钢结构节点计算

合集下载

钢结构节点域计算书

钢结构节点域计算书

BH500x500x70x28梁-梁刚性拼接设计验算
一、工程名称: 二、节点连接方式:翼缘和腹板全部采用摩擦型高强度螺栓连接 三、节点域屈服承载力验算:
柱腹板抗剪强度设计值f v= 查表得梁翼缘钢材的屈服强度f ay= 左侧梁翼缘全塑性模量W左f 左侧梁腹板全塑性模量W左w= 左侧梁腹板全塑性模量Wpb1= 左侧梁Mpb1 查表得梁翼缘钢材的屈服强度f ay= 右侧梁翼缘全塑性模量W右f= 右侧梁腹板全塑性模量W右w= 右侧梁腹板全塑性模量Wpb2= 右侧梁Mpb2 节点域体积Vp= ψ ψ (Mpb1+Mpb2)/Vp= (4/3)fv= 145.000 325.000 9,240,000 3,422,500 9,369,779 3,045,178,175 345.000 0 0 9,369,799 3,045,184,675 22,999,200 0.7 185.365 193.333 Mpa Mpa mm3 mm3 mm3 1,604,990
Mpa mm3 mm3 mm3 2764090705 mm3 Mpa Mpa
算螺栓群Σ xi2(mm2)=
0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0 腹板螺栓群Σ yi(mm)= 0 腹板螺栓群Σ xi2(mm2)= 0 腹板螺栓群Σ yi2(mm2)= 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

钢结构的计算方法

钢结构的计算方法

钢结构计算(我的计算方法,仅供参考)1、先算预埋件:以套计算以吨位计算:长度×该规格的理论重量2、钢柱:柱底板、节点板、牛腿并入钢柱,高强螺栓以套计算,理论重量×长度×榀数翼缘板=(钢柱顶标高-柱底板板底标高)*翼缘板宽度*翼缘板的理论重量腹板=(钢柱顶标高-柱底板板底标高)*(此腹板截面高度-两块翼缘板厚度)*腹板的理论重量3、钢梁:节点并入钢梁,高强螺栓以套计算4、檩条:C型:理论重量×(单根总长度+两端各加0.4)×根数Z型:理论重量×(各轴线段搭接+搭接长度)×根数檩托板计算,并入钢梁,普通螺栓以套计算具体详见节点图5、隅撑:长度=(钢梁的高度h+檩条的高度之和)×√2,理论重量×长度×个数包含节点板普通螺栓以套计算6、系杆:轴线间长度×理论重量,包含节点板普通螺栓以套计算7、拉条:直拉条=(檩条间距+两端各加50mm)×该规格的理论重量斜拉条=√(檩条间距的平方+水平距离的平方)×该规格的理论重量撑杆=檩条间距×该规格的理论重量普通螺母以套计算,一根拉条有两个螺母8、水平支撑:斜长=(开间长度a2+进深长度b2)的算数平方根,重量=长度×该规格的理论重量包含节点板普通螺栓以套计算9、柱间支撑:(同水平支撑)10、圆钢理论重量=0.00617*d2钢板理论重量=7.85*t角钢理论重量(kg/m)=0.00795* t*(2 b-t)或者可以查五金手册〕圆管理论重量(kg/m)=0.02466*壁厚*(钢管直径-壁厚)槽钢理论重量(kg/m) =(h+2b- 2t)*t*0.00785〕。

钢结构节点计算

钢结构节点计算

目录第8章节点设计原理 (1)§8-1 节点设计的原则 (1)§8-2 次梁与主梁的连接节点 (1)8.2.1 次梁与主梁铰接 (1)8.2.2 次梁与主梁刚接 (3)§8-3 梁与柱的连接节点 (3)8.3.1 梁与柱的铰接连接 (4)8.3.2 梁与柱的刚性连接 (5)8.3.3 梁与柱的半刚性连接 (9)§8-4 桁架与柱的连接节点 (10)8.4.1 桁架与柱的铰接连接 (10)8.4.2 桁架与柱的刚性连接 (12)§8-5 变截面柱的节点构造 (13)§8-6 柱脚节点 (15)8.6.1 柱脚的形式与构造 (15)8.6.2 轴心受压柱的柱脚计算 (17)8.6.3 框架柱的柱脚计算 (19)§8-7 支座节点 (28)8.7.1 支座节点的形式 (28)8.7.2 支座节点的设计 (30)§8-8 直接焊接管节点 (30)8.8.1 直接焊接管节点的构造形式 (30)8.8.2 相贯焊缝的计算 (32)8.8.3 直接焊接管节点的承载力计算 (33)第8章节点设计原理§8-1 节点设计的原则整个结构是由构件和节点(connection)构成的。

