汽车尾气催化剂

合集下载

三元催化尾气处理器的原理

三元催化尾气处理器的原理

三元催化尾气处理器的原理【导言】1. 三元催化尾气处理器(Three-way Catalytic Converter)是一种常见的汽车尾气处理设备,使用催化剂将发动机排放的有害气体转化为无害物质。

2. 本文将深入探讨三元催化尾气处理器的原理,包括其组成结构、工作原理和效能评估,并分享个人观点和理解。

【1. 三元催化尾气处理器的组成结构】1.1 催化剂层1.1.1 催化剂层是三元催化尾气处理器最重要的部分,由贵金属催化剂(如铂、钯、铑)组成。

1.1.2 催化剂层通常分为两层,顶层用于氧气(O2)和一氧化碳(CO)的氧化反应,底层用于氮氧化物(NOx)的还原反应。

1.2 热稳定层1.2.1 热稳定层位于催化剂层上方,起到抵抗高温和热震的作用。

1.2.2 热稳定层通常由陶瓷材料构成,具有良好的热传导性能和耐高温性能。

1.3 声学层1.3.1 声学层位于热稳定层上方,主要用于降低排气系统噪音。

1.3.2 声学层通常由多孔陶瓷材料构成,能够吸收和分散排气噪音。

【2. 三元催化尾气处理器的工作原理】2.1 氧化反应2.1.1 在催化剂层的顶层,一氧化碳(CO)和未完全燃烧的碳氢化合物(HC)与氧气(O2)发生氧化反应,生成二氧化碳(CO2)和水(H2O)。

2.1.2 氧化反应是在高温条件下进行的,需要大量的氧气和催化剂的协同作用。

2.2 还原反应2.2.1 在催化剂层的底层,氮氧化物(NOx)与未完全燃烧的酮类化合物反应,发生还原反应,生成氮气(N2)、水(H2O)和二氧化碳(CO2)。

2.2.2 还原反应是在低温条件下进行的,同样需要大量的氧气和催化剂的协同作用。

2.3 三元催化效应2.3.1 三元催化尾气处理器利用催化剂层同时进行氧化反应和还原反应,实现一氧化碳(CO)、碳氢化合物(HC)和氮氧化物(NOx)的同时处理。

2.3.2 三元催化效应的核心在于催化剂层中贵金属催化剂的作用,有效转化有害气体为无害物质。

汽车尾气催化处理实验装置使用说明

汽车尾气催化处理实验装置使用说明

汽车尾气催化处理实验装置使用说明本实验装置采用三种不同的催化剂成品,制成三根不同的催化反应柱,可以对汽车尾气、含有碳氢化合物的废气、含有氮氧化物的废气、含有一氧化碳的废气进行催化处理。

同时采用了智能化程序升温加热控制系统,使实验的温度条件控制更加稳定可靠。

第一步:了解三种催化剂的性能P-4(控HC)型(1) 性能:将碳氢化合物氧化为CO2与H2O。

(2) 反应体积:623ml。

(催化剂高度50cm)(3) 催化剂重量:500克。

2.HPA-8(控HC)型(1)性能:将碳氢化合物氧化为CO2与H2O。

(2)反应体积:623ml。

(催化剂高度50cm)(3)催化剂重量:350克。

3.JFG(三元催化)型—汽车尾气催化处理专用(1)性能:含控HC、含控NOx、含控CO三种催化剂,能将碳氢化合物氧化为CO2与H2O,将氮氧化物还原为N2 和O2,将CO氧化为CO2。

(2)反应体积:623ml。

(催化剂高度50cm)(3)催化剂重量:282克。

第二步:了解整套实验装置的工艺流程由汽油发动机(5.5匹)产生尾气,尾气进入压缩机被压缩后输出0.1Mpa恒压尾气,恒压尾气分别进入由四个气体流量计独立控制进气量的催化反应管中,进行不同的催化反应。

