机械系统的建模和结构分析

合集下载

机械系统的动力学建模及分析方法

机械系统的动力学建模及分析方法

机械系统的动力学建模及分析方法引言机械工程是一门研究机械系统设计、制造和运行的学科,它的发展与制造业的兴起密不可分。

在机械工程中,动力学建模及分析是一项重要的研究内容,它涉及到机械系统的运动学和力学特性。

本文将介绍机械系统动力学建模的基本原理和常用的分析方法。

一、机械系统动力学建模的基本原理机械系统动力学建模的目的是描述机械系统在外部作用下的运动规律和力学特性。

为了实现这一目标,需要从以下几个方面进行建模:1. 运动学建模:运动学建模是指描述机械系统的运动规律和运动参数的过程。

它包括位置、速度、加速度等运动参数的描述,可以通过几何方法或者数学方法进行建模。

2. 力学建模:力学建模是指描述机械系统受力和力的作用下的运动规律和力学特性的过程。

它包括受力分析、力的平衡和动力学分析等内容,可以通过牛顿定律和其他力学原理进行建模。

3. 系统参数建模:系统参数建模是指描述机械系统的物理特性和结构参数的过程。

它包括质量、惯性矩、刚度等参数的确定,可以通过实验测量或者理论计算进行建模。

二、机械系统动力学建模的分析方法1. 动力学方程建立:动力学方程是描述机械系统运动规律的数学表达式。

根据牛顿定律和动力学原理,可以建立机械系统的动力学方程。

常见的动力学方程包括运动学方程和力学方程,可以通过微分方程或者矩阵方程进行描述。

2. 线性化分析:线性化分析是指将非线性的动力学方程转化为线性的近似方程的过程。

在某些情况下,非线性方程的求解非常困难,因此可以通过线性化分析来简化问题的求解。

线性化分析可以通过泰勒级数展开或者线性化逼近的方法进行。

3. 模态分析:模态分析是指研究机械系统的固有振动特性和模态参数的过程。

通过模态分析,可以确定机械系统的固有频率、振型和振幅等参数,为系统的设计和优化提供依据。

常见的模态分析方法包括模态测试和有限元分析等。

4. 运动仿真:运动仿真是指通过计算机模拟机械系统的运动过程和力学特性的过程。

通过运动仿真,可以预测机械系统的运动轨迹、速度和加速度等参数,为系统的设计和优化提供参考。

机械系统的动力学建模与仿真分析

机械系统的动力学建模与仿真分析

机械系统的动力学建模与仿真分析一、引言机械系统是由多个相互作用的部件组成的复杂系统,其动力学行为是研究的核心问题之一。

动力学建模与仿真分析可以帮助工程师深入理解机械系统的运动规律,预测系统的性能,并优化设计。

本文将介绍机械系统的动力学建模方法以及仿真分析技术。

二、动力学建模1. 基本原理机械系统的动力学建模是基于牛顿力学的基本原理进行的。

通过分析受力、受力矩以及质量、惯性等因素,可以建立机械系统的运动方程。

在建立方程时,需要考虑系统的自由度、刚体或者弹性体的运动特性以及约束条件等因素。

2. 运动学建模运动学建模是机械系统动力学建模的前提。

通过研究机械系统的几何结构和运动规律,可以得到系统的等效长度、转动角度等信息。

基于运动学建模,可以计算系统的速度、加速度以及运动的轨迹等。

3. 动力学建模动力学建模是机械系统分析的核心部分。

基于受力和受力矩的平衡条件,可以建立机械系统的运动方程。

通常采用牛顿第二定律和力矩平衡条件,可以得到刚体的平动和旋转方程。

对于复杂的非线性系统,也可以采用拉格朗日方程或者哈密顿原理进行建模。

三、仿真分析1. 数值解算方法为了求解机械系统的运动方程,需要采用适当的数值解算方法。

常见的方法包括欧拉法、龙格-库塔法、变步长积分法等。