单个构件必须通过节点相连接,协同工作才能形成结构整体。

即使每个构件都能满足安全使用的要求,如果节点设计处理不恰当,连接节点的破坏,也常会引起整个结构的破坏。

可见,要使结构能够满足预定功能的要求,正确的节点设计与构件设计,两者具有同等的重要性。

由于连接节点受力状态较为复杂,不易精确地分析其工作状态。

所以,在节点设计时应遵循下列基本原则:(1)连接节点应有明确的传力路线和可靠的构造保证。

传力应均匀和分散,尽可能减少应力集中现象。

在节点设计过程中,一方面要根据节点构造的实际受力状况,选择合理的结构计算简图;另一方面节点构造要与结构的计算简图相一致。

避免因节点构造不恰当而改变结构或构件的受力状态,并尽可能地使节点计算简图接近于节点实际工作情况。

钢结构节点计算

钢结构节点计算

钢结构节点计算是钢结构设计中的重要环节,它涉及到结构的安全性、可靠性和经济性。

以下是一些常见的钢结构节点计算方法:
1. 焊缝连接节点:焊缝连接是钢结构中最常用的连接方式之一。

在计算焊缝连接节点时,需要考虑焊缝的强度、焊缝的有效长度、焊缝的受力状态等因素。

2. 螺栓连接节点:螺栓连接节点通常用于钢结构的次要连接。

在计算螺栓连接节点时,需要考虑螺栓的直径、螺栓的数量、螺栓的预紧力等因素。

3. 梁柱节点:梁柱节点是钢结构中的重要节点之一。

在计算梁柱节点时,需要考虑节点的受力状态、节点的刚度、节点的强度等因素。

4. 支撑节点:支撑节点用于支撑钢结构的柱子或梁。

在计算支撑节点时,需要考虑支撑的类型、支撑的位置、支撑的受力状态等因素。

5. 桁架节点:桁架节点是桁架结构中的重要节点之一。

在计算桁架节点时,需要考虑节点的受力状态、节点的刚度、节点的强度等因素。

以上是一些常见的钢结构节点计算方法,具体的计算方法需要根据具体的结构形式和受力情况进行选择。

在进行钢结构节点计算时,需要遵循相关的设计规范和标准,确保结构的安全性和可靠性。

钢结构节点计算

钢结构节点计算

“梁梁拼接全螺栓刚接”节点计算书====================================================================计算软件:MTS钢结构设计系列软件MTSTool v3.5.0.0计算时间:2012年12月02日16:53:51==================================================================== H1100梁梁拼接全螺栓刚接一. 节点基本资料节点类型为:梁梁拼接全螺栓刚接梁截面:H-1100*400*20*34,材料:Q235左边梁截面:H-1100*400*20*34,材料:Q235腹板螺栓群:10.9级-M20螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;螺栓群列边距:50 mm,行边距50 mm翼缘螺栓群:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距50 mm腹板连接板:730 mm×345 mm,厚:16 mm翼缘上部连接板:605 mm×400 mm,厚:22 mm翼缘下部连接板:605 mm×170 mm,厚:24 mm梁梁腹板间距为:a=5mm节点前视图如下:节点下视图如下:二. 荷载信息设计内力:组合工况内力设计值工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是三. 验算结果一览验算项数值限值结果承担剪力(kN) 6.77 最大126 满足列边距(mm) 50 最小33 满足列边距(mm) 50 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 50 最小44 满足行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.066 1 满足净截面正应力比0.000 1 满足净面积(cm^2) 163 最小162 满足承担剪力(kN) 8.93 最大140 满足极限受剪(kN·m) 9450 最小7670 满足列边距(mm) 45 最小44 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 50 最小33 满足行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.000 1 满足净截面正应力比0.021 1 满足净面积(cm^2) 129 最小106 满足净抵抗矩(cm^3) 13981 最小13969 满足抗弯承载力(kN·m) 6485.0 最小6055.8 满足抗剪承载力(kN) 3516.1 最小2813.2 满足孔洞削弱率(%) 21.71% 最大25% 满足四. 梁梁腹板螺栓群验算1 螺栓群受力计算控制工况:组合工况2,N=0 kN;V x=135.4 kN;M y=172.3 kN·m;2 腹板螺栓群承载力计算列向剪力:V=135.4 kN螺栓采用:10.9级-M20螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;螺栓群列边距:50 mm,行边距50 mm螺栓受剪面个数为2个连接板材料类型为Q235螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.45×155=125.55kN计算右上角边缘螺栓承受的力:N v=135.4/20=6.77 kNN h=0 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=833000 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+0)2+(0+6.77)2]0.5=6.77 kN≤125.55,满足3 腹板螺栓群构造检查列边距为50,最小限值为33,满足!列边距为50,最大限值为88,满足!外排列间距为70,最大限值为176,满足!中排列间距为70,最大限值为352,满足!列间距为70,最小限值为66,满足!行边距为50,最小限值为44,满足!行边距为50,最大限值为88,满足!外排行间距为70,最大限值为176,满足!中排行间距为70,最大限值为352,满足!行间距为70,最小限值为66,满足!。