每根催化反应管的外部均安装有恒温加热控制系统,以控制实验过程中所需要的恒温加热条件。

在催化反应管的前、后端分别安装有进气和出气取样口,采用五组份汽车尾气自动测定分析仪对催化反应前后的尾气进行测定分析,并由测定仪自动打印出分析结果。

第三步:实验前的检查和操作1.检查汽油发动机(1)检查油箱中是否有汽油(90#),至少需要1/2油箱的汽油量。

(2)检查油门杆的位置,油门杆为最长的一根调节杆,有“兔子”标识的一端为油门大,有“乌龟”标识的一端为油门小。

一般将油门杆打到“乌龟”和“兔子”的中间位置。

(3)检查风门杆的位置。

在油门杆的左下方有二个调节杆,上面一个为风门调节杆,用来调节进入发动机的空气量,一般调节到中间位置。

三元催化器的工作原理

三元催化器的工作原理

三元催化器的工作原理
三元催化器是一种常用于汽车尾气处理系统的设备,用于减少汽车尾气中的有害排放物质。

它的工作原理主要基于催化反应。

三元催化器的核心结构是由陶瓷或金属材料制成的蜂窝状载体,上面涂有催化剂。

这种催化剂通常由铂、钯和铑等贵金属组成。

当发动机运行时,排放出的废气通过进气管进入三元催化器。

在催化器内部,尾气与催化剂接触并进行化学反应。

三元催化器主要用于催化三种主要有害排放物质的转化:一氧化碳(CO)、氮氧化物(NOx)和碳氢化合物(HC)。

首先,一氧化碳与催化剂发生氧化反应,将一氧化碳转化为二氧化碳(CO2)。

这种反应需要空气中的氧气参与。

其次,氮氧化物与催化剂发生还原反应,将氮氧化物(NOx)转化为氮气(N2)和水蒸气(H2O)。

这种反应需要碳氢化
合物的还原剂参与。

最后,碳氢化合物与催化剂发生氧化反应,将碳氢化合物转化为二氧化碳和水蒸气。

通过这些化学反应,三元催化器能够有效减少汽车尾气中的有害物质排放。

但是,催化剂的效率会随着使用时间的增加而降低,需要定期更换催化剂。

总结起来,三元催化器通过催化反应将一氧化碳、氮氧化物和碳氢化合物转化为无害的二氧化碳、氮气和水蒸气,从而减少汽车尾气的污染。

三元催化的检查项目

三元催化的检查项目

三元催化的检查项目
三元催化剂常用于汽车尾气处理系统中,主要用于催化转化有害气体(如一氧化碳、氮氧化物、挥发性有机物)为无害物质。

因此,对于三元催化剂的检查主要包括以下几个项目:
1. 活性检查:确定三元催化剂是否能够有效地催化有害气体的转化,通常采用模拟废气检测仪器对其活性进行测试,确保催化剂的活性符合要求。

