生物滤池设计计算书

合集下载

污水处理曝气生物滤池(BAF)设计计算书

污水处理曝气生物滤池(BAF)设计计算书

BAF池计算水量Q2000m3/d进水BOD126mg/l出水BOD25mg/l容积负荷33-5kg/(m3*d)BAF池容积67.33333333填料层高度H1 2.5一般为2.5-4.5BAF池面积26.93333333BAF池个数n2BAF池边长 3.669695719BAF池边长取5配水室高h1 1.21.2-1.5承托层h20.30.2-0.3清水区h310.8-1.0超高0.50.3-0.5H 5.5填料体积125125气量可按EH的计算Q小时流量进水BOD出水BOD碳的氧当量X 平均需氧量EAGS(空气体积)200083.333333330.0750.015 1.680.280.15190.4762风机风量(m3/min3.174603175反洗风量反洗风量强度0.2-0.8m3/(m2*min)13.46667m3/min水冲强度0.5-1.0m3/(m2*min)808m3/h9.69621.6m3/(m2*h)581.76选择鼓风机时长柄滤头个数(每平方有36个滤头)969.6(台州中昌)36-492450滤板个数标准滤板尺寸980*980*100价格滤板采用整体浇注厚度180mm 1400-1500m2滤头12元/个滤料1500m3单孔曝气器0.28m3/个050元/个(成本22)#DIV/0!配水器1900元/套(成本)按照停留时间算T 1.5h上升流速度2m3/h有效水深3m水量Q2000m3/d小时流量83.33333333BAF池个数n2池子有效容积125单个池面积20.83333333104.1666667单个池宽度5单个池长度 4.166666667取6.0m单个池长度取5填料层高度H13配水室高h1 1.21.2-1.5承托层h20.20.2-0.3气反冲强度10L/m2*s 清水区h30.80.8-1.0超高0.30.3-0.5总高 5.5填料体积125长柄滤头个数1800(每平方有36-49个滤头)单孔膜曝气器1880曝气量8.4(周工计算,他是按照单孔膜曝气器数量反算的)反冲气量0.5气冲强度大于10L/m2*s0.6m3/m2*mi n曝气量 3.174603175m3/min鼓风机 3.19单孔膜曝气器683.5714286反洗风量强度0.2-0.8m3/(m2*min)12.5m3/min 水冲强度0.5-1.0m3/(m2*min)625m3/h长柄滤头个数(每平方有36个滤头)1500。

BAF曝气生物滤池设计

BAF曝气生物滤池设计

( 28 20 )
0.36 mg/L 0.67 12%
kgO2/h m m
m3/min
m
m3/min m3/min m3/min m 4
反洗顺序:气洗→(停 30~60S)气、水洗→(停 30~60S)水洗→(较大土建 池)表面漂洗,每次按照以 上顺序进行1~2次反洗。 6.91
0.35)1.632
0.632
m3 m2 m
kgCODcr/(m3滤料· d)
m3/(m2· h) h 0.7 0.75
1 . 024
OR 0 .82 (
K La ( 20 )
△ BOD 5
S
) 0 .32 (
0.3
BOD 5
S S
SS
)
BOD 5
S
SBOD

MLVSS MLSS
S ' SS 1 . 42 (1
出水中溶解性BOD含量Se=S'BOD5-SSBOD= 去除可溶性BOD (2)实际需氧量AOR= ΔBOD5 =η×SBOD5-Se= 1.4× OR× SBOD5×Q/1000+4.57× Q× (SNH3-N-S'NH3-N)/1000=
11.4 或 3.0 m 3.8 或 2.2 或 或
3 2 h) 1.47 m /(m ·
10.2 3.4 2.1
或 或
kgBOD5/(m3滤料· d)
2.04 h 1.02 h 或 或 或 取,进水溶解性BOD5/进水BOD5,η= 取,MLVSS/MLSS= 8.00 2.94 0.51
m3/(m2· h) h
m3/(m2· min) m3/(m2· min) m3/(m2· min) m3/(m2· min) h