钢结构节点计算复习

钢结构节点计算复习

⑶节点板的拉剪破坏:
N f (i Ai )
i
1 1 cos2 i
i 第i段的拉剪折算系数
i 第i段破坏线与拉力轴线的夹角
Ai tli 第i段破坏面的截面积
单根腹杆的节点板按下式计算:
N f be t
be 节点板的有效宽度,当用螺栓连接时,应取净宽度
拼接角钢长度为
L 2l1 b
内力较大一侧的下弦杆与节点板间的焊缝传 递弦杆内力之差△N,如△N过小则取弦杆较大 内力的15%,内力较小一侧弦杆与节点板间焊 缝参照传力一侧采用。 弦杆与节点板一侧的焊缝强度验算:
肢背焊缝: 0.15K1 N max f fw 2 0.7h f lw 0.15K 2 N max f fw 2 0.7h f lw
⑴梯形屋架支座节点
节点板 加劲肋 底板 锚栓
加劲肋作用:
提高支座节点的侧向刚 度,使支座底版受力均 匀,减少底版弯矩
支座节点力的传递路线为:
屋架杆件 合力R
节点板 底 板
H形焊缝 L形焊缝 加劲肋
⑵支座节点的计算: ①底板: R A An A0 A0 底板面积: fc
A0 锚栓孔面积
60 235 f y ,否则应沿自由边设加劲肋。
3.节点的构造与计算
⑴一般节点 节点无集中荷载也无弦杆拼接的节点。 ① 腹杆与节点板间的传力--两侧角焊缝 (L形围焊缝,三面围焊缝),按受轴 心力角钢的角焊缝计算。 ② 弦杆与节点板间角焊缝只传递差值, 按下式计算其焊缝长度。
肢背焊缝:
K1N lw1 2h f 1 w 2 0.7h f f f
t
板件厚度, 应力扩散角,取30°。
由试验研究,桁架节点板在斜腹杆压力作用下的稳定: ⑴对有竖腹杆的节点板,当 c t 15 235 f y 时, 可不计算稳定,否则应进行稳定计算。

钢结构节点计算表

钢结构节点计算表

一、二、三、四、梁:H 500*500*10*20柱: A w =㎜2A f =㎜2A=㎜2=㎜4=2*[500*20^3/12+20*500*(500/2-20/2)^2]=㎜4I =I w +I f =㎜4W t =㎜3五、弹性设计:1、剪力 Vw=Aw*fV=4600*180=KN全截面承受弯矩:Mt =Wt*fy =4,935,120.00*310=N·mm=KN·mm1529887200*1152666667/1233780000/1000=KN·mm2、μ≥0.5N v b =KN=KN(80^2)*2*3=(80^2)*2*3=38400+38400=100,580.53*80/76800=KN 100,580.53*80/76800=KN[(92.0+104.8)^2+104.8^2]^0.5=KN ≤N v b3、-㎜2㎜2≥Anw4600+2*10000=82881,113,333+1152666667=翼缘截面惯性矩:I f 弹性抵抗矩:1233780000/(500/2)=4,935,120.00力的取值:1529887200在剪力Mq 作用下,每个螺栓受力:100,580.53翼缘分担弯矩:81,113,3331,429,306.67腹板螺栓验算:采用M20高强螺栓,抗滑移系数螺栓双剪,承载力设计值为:125.55截面:全截面惯性矩:10000截面面积:24600腹板截面惯性矩:I w 10*(500-2*20)^3/12=腹板面积:10*(500-2*20)=4600单侧翼缘面积:20*500=节点号:截面及特性:连接形式:腹板采用高强度螺栓连接,翼缘采用全熔透焊接连接。