2. 成分检查:检查三元催化剂的成分是否符合规定,包括所含的活性金属成分(如铂、钯、铑等)的含量和比例是否合适。

3. 物理性能检查:包括催化剂的物理性质(如催化剂颗粒的形状、大小、分布等)以及表面活性物质的分布情况,这些性能对催化剂的活性和耐久性都有影响。

4. 耐久性检查:检查三元催化剂在长期使用后是否发生明显的性能衰减,这可以通过长时间的模拟废气测试或实际车辆的路试来评估。

5. 热稳定性检查:由于三元催化剂会受到高温氧化性环境的影响,因此还需检查催化剂在高温条件下的稳定性和抗热衰减能力。

6. 抗中毒性检查:某些废气中的成分(如硫化物、铅、硅等)会对催化剂产生毒性作用,因此需要检查催化剂对这些毒性成分的抗性能力。

这些检查项目可以通过实验室测试、废气模拟装置、尾气分析仪等方法来完成。

对三元催化剂进行全面准确的检查,能够确保其催化性能和使用寿命,从而保证汽车尾气的净化效果。

汽车尾气催化剂简介介绍

汽车尾气催化剂简介介绍

02 03
浸渍法
将载体浸入含有活性组分的溶液中,使活性组分附着在载体表面,经过 干燥、焙烧等步骤制得催化剂。此方法可精确控制活性组分含量,适用 于高性能催化剂的制备。
混合法
将活性组分与载体按一定比例混合,经过压制、成型、焙烧等步骤制得 催化剂。此方法工艺简单,但活性组分分布均匀性较差。
催化剂的生产技术
低成本绿色生产:催化剂的生产过程也将更加注 重环保和成本效益,例如开发低能耗、低废弃物 排放的生产工艺。
总体来看,汽车尾气催化剂作为环保领域的关键 技术之一,其发展趋势和前景深受政策、技术、 市场等多方面因素的影响,未来还有很大的创新 空间和市场潜力。
THANKS
感谢观看
新型反应机理
随着研究的深入,发现某些新的反 应机理有助于提高催化剂的性能, 如单原子催化等。
未来催化剂的发展方向及前景
高性能催化剂:未来催化剂的研究将更加注重性 能的提升,包括催化效率、耐久性、抗中毒性等 。
智能化应用:结合人工智能、大数据等技术,实 现对催化剂性能的实时监测和预测,以及催化剂 的精准匹配和个性化设计。
非贵金属催化剂
成本较低、活性适中、研究 热点。
• 成本较低:非贵金属催化 剂(如铁、钴等)采用较 为常见的金属元素,因此 制造成本相对较低,有利 于降低汽车尾气处理系统 的整体成本。
• 活性适中:非贵金属催化 剂在催化活性上虽然略低 于贵金属催化剂,但在合 适的配方和工艺条件下, 仍能满的不断提高和贵金属资源 的日益稀缺,非贵金属催 化剂成为了研究热点,未 来有望在汽车尾气处理领 域发挥更大作用。
03
催化剂的生产工艺及技术
催化剂的制备工艺
01
沉淀法
通过将含有活性组分的盐类溶液加入沉淀剂,经过沉淀、洗涤、干燥、

汽车尾气三效催化剂

汽车尾气三效催化剂

反应的进行,能快速发生氧活化和烃类的吸附。而由过 及其他非贵金属在催化剂中的作用有以下几个方面:
渡元素等非贵金属为活性组分的催化剂 ,则可以通过金
①存 储 及 释放氧,拓宽了空燃比工作窗口
属离子变价 ,利用晶格氧来达到催化氧化的 目的,而气
贵金 属 三 效催化剂对三种污染物的转化效率 只有
相中的氧不能吸附补充进来,需要较高的温度才能加速 在空燃比在化学计量比的附近时,才一能保持 良好的效
种助剂,提高热稳定性。NaotoMyoshi等提出半径为
0.n 一0.15nm的金属离子对氧化铝载体的热稳定性提
0「_
13.5 14.0 14.5 15.0 15.5
高很大,认为这样的离子占据 丫一A1203的表面空位,能
空燃 比 ( A/ F ) . 有 效 地 阻 止铝离子和氧离子的表面迁移 ,稳定晶格结
三 260一


标准 状; 扩、 岁 }.
40 60 80 100(Pt)
(100% Rh) Pt原子的百分含量%
图 4 Pt一Rh的协同作用
上,45%的铂和 85%的锗用于汽车催化。由于铂和锗的
当空 燃 比 在理论空燃 比附近时 ,3种活性组分的单
朱振 忠 ’, 田 群 2, 陈 宏 德 2
(1. 中 国 矿 业 大 学 ,北 京 1 00083;2.中国科学院生态环境研究中心,北京 10085)
摘 要 : 本文介绍 了汽车尾 气三效催化剂的基本工作原理 、结构和性能,概述 了汽车尾气催化剂的发展历程和
和氧化铝的相互作用,可以显著提高其热稳定性。另外, 面元素的价态。Tomcrona等研究表明,经过预还原处理
加人 zrOZ能提高 Ce02的储氧能力。研究表明,在向新鲜 后,含 Co 、Ce 的催化剂的 CO、HC起燃温度有显著的下