生物滤池

生物滤池

四、生物滤池系统的设计计算1、一、二级生物滤池⑴滤池滤料体积及其几何尺寸的确定设计参数;Q=20000 m3/d 回流比r=200% F W范围800~1200 gBOD5/ m3·d 初沉池出水BOD=132mg/L 滤池出水BOD=30mg/L按有机负荷法计算:①滤料的体积V =(L1-L2)Q / u= L1Q / F W式中:V—滤料体积,m3L1—滤池进水有机物浓度,mg/lL2—滤池出水有机物浓度,30mg/lQ—流入滤池的污水设计流量,m3/du—以有机物去除量为基础的有机负荷率,gBOD5/ m3滤料·dF W—以进水有机物为基础的有机负荷率,gBOD5/ m3滤料·d采用碎石滤料,设F W=1125gBOD5/ m3·d ,出水BOD5=30 mg/LL1=(L+rL2)/(1+r)=(132+2×30)/(1+2)=64(mg/L)V = 20000(1+2)×64 / 1125 =3200m3②滤池的平面面积A = V / H式中:A—生物滤池的平面面积,㎡V—生物滤池的滤料体积,m3H—生物滤池的滤料厚度。

取滤料厚度4m A = 3200 / 4= 800㎡采用2格,单格有效过滤面积20.0×20.0=400m2。

③用水力负荷率校核q = Q / A式中q—生物滤池水力负荷率, m3/(㎡·d)q一般为10~30 m3/(㎡·d)q = 20000/800= 25 [m3/(㎡·d)]符合要求④过滤速度V=Q/A=2000/800=1.04 m3/(m2•h)(2)滤池高度承托层厚380mm,由卵石级配,粒径8~32mm。

滤料层采用双层滤料,厚h=400mm,滤板厚12mm,超高60mm。

配水室高100mm,清水区高100mm。

滤池高度H为H=380+400+12+60+100+100=1052mm(3)每个滤池的配水系统滤池配水系统的设计为选用长柄滤头配水方式,并兼气反冲洗布气用。

曝气生物滤池计算

曝气生物滤池计算

5.主要构筑物与设备参数(一)格栅见草图:1.栅条的间隙数:设栅前水深 h=0.1m ,栅前流速 u1 =0.4m /S过栅流速 u = 0.6 m/S,栅条间宽度e=20mm,格栅安装倾斜角a=60on=Qmax×(Sina)1/2/(bhv)= 0.00463×(Sin60o)1/2/(0.018×0.1×0.6)≈42.栅条宽度:设栅条宽度为 S=0.01mB=S(n-1)+bn=0.01×(4-1)+0.018×4=0.102m3.进水水渠道渐宽部分长度:设进水水渠宽B1=0.06m,渐宽部分展开角a1=20ol1=(B-B1)/(2tga1)=(0.102-0.06)/(2tg20o)=0.06m4.栅槽与出水渠连接处的渐窄部分长度l2=l1/2=0.06/2=0.03m5.通过格栅的水头损失:设栅条为矩形断面,取k=2.5h1=β(s/b)4/3sinαk(v2/2g)=2.5×2.42×(0.01/0.018)4/3×0.866×(0.62/19.6)= 0.044 m6.槽后槽总高度:取栅前渠道超高h2=0.1m,有总高度H=h+h1+h2=0.1+0.1+0.044=0.244m7.栅槽总长度:L=l1+l2+1.0+0.5+H1/tga=0.06+0.03+0.5+0.8+0.2/tg60o≈1.413m8.每日渣量:取W1=0.07m3/103m3(污水)所以,W=Qmax×W1×86400/K2/1000=0.0463×0.07×86400/2.5/1000≈0.0112m3/d≤0.2m3/d栅渣量极小,适宜人工清渣。

(二) 水解酸化池体的计算(1)水解(酸化)池有效池容V有效是根据污水在池内的水力停留时间计算的。

水解(酸化)池内水力停留时间需根据污水可生化性、进水有机物浓度、当地的平均气温情况综合而定,一般为 2.5-4.5h.考虑综合情况,本工程设计中水力停留时间取 T = 4 h,本工程设计流量 Q = 400 m3/d =16.67 m3/h,取 T = 4 h,则有效池容为:水解酸化池的有效容积 V有效 = QT式中 V有效——水解酸化池的有效容积,m3 ,Q----进入水解酸化池的废水平均流量,m3/h ;T----废水在水解酸化池中的水力停留时间, h本工程 Q = 16.67 m3/h,T = 4 h,代入公式后:V有效 = 16.67 × 4 = 66.68 m3 ,对于水解酸化反应器,为了保持其处理的高效率,必须保持池内足够多的活性污泥,同时要使进入反应器的废水尽量快地与活性污泥混合,增加活性污泥与进水有机物的接触,这就要求上升流速越高越好。