工程名称: M f =腹板分担弯矩:Mw =Mt*Iw/I =1529887200*81,113,333/1233780000/1000M t *I f /I=1500*800*45*50Nv=Vw/n=828/992.0在弯矩作用下,受力最大的螺栓的受力:ΣXi 2 =38400ΣYi 2 =38400ΣXi 2 +ΣYi 2=76800Nmx=Mq*ymax/(ΣXi2 +ΣYi2)=104.8Nmy=Mq*xmax/(ΣXi2 +ΣYi2)=104.8受力最大的螺栓所受合力:((Nv+Nmy )2+N mx 2)^0.5=223.0腹板拼接板验算:拼接板规格:14*260*530腹板净截面面积:A nw=4600-3*22*10=3940拼接板净截面面积:Ans=2*14*(260-22*3)=543212337800001152666667梁与柱的刚性拼接连接计算拼接板承受的剪应力:τ=Anw*fv/Ans=3940*180/5432=Inw=81,113,333-3*22^3*10/12-2*10*22*(80^2)=Ins=2*[14*260^3/12-14*22^3/12*3-2*22*14*(80^2)]=㎜4≥Inwσ=Mw*y/Ins=100,580.53*130/33,051,330.7*1000=395.6N/㎜2=[395.6^2+130.6^2]^0.5=416.6N/㎜2≤1.1f=3414、翼缘完全熔透的对接焊缝强度验算:σx=M/Bt f (h-t f )=1,429,306.67/[500*20*(500-20)]=298N/㎜2<f t w =310N/㎜25、连接板焊缝h f:h f =12σf M =6M/(4*0.707*h f *l w 2)=6*100,580.53/(4*0.707*12*260^2)=263N/㎜2τfv =V/(4*0.707*h f *l w )=828/(4*0.707*12*260)=94N/㎜2((σfM /βf )2+(τfv )2))0.5=235N/㎜2<f f w =200N/㎜2六、截面塑性抵抗矩:Wpn=10*230*230+500*20*(500-20)=M u =b(t f)(h-t f )f u =500*20*(500-20)*470=KN.mM p =W p f y =5329000*310=1652KN.mM u =2256KN.m>1.2M p =KN.m 腹板净截面面积的极限抗剪承载力:V u1=0.58A wn f u =0.58*3940*470=1074KN 腹板连接板净截面面积的极限抗剪承载力:V u2=0.58A ns f u =0.58*5432*470=1481KN腹板连接板焊缝的极限抗剪承载力:V u5=0.58A w f f u =0.58*0.707*2*12*260**470=1203KN 腹板高强度螺栓的极限抗剪承载力:V u3=0.58n f nA e b f u b =0.58*2*9*352.4*1040=3826.2KN V u4=nd Σtf cu b =9*20*10*1.5*470=1269KN V umix =min(V u1,V u2,V u3,V u4,V u5)=1074KN 1.3(2M p /l n )= 1.3*2*1652/6=715.87KN<V umix =1074KN 0.58h w t w f y =0.58*(500-2*20)*10*310=827.1KN<V umix =1074KN1982.45329000腹板净截惯性矩:折算应力((σ^2+τ^2)^0.5)/1.1极限承载力设计验算:78,270,713.0拼接板净惯性矩:33,051,330.7拼接板受弯是边缘弯曲应力:((263/1.22)^2+94^2))^0.5=130.6N/㎜2≤f v2256。