汽车尾气净化催化剂报告 V1

汽车尾气净化催化剂报告 V1

机密
6
第二章
历史沿革
机密
7
一、汽车尾气净化催化技术,是随着汽车排放标准的日益严格而逐步发展起来
轿车的欧洲汽车废气排放标准 单位:克每公里 (g/km)
1959年在美国加州,首次颁布了控制汽车排放污染物 的立法
1975年率先将净化剂应用于汽车工业上世纪60年代 到70年代中期,由于汽车排放法中只要求控制CO和 HC,出现了“两效”催化剂,
上世纪80年代起,美国联邦政府提高了车辆NOx 的 排放标准,从而促进了新型催化剂的产生和发展,铂 铑钯三效催化剂(Three Way Catalyst, TWC)应运 而生
资料来源:网络百科
上世纪90年代,三效催化剂除通常工况下的催化 功能外,还能解决汽车冷启动时的污染控制,以 及克服富氧气氛下的NOx 还原问题
机密
8
二、汽车尾气催化剂发展概况
一段净化法
一段净化法又称为催化氧化法, 使用铂、钯或两者混合 来提高尾气中HC、CO 同氧气的反应速度, 从而降低 HC 和CO 的污染物排放。这个反应在通常条件下进行 得很慢。催化剂的效率取决于它的温度、混合气的空 燃比和尾气中碳氢的组成。
两段净化法
又称催化氧化- 还原法,采用两个反应器, 汽车排出的 气体先通过第一段净化反应器, 排气中的CO 将NOx 还原为氮气; 出来的气体接着通过第二段反应器, 将 CO 和HC 氧化为二氧化碳和水 。
汽车发动机内部设计改进
机外净化
安装催化净化器
汽车尾气污染物 一氧化碳 (CO) 碳氢化合物(HC) 氮氧化合物(NOx)
过滤 催化
二氧化碳 (CO2) 氮气(N2) 水(H2O)
机密Leabharlann 4二、汽车尾气净化催化剂催化原理

汽车尾气催化剂

汽车尾气催化剂

汽车尾气净化催化剂环境问题是一个全球问题,要靠全世界每一个人的努力来解决。

随着世界经济、科技的不断发展和社会文明的不断进步,人们的物质需求也在一天天增长。

汽车是现代社会最普及的交通工具,特别是近年来私家车越来越多,带来了很多问题,其中环境问题是不容忽视的。

汽车的使用对环境的污染主要有噪音污染和尾气排放造成的空气污染。

在我国,汽车尾气净化是解决尾气排放污染的最有效方法。

汽车排放的污染物主要来源于内燃机,其有害成分包括一氧化碳(CO)、碳氢化合物(CH)、氮氧化合物(NOx)、硫氢化合物和臭氧等,其中CO、HC及NOx是汽车污染控制的主要大气污染成分。

HC是在局部缺氧或低温条件下烃不完全燃烧而产生,NOx是火花塞点火瞬间高温高压下空气中的N2、O2反应的产物。

汽车尾气对人类的健康危害很大,治理汽车排放污染,已成为一项刻不容缓的任务。

一、汽车尾气净化催化剂简介1.1汽车尾气净化国外早在20世纪60年代中期对汽车污染控制技术已经进行了研究开发,目前己达到实用阶段。

研究表明,通过改善催化剂及其载体的性能和生产工艺,改善汽车内燃机燃烧技术及三效催化剂排气系统的处理可净化这些有害气体。

汽车尾气污染控制可以分为机内和机外两种技术。

机内净化主要是提高燃油质量和改善燃料在发动机中的燃烧条件,尽可能减少污染物的生成;机外净化的主要方式是安装催化净化器,对有害气体进行处理是机外尾气净化最有效的方法,催化剂又是净化效果的关键。

因此开发实用高效的汽车尾气净化催化剂是控制汽车尾气排放的最佳措施之一。

汽车尾气催化净化的目的就是将有害的CO和HC氧化为CO2和H2O,将NOx还原成N2。

由于汽车尾气的化学成分很复杂,其转化率除和催化剂的活性有关外,还和反应气是氧化气还是还原气有关,因此催化剂在功能上分为氧化型和还原型两部分。

氧化型催化剂主要催化CO和HC的氧化反应,有关反应如下:2CO+O2→ 2CO2 ……①4HC+5 O2→4 CO2+2H2O ……②2NO+2CO →2CO2+N2 ……③HC+NO2→ CO2+H2O ……④HC+CO→ N2+CO2+H2O……⑤3NO+2NH2→ 2N2+3H2O ……⑥2NH2→ N2+3H2O ……⑦还原型催化剂主要催化NOx的还原反应:2NO+CO →N2+CO2 ……⑧2NO+H2→ N2+2H2O ……⑨2NO+HC→ N2+H2O+CO2 ……⑩NO和H2反应除生成无毒的N2和H2O外,尚有所不希望发生的副反应:2NO+5H2→ 2NH2+H2O2NO+H2→ N2O+2H2O因两种反应要求的化学环境不同,故早期的催化剂将两者分立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.. . …汽车尾气净化催化剂环境问题是一个全球问题,要靠全世界每一个人的努力来解决。