这些方法可以将微分方程离散化,然后通过迭代计算求解系统的状态变量。

2. 动力学仿真动力学仿真是建立在动力学模型的基础上。

通过将模型转化成计算机程序,可以在计算机上模拟机械系统的运动行为。

通过仿真分析,可以研究系统的稳定性、动态响应以及力学性能等。

3. 优化设计动力学仿真还可以应用于优化设计。

通过改变系统参数、构型和控制策略等,可以研究不同设计方案的性能差异,并选择最佳方案。

通过仿真分析,可以避免实际试验的成本和时间消耗。

四、案例分析以汽车悬挂系统为例,进行动力学建模与仿真分析。

汽车悬挂系统是一个典型的机械系统,包含减震器、弹簧、悬挂臂等部件。

首先进行运动学建模,分析车轮的运动状态和轨迹。

机械控制系统的模型建立与分析

机械控制系统的模型建立与分析

机械控制系统的模型建立与分析引言机械控制系统在现代工业中扮演着重要的角色。

机械控制系统能够实现自动化生产,提高生产效率和品质。

在设计机械控制系统之前,必须首先建立准确的数学模型。

本文将讨论机械控制系统的模型建立与分析方法,以及一些常用的数学工具。

一、机械控制系统的分类机械控制系统根据其结构和功能可分为多种类型,如开环控制系统和闭环控制系统。

开环控制系统是指输入信号不受反馈的影响,输出信号仅由输入信号决定。

闭环控制系统则通过传感器测量输出信号,并通过反馈回路调整输入信号以达到期望的输出。

本文将主要关注闭环控制系统的模型建立与分析。

二、机械控制系统的数学建模机械控制系统的数学建模是分析和设计控制系统的关键步骤。

常见的建模方法包括拉普拉斯变换、状态空间法和频域分析等。

1. 拉普拉斯变换拉普拉斯变换是一种常用的数学工具,可以将常微分方程转换为代数方程。

通过将输入和输出信号进行拉普拉斯变换,可以得到机械控制系统的传递函数。

传递函数是一个复数函数,描述了输入与输出之间的关系。

2. 状态空间法状态空间法是另一种常用的建模方法。

它将控制系统表示为一组一阶微分方程的形式。

通过定义系统的状态变量和输入输出关系,可以得到一个包含状态方程和输出方程的状态空间模型。

状态空间模型更接近实际系统,能够更好地描述系统的动态特性。

三、机械控制系统的性能指标了解机械控制系统的性能指标对系统分析和改进至关重要。

常见的性能指标包括稳态误差、系统响应时间和稳定性等。

1. 稳态误差稳态误差是指系统在达到稳态后输出与目标值之间的差异。

系统可分为零阶、一阶和二阶等级别,每个级别的系统具有不同的稳态误差特性。

常用的控制器设计方法包括比例控制、积分控制和微分控制,以减小稳态误差。

2. 系统响应时间系统响应时间是指系统从输入变化到达稳态所需的时间。

响应时间可以通过分析系统的阶跃响应或脉冲响应来确定。

减小系统的响应时间可以提高系统的动态性能。

3. 稳定性稳定性是控制系统设计中最重要的性能指标之一。

机械系统控制问题的数学建模及仿真分析

机械系统控制问题的数学建模及仿真分析

机械系统控制问题的数学建模及仿真分析在工程领域中,机械系统的控制问题一直是一个重要的研究方向。

为了实现机械系统的高效运行和精确控制,数学建模和仿真分析是不可或缺的工具。

本文将介绍机械系统控制问题的数学建模方法,以及通过仿真分析来评估和优化控制策略的过程。

一、机械系统的数学建模1.1 动力学模型机械系统通常由质点、刚体和弹簧等组成。

为了描述其运动状态,可以根据牛顿定律建立动力学方程。

例如,对于质点,其动力学方程可以表示为:\[m\frac{{d^2x}}{{dt^2}}=F\]式中,m表示质点的质量,\(x\)表示质点的位移,\(F\)表示作用在质点上的合外力。