yjk钢结构节点计算

yjk钢结构节点计算

yjk钢结构节点计算YJK钢结构节点计算钢结构在现代建筑中具有广泛的应用,其节点是连接构件的重要部分。

YJK钢结构节点计算是一种常用的节点计算方法,它可以确保节点的强度和稳定性,保证整个结构的安全性。

本文将介绍YJK钢结构节点计算的基本原理和计算方法,以及在实际工程中的应用。

一、YJK钢结构节点计算的基本原理YJK钢结构节点计算是基于材料力学和结构力学原理的计算方法。

节点的计算主要包括节点的受力分析和节点的强度计算两个方面。

节点的受力分析是通过对节点受力情况进行分析,确定各个受力点的力的大小和方向。

受力分析的基本原理是平衡原理和力的平衡条件。

根据平衡原理,节点的受力必须满足力的合力为零,力的合力矩为零的条件。

通过受力分析,可以确定节点各个受力点的力的大小和方向。

节点的强度计算是根据节点受力情况和材料的强度特性,计算节点的强度是否满足设计要求。

节点的强度计算主要包括材料的强度计算和节点的承载力计算两个方面。

材料的强度计算是根据材料的强度特性,计算材料的屈服强度、抗拉强度、抗剪强度等参数。

节点的承载力计算是根据节点受力情况和材料的强度特性,计算节点的最大承载力和临界承载力。

二、YJK钢结构节点计算的计算方法YJK钢结构节点计算的计算方法主要包括手算方法和计算机辅助方法两种。

手算方法是通过手工计算,根据节点的受力情况和材料的强度特性,计算节点的强度是否满足设计要求。

手算方法的优点是计算简单、直观,适用于小型和简单的节点计算。

然而,手算方法的缺点是计算过程繁琐,容易出错,适用范围有限。

计算机辅助方法是通过计算机软件进行计算,根据节点的受力情况和材料的强度特性,计算节点的强度是否满足设计要求。

计算机辅助方法的优点是计算速度快、准确性高,适用于大型和复杂的节点计算。

然而,计算机辅助方法的缺点是需要专业的软件和计算机技术支持,适用范围有限。

三、YJK钢结构节点计算的应用YJK钢结构节点计算在实际工程中具有重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

520 11
满足要求

GKL-1 螺栓参数 垂直剪力V(kN) 偏心距e(mm) 螺栓个数n 螺栓受力(kN) 加劲肋焊脚尺寸(mm) 焊缝长度(mm)
主次梁铰接(腹板
,单个螺栓抗剪承载力设计值为62.8kN 510 10 450 7
10.9级M20高强螺栓摩擦型单剪 137 230 6 68.23957 8 534
角焊缝强度设计值(MPa) 角焊缝强度验算
550 12 450 9

满足要求
主次梁铰接(腹板栓接) 10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值为62.8kN 次梁腹板高hw(mm) 螺栓间距(mm) 70 650 ymax(mm) 210 次梁腹板厚(mm) 12 ∑yi (mm ) 满足要求
2 2
137200
连接板高度(mm) 连接板厚度(mm)