随着世界经济、科技的不断发展和社会文明的不断进步,人们的物质需求也在一天天增长。

汽车是现代社会最普及的交通工具,特别是近年来私家车越来越多,带来了很多问题,其中环境问题是不容忽视的。

汽车的使用对环境的污染主要有噪音污染和尾气排放造成的空气污染。

在我国,汽车尾气净化是解决尾气排放污染的最有效方法。

汽车排放的污染物主要来源于燃机,其有害成分包括一氧化碳(CO)、碳氢化合物(CH)、氮氧化合物(NOx)、硫氢化合物和臭氧等,其中CO、HC及NOx是汽车污染控制的主要大气污染成分。

HC是在局部缺氧或低温条件下烃不完全燃烧而产生,NOx是火花塞点火瞬间高温高压下空气中的N2、O2反应的产物。

汽车尾气对人类的健康危害很大,治理汽车排放污染,已成为一项刻不容缓的任务。

一、汽车尾气净化催化剂简介1.1汽车尾气净化国外早在20世纪60年代中期对汽车污染控制技术已经进行了研究开发,目前己达到实用阶段。

研究表明,通过改善催化剂及其载体的性能和生产工艺,改善汽车燃机燃烧技术及三效催化剂排气系统的处理可净化这些有害气体。

汽车尾气污染控制可以分为机和机外两种技术。

机净化主要是提高燃油质量和改善燃料在发动机中的燃烧条件,尽可能减少污染物的生成;机外净化的主要方式是安装催化净化器,对有害气体进行处理是机外尾气净化最有效的方法,催化剂又是净化效果的关键。

因此开发实用高效的汽车尾气净化催化剂是控制汽车尾气排放的最佳措施之一。

汽车尾气催化净化的目的就是将有害的CO和HC氧化为CO2和H2O,将NOx还原成N2。

由于汽车尾气的化学成分很复杂,其转化率除和催化剂的活性有关外,还和反应气是氧化气还是还原气有关,因此催化剂在功能上分为氧化型和还原型两部分。

氧化型催化剂主要催化CO和HC的氧化反应,有关反应如下:2CO+O2→ 2CO2 ……①4HC+5 O2→4 CO2+2H2O ……②2NO+2CO →2CO2+N2 ……③HC+NO2→ CO2+H2O ……④HC+CO→ N2+CO2+H2O ……⑤3NO+2NH2→ 2N2+3H2O ……⑥2NH2→ N2+3H2O ……⑦还原型催化剂主要催化NOx的还原反应:2NO+CO →N2+CO2 ……⑧2NO+H2→ N2+2H2O ……⑨2NO+HC→ N2+H2O+CO2 ……⑩NO和H2反应除生成无毒的N2和H2O外,尚有所不希望发生的副反应:2NO+5H2→ 2NH2+H2O2NO+H2→ N2O+2H2O因两种反应要求的化学环境不同,故早期的催化剂将两者分立。

后来由于发动机的改进,实现了可使两种功能兼容的化学环境;由于催化剂制备技术的改进,使氧化与还原两种活性中心共存于同一个催化剂上,最终出现了三效催化剂TWC(three-way catalyst)。

目前最常用的催化器是使用蜂窝型催化(honeycomb catalyst),载体是瓷蜂窝体,其外附载有高比表面积的氧化铝涂层,其上再浸渍活性组分。

所以,汽车尾气净化催化剂主要由载体、涂层及活性物质三部分组成。

1.2汽车尾气净化催化剂结构组成。

1.2.1 载体催化活性组分要担载在高比表面的载体上,才能很好的发挥作用,载体的选择对催化剂活性有很大影响。

早期的载体是以活性氧化铝、硅氧化镁、硅藻土为原料制得的颗粒物,表面积大,使用方便,但存在压力降和热容大、耐热性差、强度低和易破碎等缺点,故80年代后逐渐被蜂窝瓷载体所取代。

