人肺癌及胃癌细胞有抑作用.【17】等通过体外细胞毒性实验,观察细胞形态及超微结构等方法,研究纳米羟基磷灰石粒子对骨肉瘤U220S细胞有明显的抑制作用,且随浓度(31.25 btg/mL到500 vg/mL)和作用时间(1 d--3 d)的增加而增加,细胞出现皱缩、核浓缩、核碎裂等凋亡特征.纳米羟基磷灰石粒子对急性白血病患者的体外白血病生长具有明显抑制作用.【17】发现纳米羟基磷灰石粒子能作为一种载体吸附多柔比星(ADM)、丝裂霉素C、氟尿嘧啶等抗肿瘤药物,在体外Ca29细胞和HSC23细胞培养中,这种载有ADM的纳米羟基磷灰石比单用ADM或纳米羟基磷灰石的对照组有着更显著的生长抑制作用,提示能增强对肿瘤细胞增殖的抑制.4在口腔医学中的应用纳米羟基磷灰石(NHA)与牙齿釉质中的羟基磷灰石晶体很相似,用纳米羟基磷灰石进行直接盖髓,牙髓反应轻,可更快地促进骨样牙本质形成.吕奎龙等【幅】采用因正畸拔除的无龋双尖牙,从硬度、晶体光性、釉面形貌三个方面观测了含纳米羟基磷灰石牙膏对人牙早期龋的再矿化作用,结果牙釉面显微硬度值上升,晶体光性改变,釉面空隙减少,表面光滑,呈现明显的再矿化作用.口腔树脂类粘接剂中无机填料的主要作用是赋予材料良好的物理机械性能,廖红兵等【19】将纳米羟基磷灰石作为填料与TF口腔正畸粘接剂复合,可以提高粘接强度。
其中拉伸强度为9.67±1.06 MPa,剪切强度可达11.99±1.4 MP氆完全能够满足正畸对粘接强度的要求.作为长期存留于口腔内的根充材料,其生物相容性好的纳米羟基磷灰石是较为理想的材料,李平等【20】通过体外研究纳米羟基磷灰石根充糊剂无细胞毒性,符合生物体应用的基本要求.钇/羟基磷灰石纳米微晶对口腔细菌如变形链球菌、血链球菌、粘性放线菌的生长繁殖均有抑制作用[21】,可能有助于控制牙周炎症,具有促进因牙周感染导致的骨缺损的修复和防治根面龋的作甩.纳米羟基磷灰石复合骨修复材料同样应用于口腔颌面骨骨折和缺损的修复.现临床上常用的主要有下述■类:@)件状骨内}lA涂层种植体:由羟基磷灰涂层与钛合食所组成,形状与Branemark种植体相似.1984 q 7月,Kent等将柱状骨内HA涂层种植体旨先用于临床.次年9月,该种植体得到了荑国牙科学会的正式认nf,j{被命名为“整合性”(Integml)种植体h”.②小型ttA涂层接骨板:由羟基磷灰石涂层与钛台金或由羟基磷灰石涂层与不锈钢所组成,形状与Michele!喇接骨板相似,但可根据固定的要求.设计或改制形状.90年代开始在L1腔颌面部手术中应用.2 羟基磷灰石涂层植入体的理化性能HA涂层植人体具有羟基磷灰石与金属底质共同的理化性能.羟基磷灰石的抗张强度(terLsiletrength)低.脆性大,缺乏机械强度,但具有较高的抗压强度(compressive strength)及良好的生物相容性.金属底质的生物相容性不如羟基磷灰石。
但具有合适的抗张强度和抗剪强度(shearstrength).将羟基磷灰石与金属结合,充分利用羟基磷灰石良好的生物相容性与金属材料的合适机械强度,起到取长补短,互为丰H补的作用。
关丁HA涂层植入体中金属底质的各项理化性能,美国试验材料学会(ASTM)已制定有统一标准供二产商选用.但对于其涂层的理化性能,目前尚无统一标准可供选用.因为涂层的结构与原来纯6自体的羟基磷灰石有所不同.经喷涂处理后,羟基磷灰石晶体受到了部分破坏,形成涂层中掺杂了一定遣的无定形非晶体成分,此种结构上的差异导致了羟基磷灰石涂层与羟基磷灰石在理化性能方面的不同.对羟基磷灰石的材料学研究表明:羟基磷灰石中的晶体成分愈高,其溶解率则愈低,植人体内后发生吸收的时问则愈长.Kay在活体内比较了羟基磷灰石与磷酸三钙、HA 涂层与TCPf磷酸三钙)涂层植人体在溶解度(dissolutionrate)方面的差异,得出的数值是:羟基磷灰石的溶解度低于磷酸三钙25倍;HA涂层种植体的溶解率低于TCP涂层种植体I 10倍…羟基磷灰石的这种低溶解率特点在维持植人体的长期稳定性方面起到了重要作用。