GL-6与工梁 螺栓参数 垂直剪力V(kN) 偏心距e(mm) 螺栓个数n 螺栓受力(kN) 加劲肋焊脚尺寸(mm) 焊缝长度(mm) 角焊缝强度设计值(MPa) 角焊缝强度验算
主次梁铰接(腹板
,单个螺栓抗剪承载力设计值为62.8kN 468 10 380 8
10.9级M20高强螺栓摩擦型单剪 137 210 6 62.99784 8 540 160 57.50446
550 12 450 9
满足要求
主次梁铰接(腹板栓接) 10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值为62.8kN 螺栓间距(mm) ymax(mm) ∑yi (mm ) 满足要求
2 2
70 175 85750
次梁腹板高hw(mm) 次梁腹板厚(mm) 连接板高度(mm) 连接板厚度(mm)
560 10 450 8
满足要求
主次梁铰接(腹板栓接) 10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值为62.8kN 螺栓间距(mm) ymax(mm) ∑yi (mm ) 满足要求
2 2
70 175 85750
次梁腹板高hw(mm) 次梁腹板厚(mm) 连接板高度(mm) 连接板厚度(mm)
主次梁铰接(腹板栓接) 10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值 螺栓参数 次梁腹板高hw(mm) 垂直剪力V(kN) 79 螺栓间距(mm) 70 ymax(mm) 偏心距e(mm) 360 105 次梁腹板厚(mm) 2 2 螺栓个数n 4 24500 连接板高度(mm) ∑yi (mm ) 螺栓受力(kN) 123.4755 满足要求 连接板厚度(mm) 加劲肋焊脚尺寸(mm) 6 焊缝长度(mm) 362 角焊缝强度设计值(MPa) 160 角焊缝强度验算 157.1808 满足要求
2 2
70 140 49000
次梁腹板高hw(mm) 次梁腹板厚(mm) 连接板高度(mm) 连接板厚度(mm)
GL-1与箱梁 螺栓参数 垂直剪力V(kN) 偏心距e(mm) 螺栓个数n 螺栓受力(kN) 加劲肋焊脚尺寸(mm) 焊缝长度(mm) 角焊缝强度设计值(MPa) 角焊缝强度验算
主次梁铰接(腹板栓接)
160 63.47432
) ,单个螺栓抗剪承载力设计值为62.8kN 372 8 310 6
GKL-2 螺栓参数 垂直剪力V(kN) 偏心距e(mm)
主次梁铰接(腹板 10.9级M20高强螺栓摩擦型单剪 242 230
螺栓个数n 7 螺栓受力(kN) 91.94118 加劲肋焊脚尺寸(mm) 8 焊缝长度(mm) 534 角焊缝强度设计值(MPa) 160 角焊缝强度验算 112.1225
GL-2与工梁 264kn 155kn 210偏 235偏 螺栓参数 垂直剪力V(kN) 偏心距e(mm) 螺栓个数n 螺栓受力(kN) 加劲肋焊脚尺寸(mm) 焊缝长度(mm)
主次梁铰接(腹板栓接)
10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值 264 210 6 121.3973 8 500 螺栓间距(mm) ymax(mm) ∑yi (mm ) 满足要求
2 2
70 175 85750
次梁腹板高hw(mm) 次梁腹板厚(mm) 连接板高度(mm) 连接板厚度(mm)
角焊缝强度设计值(MPa) 角焊缝强度验算
160 127.8119 满足要求
GL3与工梁 螺栓参数 垂直剪力V(kN) 偏心距e(mm)
主次梁铰接(腹板栓接) 10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值 次梁腹板高hw(mm) 85 螺栓间距(mm) 70 210 ymax(mm)
主次梁铰接(腹板 10.9级M20高强螺栓摩擦型单剪
主次梁铰接(腹板栓接) 10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值为62.8kN 螺栓间距(mm) ymax(mm) ∑yi (mm ) 满足要求
2 2
70 175 85750
次梁腹板高hw(mm) 次梁腹板厚(mm) 连接板高度(mm) 连接板厚度(mm)
GL-1与工梁 螺栓参数 垂直剪力V(kN) 偏心距e(mm) 螺栓个数n 螺栓受力(kN) 加劲肋焊脚尺寸(mm) 焊缝长度(mm) 角焊缝强度设计值(MPa) 角焊缝强度验算
主次梁铰接(腹板栓接)
10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值 188 210 5 118.9016 7 458 160 122.608 满足要求 螺栓间距(mm) ymax(mm) ∑yi (mm ) 满足要求
2 2
105 24500
次梁腹板厚(mm) 连接板高度(mm) 连接板厚度(mm)
螺栓个数n 4 ∑yi (mm ) 螺栓受力(kN) 79.39655 满足要求 加劲肋焊脚尺寸(mm) 6 焊缝长度(mm) 362 角焊缝强度设计值(MPa) 160 角焊缝强度验算 101.2315 满足要求
GL3与柱
10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值 113 235 5 79.16586 6 490 160 83.63423 满足要求 螺栓间距(mm) ymax(mm) ∑yi (mm ) 满足要求
2 2
70 140 49000
次梁腹板高hw(mm) 次梁腹板厚(mm) 连接板高度(mm) 连接板厚度(mm)

GL-4与工梁 螺栓参数 垂直剪力V(kN) 偏心距e(mm) 螺栓个数n 螺栓受力(kN) 加劲肋焊脚尺寸(mm) 焊缝长度(mm) 角焊缝强度设计值(MPa) 角焊缝强度验算
主次梁铰接(腹板
,单个螺栓抗剪承载力设计值为62.8kN 468 10 380 8
10.9级M20高强螺栓摩擦型单剪 248 210 6 114.0399 8 550 160 100.6354
) ,单个螺栓抗剪承载力设计值为62.8kN 372 8 310 6
GKL-3
螺栓参数 垂直剪力V(kN) 239 偏心距e(mm) 230 螺栓个数n 7 螺栓受力(kN) 90.80141 加劲肋焊脚尺寸(mm) 8 焊缝长度(mm) 640 角焊缝强度设计值(MPa) 160 角焊缝强度验算 79.25043
520 9
满足要求
主次梁铰接(腹板栓接) 10.9级M20高强螺栓摩擦型单剪连接,单个螺栓抗剪承载力设计值为62.8kN 次梁腹板高hw(mm) 螺栓间距(mm) 70 700 ymax(mm) 210 次梁腹板厚(mm) 14 ∑yi (mm ) 满足要求
2 2
137200
连接板高度(mm) 连接板厚度(mm)
相关文档
最新文档