蜂窝瓷载体也叫作整体载体,由许多薄壁平行小通道构成整体,具有气流阻力小、几何表面大、无磨损等优点。

堇青石载体由于热膨胀系较低,抗热冲击性突出而被广泛用作汽车尾气催化剂的载体。

目前所用的汽车催化剂的载体95%为蜂窝堇青石瓷体,其原材易得、费用较低以及总体性能良好。

另一种整体式载体是将Ni-Cr、Fe-Cr-Al或Fe-Mo-W等合金压成波纹状而制成的整体型合金载体,相比瓷蜂窝载体有更高的热稳定性。

目前这种金属载体主要用于对汽车尾气排放要求十分严格的国家,如日、美的出口汽车上。

金属载体的使用对降低汽车排气阻力十分有利,明显改善了动力性能,提高尾气净化效率,同时延长了净化器的使用寿命。

1.2.2高比表面的涂层(也叫第二载体)活性涂层附着于载体的表面,它的作用是提供大的表面积来附着贵金属或其它催化成分。

堇青石载体的比表面较低,一般只有1m2/g左右,须涂敷一层高比表面的涂层,涂层材料通常采用γ-Al2O3,它具有很强的吸附能力和大的比表面积,但在高温条件下会发生相变,转变为α- Al2O3,比表面积降低。

为了抑制Al2O3的相变,通常加入Ce、La、Ba、Sr、Zr等稀土元素或碱土元素氧化物作为助剂。

1.2.3活性组分尾气催化剂的活性组分可分为贵金属和非贵金属两种类型。

贵金属类以Pt、Rh、Pd最为常用。

Pt组分在催化剂中主要起氧化CO和HC的作用,它对NO有一定的还原能力,但CO的浓度就较高或有SO2存在时, 它的效果没有Rh好。

Rh组分是催化还原NOx的主要成分,在有氧时,得到唯一的还原产物N2;无氧时,低温下的主要还原产物是NH3,高温下的还原产物主要为N2。

此外,Rh对CO的氧化和烃类的水蒸气重整反应也有重要作用,Rh的抗毒型较Pt差。

Pd组分主要用来转化CO和烃类,对于饱和烃类效果稍差,抗Pb、S 中毒能力差,易高温烧结,与铅形成合金,但它的热稳定性较高, 起燃性好。

汽车尾气三效催化剂中,各种组分的作用是相互协同进行的。

非贵金属活性组分主要以过渡元素氧化物及其尖晶石、钙钛矿结构复合氧化物为活性组分。

但由于单组分氧化物耐热性能差、活性低、起燃温度高,在使用上受到限制,一般采用多组分的配方和适当的制备技术。

1.2.4助剂助剂本身是一些没有催化作用或活性较低的添加物,能大大提高催化剂的活性、选择性和寿命。

CeO2是汽车尾气净化催化剂最主要的助剂,其主要作用有:贮存及释放氧;提高贵金属的分散性,抑制贵金属颗粒与Al2O3形成无活性的固溶体;提高催化剂的抗中毒能力;增加催化剂的热稳定性等。

Summers和Ausen对铈和贵金属的相互作用进行了研究,在Al2O3担载的新鲜的Pd、Pt贵金属催化剂中,增加CeO2的量,Pt的表面分散性下降;而Pd的表面分散性与CeO2的负载量无关。

1.3催化剂的制法(1)机械混合:采用机械搅拌的方法将催化剂的活性固体组分与载体混合在一起构成催化剂。

此种方法简便,但制备的催化剂效果不佳。

(2)浸渍法:采用载体浸泡在活性组分的盐溶液中,蒸发,灼烧而使活性组分附着在载体上。

此种方法能使活性组分在载体表面高度分散,具有较好的催化性能。

(3)离子交换法:此种催化剂载体一般为沸石,沸石在使用前先用铵盐或矿酸进行离子交换,则沸石上被引入氨离子或氢离子,然后将其放入一定量活性组分配成的离子溶液,将活性离子交换到载体上。