曝气生物滤池计算书

曝气生物滤池计算书

曝气生物滤池1:滤池尺寸的计算 ①滤料体积W N S Q W 1000∆==dm kgBOD dkgBOD ∙⨯⨯⨯3/21000/2024670=160.8m 3其中,BAF 除碳的滤料负荷为2~6d m kgBOD ∙3/,取2d m kgBOD ∙3/ ②滤池表面积BAF 的滤料高度一般为2~4m ,取3m ,则BAF 的表面积为53.6m 2滤池面积过大时,会不利于布水布气的均匀,因此滤池面积过大时应当分格。

因此将滤池分六格,并联运行,单格表面积为:6mx6m (考虑到水力负荷将滤池面积适当扩大)正常水力负荷:670/36/6=3.10h m m ∙2/3当有一格滤池反洗时,最大水力负荷为:670/36/3=3.72h m m ∙2/3 满足除碳时最大水力负荷6.0h m m ∙2/3的要求。

③滤池深度 滤料层高度3m 配水配气室高度1.2m 承托层高度0.3m 清水区高度1.5m 超高0.5m则滤池的总深度为6.5m(承托层,清水区,配气配水室高度不确定,只在一些地方看到滤料被淹没1.5~m 比较好)2:反冲洗水量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭11.1(大粒径)或6.7S m L ∙2/(小粒径),15~20min 城镇给水第3册过滤那一章:P609固定式表面冲洗2~3S m L ∙2/,冲洗水头0.2MPa P612常用气水冲洗:先气冲——再气水同时(3~4S m L ∙2/)——后水冲(4~10S m L ∙2/) P617快滤池,只水冲时12~15S m L ∙2/ 参考的华北院项目中一般取18S m L ∙2/按水冲洗强度5S m L ∙2/则水量为5x6x6=180L/Sx3.6=648m3/h 。

可选三台反洗水泵,两用一备,单台能力为350 m3/h 反洗水量使用RO 浓水。

3:反冲洗气量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭13.9(大粒径)或13.9S m L ∙2/(小粒径) 5min 城镇给水第3册P612常用气水冲洗:先气冲(15~20S m L ∙2/)——再气水同时(12~18S m L ∙2/)——后水冲 一般取3.3S m L ∙2/(觉得此值不对,气水比应当是1~3比1)按气冲洗强度15S m L ∙2/则水量为15x6x6=540L/Sx3.6=1944m3/h=32.4 m3/min 可选两台鼓风机,一用一备,单台能力为33m3/min 。

生物滤池

生物滤池

第2页
微生物迅速分解,对含这类有机物为主的废水,产 甲烷易成为限速阶段。 4.厌氧生物处理过程中微生物优势种群的演替及相互 关系 由外到内水解细菌、发酵细菌、氢细菌和乙酸菌、甲 烷菌、硫酸盐还原菌、厌氧原生动物,其中产甲烷 丝菌是厌氧活性污泥的中心骨架 ��� 产酸细菌为产甲烷细菌提供生长繁殖的底物 ��� 产酸细菌为产甲烷细菌创造了适宜的氧化还原电位 ��� 产酸细菌为产甲烷细菌清除了有毒物质 ��� 产甲烷细菌为产酸细菌的生化反应解除了反馈抑制 ��� 产酸细菌和产甲烷细菌共同维持环境中的适宜 pH 值 5.厌氧生化法的优点 (1)应用范围广 因供氧限制,好氧法一般适用于中、低浓度有机废水的处理,而厌 氧法适用于中、高浓度有机废水。有些有机物对好氧生物处理法来 说是难降解的,但对厌氧生物处理是可降解的,如固体有机物、着 色剂蒽醌和某些偶氮染料等。 (2)产生的沼气可用于发电或作为能源 ���沼气中的主要成分是甲烷,含量 50~75%之间,是一种很好的燃料。 以日排 COD10t 的工厂为例,若 COD 去除率为 80%,甲烷产量为理 论的 80%时,则可日产甲烷 2240m3,其热值相当于 3.85t 原煤,可发 电 5400 度电。 (3)对营养物的需求量少 好氧方法 BOD:N:P=100:5:1,而厌氧方法为(350~500):5: 1,相比而言对 N、P 的需求要小的多,因此厌氧处理时可以不添加 或少添加营养盐。 (4)产生的污泥量少,运行费用低? 繁殖慢;不需要曝气 (5)有杀菌作用 厌氧处理过程有一定的杀菌作用,可以杀死废水和污泥中的寄生虫 卵、病毒等。 6.厌氧生化法的缺点 (1)出水的有机物浓度高于好氧处理;发酵分解有机物不完全; (2)对温度变化较为敏感工业中需要设置进水的控温装置,37℃。 (3)厌氧微生物对有毒物质较为敏感但经过毒物驯化处理的厌氧菌 对毒物的耐受力常常会极大地提高。 (4)初次启动过程缓慢,处理时间长 好氧处理体系的活性污泥或生物膜通常只需要 7 天就可以培育成 功,而厌氧处理体系的活性污泥或生物膜一般需要 8~12 周才可以培 育成功 (5)处理过程中产生臭气和有色物质(为什么?) 臭气主要是 SRB 形成的具有臭味的硫化氢气体以及硫醇、氨气、有 机酸等的臭气。同时硫化氢还会与水中的铁离子等金属离子反应形 成黑色的硫化物沉淀,使处理后的废水颜色较深,需要添加后处理 设施,进一步脱色脱臭。