对于刚体,可以利用转动惯量和角动量原理建立动力学方程。

1.2 控制系统模型机械系统的控制往往包括输入、输出和控制器。

输入可以是力、力矩或电压等信号,输出可以是位移、角度或速度等物理量,控制器通常通过比例、积分和微分等操作来调整输出。

为了描述控制系统的动态特性,可以建立控制系统模型。

常见的控制系统模型包括传递函数、状态空间模型和时序图。

二、机械系统仿真分析在得到机械系统的数学模型之后,可以利用仿真软件进行系统行为的分析。

仿真分析可以帮助我们预测系统的响应、优化控制策略以及评估系统性能。

2.1 仿真软件目前市场上有许多专业的仿真软件可以用于机械系统的仿真分析,如MATLAB、Simulink、ADAMS等。

这些软件提供了丰富的库和工具箱,可以方便地进行系统建模和仿真操作。

2.2 系统响应分析仿真分析可以模拟机械系统在不同输入条件下的响应情况。

通过改变输入信号的幅值、频率和相位等参数,可以观察到系统的频率响应、阻尼比等特性。

这有助于我们了解系统的动态特性,并调整控制策略以满足要求。

2.3 控制策略优化仿真分析还可以通过比较不同控制策略的性能来优化系统的控制方案。

通过引入不同的控制器参数或算法,可以评估系统的稳定性、响应时间和控制精度等指标。

优化控制策略可以使机械系统更加稳定可靠,提高工作效率。

机械系统的动力学问题及其数学建模与仿真分析

机械系统的动力学问题及其数学建模与仿真分析

机械系统的动力学问题及其数学建模与仿真分析随着科技的不断进步和发展,机械系统在现代工程中扮演着重要的角色。

了解机械系统的动力学问题,并进行数学建模与仿真分析,可以帮助我们更好地理解和优化机械系统的运行过程。

本文将介绍机械系统的动力学问题,并提供一种可行的数学建模与仿真分析方法。

一、机械系统的动力学问题机械系统的动力学问题主要研究力、运动和能量在机械系统中的相互作用以及对物体运动的影响。

在机械系统的动力学分析中,常常需要考虑以下几个方面:1. 运动学:运动学研究机械系统中的位置、速度和加速度等基本运动参数。

通过运动学分析,可以描述机械系统中各个部件之间的运动方式和关系。

2. 动力学:动力学研究机械系统中力和物体运动之间的联系。

通过动力学分析,可以计算机械系统中各个部件受到的力和力的作用效果。

3. 能量:机械系统中的能量转化和传递是动力学问题的重要组成部分。

通过能量分析,可以确定机械系统中各个部件的能量变化和能量转化过程。

二、机械系统的数学建模为了分析机械系统的动力学问题,需要进行数学建模,将实际的机械系统转化为数学模型。

数学建模的过程包括以下几个步骤:1. 确定系统边界:首先需要确定机械系统的边界,包括所研究的部件和其它外界环境。

2. 构建物理模型:根据机械系统的实际情况,利用物理原理建立数学模型,包括位置、速度、加速度、质量、力等参数。

3. 确定初始条件和边界条件:根据实际问题确定系统在初始时刻的状态和边界条件。

4. 建立动力学方程:通过利用牛顿定律、动能定理、功率定律等原理,建立描述机械系统运动和力学特性的方程。

5. 解动力学方程:根据所建立的动力学方程,利用数值方法或解析方法求解方程,得到系统的运动和力学特性。

三、机械系统的仿真分析为了更直观地研究机械系统的动力学问题,可以利用计算机进行仿真分析。

仿真分析可以通过数值方法模拟机械系统的运动和力学特性,在不同的工况下进行验证和优化。

1. 建立仿真模型:根据数学建模的结果,利用计算机软件建立相应的仿真模型,包括系统的物理和力学参数。

机械运动控制系统的动态建模与仿真分析

机械运动控制系统的动态建模与仿真分析

机械运动控制系统的动态建模与仿真分析引言:机械运动控制系统是工业和生活中的重要组成部分,它能够实现运动控制、定位和调节等功能。

动态建模与仿真分析是理解和优化机械运动控制系统的关键步骤。