这种方法使活性组分的分散度更好, 催化活性更高,但制备较费时间。

(4)沉淀法:沉淀法是在含金属盐类的溶液中加入沉淀剂,生成水合金属氧化物或碳酸盐的结晶或凝胶,再通过进一步分离、洗涤、干燥而得活性组分。

此法适用于负载量较大的催化剂。

(5)其他:将活性组分附着到载体上的方法较多,例如,将浸渍与机械混合联合起来、柠檬酸络合法、水热生晶法等。

二、国外研究状况2.1国外研究状况2.1.1氧化型催化剂20世纪70年代中期到末期的汽车排放法规只要求控制CO与CH的排放,发动机尚未使用化油器开环系统,由于机械地固定A/F比到理论值,不能随工作状况的变化而自动地调节,在这种状态下,通过将A/F比调到15左右,在富氧状态下装上氧化型催化剂,可使CO与HC的转化率达到90﹪,但NOx 的转化率比较低。

这一时期使用的主要是贵金属型催化剂,以铂、钯为活性组分。

通常以二者形成的合金态使用,铂:钯=7:3,总载量0.12﹪左右。

贵金属催化剂有致命的弱点,那就是它怕铅中毒。

因此,为了有效地使用贵金属催化剂,必须改变燃油的结构,实行汽油的无铅化。

20世纪70年代末到80年代中期,随着美国EPA提出对NOx的排放实行控制,氧化型催化剂己不能满足要求。

出现了铂、铑三效双金属催化剂。

20世纪70年代末至80年代初出现的是双床式铂、铑催化剂,催化剂的氧化还原反应是分段进行的,前段使用还原型蜂窝催化剂,后段使用氧化型蜂窝催化剂,两段中间补充空气。

这种设置可使还原反应与氧化反应分别在有利于自身的化学气氛中进行,但该种催化器结构复杂,操作麻烦,且NOx还原后有可能重新被氧化。

1980-1985年,Pt-Rh三效催化剂开始用于电喷闭环装置,将A/F控制在窗口围,CO、CH和NOx的转化率可达80-90﹪以上。

典型催化剂的Pt-Rh总负载量为0.1-0.15﹪,Pt:Rh=5:1,涂层中加入碱土和稀土元素,稳定催化剂结构并与贵金属协同产生卓越的储氧功能。

但在高温时,Rh与表面涂层中的Al2O3和CeO2发生化学作用,导致催化剂在还原气氛时对NOx的还原活性下降。

2.1.3三金属催化剂20世纪80年代中期到90年代初,开始使用新一代的Pt-Rh-Pd三效催化剂。

这一代催化剂相当于在一个Pd催化剂上再安置一个标准Pt-Rh催化剂。

此结构中,钯在层有更好的耐热稳定性;铑在外层更有利于NOx的还原;铂在钯铑间起积极的协调作用。

故催化剂的性能有了明显改善。

随着汽油质量的提高,催化剂的使用寿命也大大延长,且每升催化剂中贵金属的总量已下降到0.6-0.8g。

据介绍,Engelhard开发的Tri-Metal催化剂在使用16万公里后,转化率仍可达CO 85﹪,HC 90﹪和NOx95﹪,显然可满足更高的环保要求。

20世纪80年代末,福特公司推出了三效钯催化剂,这种钯催化剂要求氧化铝和稀土氧化物与过渡金属氧化物形成有机的协和体,钯在其中发挥主导作用,通过采用特殊措施使材料具有特定结构从而使高温下的活性得以稳定。

实验表明,单独Pd基催化材料在1200℃的热冲击下,催化活性依然良好。

目前,这种催化剂还在进一步研制之中。

Englhard公司研制了一种双层Pd基催化材料。

底层由Pd和Ce构成,顶层由分散于涂层上的Pd构成。

两层中都添加廉价金属氧化物以产生稳定作用,并提高Pd的活性。

顶层提供低温催化活性;Pd-Ce层提供高的储氧能力以保证高温催化活性。

Pd在423-823℃温度围对,HC、CO和NO的同时转化具有活性。

2.1.5NOx存储还原型三元催化材料这种催化材料由贵金属、碱金属或碱土金属、稀土氧化物组成。

基本原理是:富氧条件下NOx首先在贵金属上被氧化,然后与NOx存储物发生反应,形成硝酸盐。

在理论比或富燃状况燃烧时,硝酸盐分解形成NOx,然后NOx与CO、H2、HC反应被还原成N2。

相关文档
最新文档