生物滤池

生物滤池

四、生物滤池系统的设计计算1、一、二级生物滤池⑴滤池滤料体积及其几何尺寸的确定设计参数;Q=20000 m3/d 回流比r=200% F W范围800~1200 gBOD5/ m3·d 初沉池出水BOD=132mg/L 滤池出水BOD=30mg/L按有机负荷法计算:①滤料的体积V =(L1-L2)Q / u= L1Q / F W式中:V—滤料体积,m3L1—滤池进水有机物浓度,mg/lL2—滤池出水有机物浓度,30mg/lQ—流入滤池的污水设计流量,m3/du—以有机物去除量为基础的有机负荷率,gBOD5/ m3滤料·dF W—以进水有机物为基础的有机负荷率,gBOD5/ m3滤料·d采用碎石滤料,设F W=1125gBOD5/ m3·d ,出水BOD5=30 mg/LL1=(L+rL2)/(1+r)=(132+2×30)/(1+2)=64(mg/L)V = 20000(1+2)×64 / 1125 =3200m3②滤池的平面面积A = V / H式中:A—生物滤池的平面面积,㎡V—生物滤池的滤料体积,m3H—生物滤池的滤料厚度。

取滤料厚度4m A = 3200 / 4= 800㎡采用2格,单格有效过滤面积20.0×20.0=400m2。

③用水力负荷率校核q = Q / A式中q—生物滤池水力负荷率, m3/(㎡·d)q一般为10~30 m3/(㎡·d)q = 20000/800= 25 [m3/(㎡·d)]符合要求④过滤速度V=Q/A=2000/800=1.04 m3/(m2•h)(2)滤池高度承托层厚380mm,由卵石级配,粒径8~32mm。

滤料层采用双层滤料,厚h=400mm,滤板厚12mm,超高60mm。

配水室高100mm,清水区高100mm。

滤池高度H为H=380+400+12+60+100+100=1052mm(3)每个滤池的配水系统滤池配水系统的设计为选用长柄滤头配水方式,并兼气反冲洗布气用。

滤池计算

滤池计算

生物滤池的设计计算¾¾生物滤池的设计内容主要包括滤床容积、布水系统、排水系统等三个部分。

1、普通生物滤池(1)主要设计参数① 工作层填料的粒径为25~40mm,厚度为1.3~1.8m;承托层填料的粒径为70~100mm,厚度为0.2m。

② 在正常气温条件下,处理城市废水时,表面水力负荷为1~3 m3/m2.d,BOD5容积负荷为0.15~0.30kgBOD5/m3.d,BOD5的去除率一般为85~95%;③ 池壁四周通风口的面积不应小于滤池表面积的1%;④ 滤池数不应小于2座。

(2)计算公式表5-6 生物滤池计算公式设计内容计算公式参数意义及取值滤料总体积(V) V =QS/L V——滤料总体积,m3Q——进水平均流量,m3/dS——进水BOD5浓度,mg/lL——容积负荷,一般取0.15~0.3kgBOD/m3.d滤床有效面积(F) F =V/H F——滤床的有效面积,m2H——滤料高度,1.5~2.0m表面水力负荷校核(q) q =Q/F q——表面水力负荷,应为1~3m3/m2.d。