本文将介绍机械运动控制系统的动态建模方法以及仿真分析的重要性。

一、机械运动控制系统动态建模方法机械运动控制系统的动态建模是基于控制理论和动力学原理的。

常见的动态建模方法包括基于拉普拉斯变换的传递函数法和基于差分方程的状态空间法。

1. 传递函数法传递函数法是一种常用的机械运动控制系统动态建模方法。

它通过建立控制系统的输入-输出关系,描述系统的传递特性。

在这种方法中,机械运动控制系统被建模为一个线性时不变系统,可以方便地进行频域分析和控制器设计。

2. 状态空间法状态空间法是另一种常见的机械运动控制系统动态建模方法。

它通过描述系统的状态和控制量的关系,提供了系统的全局信息。

状态空间法更加适用于复杂的非线性系统,并且可以通过仿真软件进行更为准确的仿真分析。

二、动态建模与仿真分析的重要性动态建模与仿真分析是改进机械运动控制系统的关键步骤。

通过建立准确的动态模型,可以准确预测系统的响应和性能指标。

仿真分析可以帮助设计师优化控制策略和参数设置,从而提高系统的稳定性、精度和效率。

1. 预测系统性能动态建模和仿真分析可以预测机械运动控制系统的性能,并评估不同控制策略的有效性。

通过仿真分析,可以确定系统的频率响应、阻尼特性以及系统的稳定性。

这些信息对于系统设计和改进非常重要。

2. 优化控制参数仿真分析可以通过改变控制参数,找到最优的控制策略。

例如,可以通过仿真分析确定合适的控制增益、采样周期等参数,从而提高系统的响应速度和抗干扰能力。

通过优化控制参数,可以避免实际试验中的大量试错,降低成本和风险。

3. 分析故障和异常动态建模与仿真分析还可以帮助工程师识别和分析系统故障和异常情况。

通过仿真,可以模拟机械运动控制系统在不同故障条件下的响应,预测故障对系统性能的影响,并提供相应的改进方案。

机械设计基础中的机械系统建模与仿真

机械设计基础中的机械系统建模与仿真

机械设计基础中的机械系统建模与仿真机械系统建模与仿真在机械设计的过程中起着关键的作用。

通过建立适当的数学模型和使用仿真工具,我们可以评估机械系统的性能、优化设计方案,并预测其在实际运行中的表现。

本文将介绍机械系统建模与仿真的基本概念和方法,并探讨其在机械设计中的应用。

一、机械系统建模机械系统建模是指将机械系统的几何、结构、运动等特征以数学形式表达出来,从而能够对其进行分析和仿真。

机械系统建模的关键是确定合适的数学模型,可以采用多种方法进行建模,例如基于物理原理的方程建模、基于统计学的概率模型等。

在建立机械系统的数学模型时,需要考虑系统的结构、参数和约束条件等因素。

结构包括机械元件的连接方式、布局等信息;参数指的是机械元件的物理特性,如质量、弹性系数等;约束条件是指机械系统在运动过程中受到的限制,如刚体运动时的约束、连杆机构的几何条件等。

通过准确地描述这些因素,可以建立起机械系统的数学模型。

二、机械系统仿真机械系统仿真是指利用计算机程序对机械系统进行模拟和分析。

仿真可以帮助我们在设计阶段预测系统的性能,从而在实际制造之前做出优化和调整。

常用的机械系统仿真软件有ANSYS、Pro/E等,它们提供了强大的分析工具和可视化界面,方便工程师对机械系统进行仿真分析。

机械系统仿真可以从多个方面对系统进行评估,如结构强度、运动轨迹、动力学特性等。

通过仿真分析,我们可以发现系统中存在的问题,并提出相应的改进措施。

例如,在设计汽车发动机时,可以利用仿真软件对其工作过程进行模拟,评估其燃烧效率、振动特性等,以及在不同工况下的性能表现。

三、机械系统建模与仿真在机械设计中的应用机械系统建模与仿真在机械设计中的应用非常广泛。

下面以几个具体的例子来说明:1. 汽车悬挂系统设计:通过建立汽车悬挂系统的数学模型,可以评估系统的动态特性和舒适性,优化悬挂系统的参数和结构,提高汽车的操控性和乘坐舒适性。

2. 机械机构设计:机械机构是指由多个运动副相互连接而成的系统,通过建立机械机构的数学模型,可以分析系统的运动学特性、动力学特性等,为机构设计提供理论基础。

机械工程中的系统建模与仿真分析

机械工程中的系统建模与仿真分析

机械工程中的系统建模与仿真分析机械工程是一门广泛应用于工业制造和生产中的学科,而系统建模与仿真分析是机械工程中一个非常重要的领域。

系统建模与仿真分析可以帮助工程师们更好地理解和优化机械系统的设计和运行过程。

本文将从基本概念、建模方法和分析技术等方面来探讨机械工程中的系统建模与仿真分析。

首先,了解系统建模与仿真分析的基本概念十分重要。

系统建模是将一个实际存在的机械系统抽象为数学模型的过程,以便对其进行仿真分析。

而仿真分析则是利用计算机模拟系统行为,以便预测和分析系统的性能和行为。

系统建模与仿真分析能够帮助工程师们更好地理解机械系统的运行原理和行为特性,为系统的设计优化和问题排除提供指导。

其次,机械工程中的系统建模方法有多种多样。

常见的建模方法包括物理建模、数学建模和仿真建模等。

物理建模是根据机械系统的物理特性和原理来建立数学模型。

例如,一台发动机可以通过建立其压力、温度和流量等物理量之间的关系来进行物理建模。

数学建模则是利用数学方法来描述机械系统的行为特性,例如基于微分方程的建模方法。

而仿真建模则是利用计算机仿真技术来模拟机械系统的行为,例如通过使用 Matlab 或 Simulink 等仿真软件进行建模和分析。

这些建模方法各有特点,可以根据具体情况选择适用的方法。

此外,机械工程中的系统仿真分析技术也是非常丰富多样的。

常见的仿真分析技术包括静态分析、动态分析和优化分析等。

静态分析主要是研究机械系统在静止状态下的应力、位移和变形等;动态分析则是研究机械系统在动态载荷和振动等条件下的响应;而优化分析则是通过对系统设计参数进行调整,以获得最优的性能和效果。

这些仿真分析技术可以帮助工程师们更好地评估机械系统的可靠性、稳定性和安全性等关键指标,并进行相应的改进。

此外,系统建模与仿真分析在机械工程中的应用也非常广泛。

首先,在机械系统的设计阶段,工程师们可以通过建立系统模型和进行仿真分析,评估不同设计方案的性能和可行性,从而优化系统的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义函数表达式
• 在一个请求中最多可定义6个函数,F1, F5 ADAMS 保留用以存放函数值。
• 例: f1 = (blank:存放f1 - f3的值) f2 = “0.5*17.49*VM(mar15, mar27)**2” f3 = “FX(mar18, mar19, mar1) *DX(mar18,
Measure 和 Request 的比较
Measures:
Requests:
• 测量一个分量.
可测量6个分量.
• 预 速先 度定、义各种不同的类型. 只有4种类型:位移、
加速度和力.
• 仿真过程中和仿真后都可用. 只在仿真后观察.
• 相应于ADAMS/Solver 中 相应于REQUEST语句.
• S置ta。tic速–度静和力加仿速真度:设确为定零系,统所在以力不作考用虑下惯的性平力衡。位 • Assemble – 装配仿真:检查约束和初始条件是否
合理。也称初始条件仿真。 • Linear – 线性仿真:将非线性动力方程在某运行
点线性化,以确定固有频率、振型。必须要有 ADAMS/Linear模块才能进行。
• 输入输出信号对法:
• Time Domain Measure: 用测量定义系统输入、输出 • Time Domain Result set Components:用仿真输出定义系