2、高负荷生物滤池(1)主要设计参数① 以碎石为滤料时,工作层滤料的粒径应为40~70mm,厚度不大于1.8m,承托层的粒径为70~100mm,厚度为0.2m;当以塑料为滤料时,滤床高度可达4m;② 正常气温下,处理城市废水时,表面水力负荷为10~30 m3/m2.d,BOD5容积负荷不大于1.2kgBOD5/m3.d,单级滤池的BOD5的去除率一般为75~85%;两级串联时,BOD5的去除率一般为90~95%;③ 进水BOD5大于200mg/l时,应采取回流措施;④ 池壁四周通风口的面积不应小于滤池表面积的2%;⑤ 滤池数不应小于2座。

(2)计算公式:表5-7 高负荷生物滤池的计算公式设计内容计算公式参数意义及取值滤池高度(H)以碎石为滤料时,H = 0.9~2.0m用塑料滤料时,H = 2~4m滤料总体积(V) V = QS/L V——滤料总体积,m3Q——废水量,m3/dS——未经回流稀释时的BOD5浓度,mg/lL——容积负荷,一般不大于1.2kgBOD/m3.d滤池面积(F) F =V/H n——滤池个数F——滤池面积,m2回流比(R) R = Fq/Q -1 R——回流比q——表面水力负荷,通常在10~30m3/m2.d之间3、塔式生物滤池(1)主要设计参数:① 一般常用塑料滤料,滤池总高度为8~12m,也可更高;每层滤料的厚度不应大于2.5m径高比为1:6~8;② 容积负荷为1.0~3.0kgBOD5/m3.d,表面水力负荷为80~200 m3/m2.d,BOD5的去除率一般为65~85%;③ 自然通风时,塔滤四周通风口的面积不应小于滤池横截面积的7.5~10%;机械通风时,风机容量一般按气水比为100~150:1来设计;④ 塔滤数不应小于2座。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反冲洗进气管流速为15m/s
管径 ,取φ89×4.5mm
排污管流速为1.2m/s
管径 ,取φ212×6mm
一十、.
曝气生物滤池污泥产率Y=0.75kg/kgBOD
产泥量:
曝气装置与反冲进气管合用选用穿孔曝气管,穿孔管孔眼直径为3mm,孔距70mm,设支管管径为20mm,支管间距取80mm,经计算共需支管48根,枝状布置。孔口向下倾斜45°,曝气管布置在滤板上100mm处。
设曝气管干管内空气流速为v1=12m/s
曝气干管管径: ,取φ57×3.5m
承托层采用砾石,分为3层布置,从上到下第一层砾石粒径3mm,层厚100mm,第二层粒径6mm,层厚100mm,第三层粒径12mm,层厚100mm。
标准需氧量:
供气量:
曝气负荷校核:
满足要求。
三、.
空床水力停留时间
实际水力停留时间
校核污水水力负荷
四、.
BOD容积负荷选3Kg ,采用陶粒滤料,粒径5mm。
五、.
滤料高度取h3=3m
滤池采用圆形,则滤池直径 ,取2.5m
取滤池超高h1=0.5m,布水布气区高度h2=1.0m,滤料层上部最低水位h4=1.0m,承托层高h5=0.3m
八、.
出水堰为齿形三角堰,堰口角度90°,齿高50mm,齿宽100mm,共80个齿,水面位于齿高1/2处,出水槽宽200mm,高800mm.
九、.
设进水管流速为1.0m/s,
管径 ,取φ76×4mm
设出水管流速为0.8m/s
管径 ,取φ89×4.5mm
反冲洗进水管流速为2.5m/s
管径 ,取ห้องสมุดไป่ตู้150×4.5mm
滤池总高度H=5.8m
六、.
=
设 , ,
出水SS中BOD含量:
出水溶解性BOD5含量
Se=50-19.5=30.5mg/L
去除溶解性BOD5的量:
单位BOD需氧量:
实际需氧量:
七、.
采用气水联合反冲洗
空气反冲洗计算,选用空气反冲洗强度
水反冲洗计算,选用水反冲洗强度
冲洗水量占进水量比为:
工作周期以24h计,水冲洗每次15min
生物滤池设计计算书
一、.
滤池布水系统选用管式大阻力配水系统,干管进口流速 ,支管进口流速 ,支管间距0.20m,配水孔径 ,配水孔间距80mm。
干管管径
设支管的管径为20mm,经计算共需支管20根,支管实际间距0.209m,支管实际流速为 。
二、.
设曝气装置氧利用率为EA=12%,混合液剩余溶解氧C0=2mg/L,曝气装置安装在水面下4.2m,取α=0.8,β=0.9,Cs=7.92mg/L,ρ=1
相关文档
最新文档