谢谢观看
机械系统的建模和结构分析
•仿真的类型
• Dynamic – 动力仿真:系统在外力和激励作用下 求解位移、速度、加速度和约束反力。自由度必 须大于等于1。ADAMS/Solver 解一组非线性微分 和代数方程。
• Kinematic – 运动仿真:确定系统的运动范围,并 不考虑力的作用。只求解一组缩减的代数方程。 自由度必须等于零。
ppt_gs.gra – 包含模型、仿真结果的图形文件。 ppt_gs.req – Request 文件 ppt_gs.cmd – 包含模型、仿真结果的命令文件。 • FileImport:将文件装入后处理。 • 进行各种操作练习。
数据处理
• Filtering Curve Data • Performing FFT Functions • Constructing Bode Plots
Post Processor 后处理器
后处理
• Debugging - ADAMS/PostProcessor 通过动画、图 形帮助你调试模型。
• Validating – 输入物理样机的数据和曲线图与仿真 结果比较,以评价仿真的有效性。
• Refining – 比较不同的仿真结果,以确定更好的模 型。
H (s)
b1 a1
b2s b3s2 ... bmsm a2s a3s2 ... ansn
FFT
Main menu->plot->FFT
FFT
• FFTMAG FFT算法得到的幅值。 • FFTPHASE FFT算法得到的相位角 • PSD 确定信号频率组成中的能量分布
Bode 图
仿真的步骤
• 模型合理性检查: • 确定需要的仿真输出: • 设置仿真的类型和控制参数: • 仿真、调试: • 分析结果的管理:
模型合理性检查
• ToolsModel Verify 模型自由度、冗余约束检查 ToolsModel Topology Map 零件的联接关系 状态栏Information按钮 都会弹出模型信息窗口
• ToolsTable Editor 检查、修改各个对象 • ToolsDatabase Navigator
Information
Table Editor
Database Navigator
仿真结果集
• 各种对象的基本信息:如构件质心的位置、速 度、加速度、角速度、角加速度,动能、动量 矩等。
VARIABLE语句、VARVAL
函数和REQUEST语句.
设置仿真的类型、方式和控制参数
• 类型:静力、运动、动力学、装配、线性 • 方式:交互式( Interactive )和剧本式( Script ) • 仿真时间和步长: • 利用传感器 Sensor 触发预定的事件,控制仿真过
程。 • 设置仿真中初始条件、求解方法、精度、显示、
坐标系的方位,如相继的回转、欧拉参数、方 向余弦等。 • Included angle 角度:由空间的三点确定。 • Range 范围:统计其它测量的特性,如最大值、 最小值、平均值等。
创建、修改测量
创建、修改测量例:点-点
测量图形的处理
请求 requests
• 通过请求获得仿真的标准输出的信息:位移、速度、 加速度、力。
真的步长,求解易于收敛和取得碰撞力的值。. • 改变输入:例如在汽车运动仿真时改变状态,从直
线运动改为转弯、掉头。 • 改变模型拓朴结构:例如可创建一传感器监视某约
束反力,当它超过给定值后即让两构件脱离。
分析结果的管理
• 保存仿真分析结果:存入数据库, 或换名保存。
• 删除仿真结果。
ADAMS/PPT
ADAMS / PPT 输入文件
• ADAMS/View: command (.cmd) 模型文件 • ADAMS/Solver:
Dataset (.adm) – 用ADL语言的模型文件 Analysis:
Graphics – .gra Request – .req Results –- .res • Numeric data: ASCII 文件 • Wavefront objects, Stereolithography, render, and shell: Polygonal representation of surfaces.
• 也可定义其它量:如压力、功、能量、动量等。 • 要指定度量位移、速度、加速度、力的坐标系标记。 • 创建一组函数表达式定义需要的输出。 • 用户自定义子程序 REQSUB 可定义非标准输出。 • ADAMS/Solver 在仿真的每一步产生输出结果。 • 跟测量不同,必须在仿真之前创建 requests,创建后
• 运动副的运动、约束反力。 • 施加的运动、力等。 • 测量 Measure: • 请求 Request:
测量的类型
• Object 对象 :零件、力、约束的特性。 • Point 点:相对全局坐标系的位置,作用在该点
的合力。 • Point-to-point 点对点:点对点的运动特性,如
距离、相对速度和相对加速度。 • Orientation 方位:标记坐标系相对另一个标记
统计工具箱
• 实时显示数据点x, y 坐标、斜率
• X Y Slope
• 最大值、最小值、平均值、均方根值
• Min Max Avg RMS
动画显示、控制和输出
• 动画 • 设置选项:光标、坐标系、标题等 • 设置照相机 • 记录动画 • 从叠显示多个动画
练习用文件
• 将ADAMS 11.0 \ PPT \Example目录中的文件拷贝到你的工作目录: 汽车悬架系统仿真的后处理的文件:
mar19, mar1)” f4 = “FX(mar18, mar19, mar1)/TIME” f5 = (blank: 存放f6 - f8的值) f6 = “AZ(mar7, mar8)” f7 = “JOINT(joi26, mar7, fy, mar99)” f8 = “MOTION(joi26, mar7, tz, mar99)”
调试、结果输出等条件。
仿真工具箱
返回、停止、开始仿真按钮 仿真类型:动力、静力、运动 仿真结束时间、仿真持续时间 仿真步数
平衡测试
重复仿真
调试(表格、打印输出)
交互仿真
按剧本仿真
动画控制
仿真设置
Add Sensors
可用 Sensors 触发特殊事件,如:
• 停止仿真:如当一杆件到达指定位置即停止仿真。 • 改变控制求解的参数:如两物体碰撞之前,减少仿
• Presentin生动画短片,用于其它演示。
启动 PPT
• Start menu ProgramsADAMS 11.0 APostProcessorPostProcessor.
• ADAMS/AVIEW: Main ToolboxPPT 图标
Main menu->plot->Bode
Bode 图
• 转换函数法:
• Transfer Functions Coefficient • TFSISO (ADAMS 格式单输入、单输出传递函数)
• 矩阵法
• ADAMS Linear State Matrix:用线性化模型的状态矩阵 • ADAMS Matrix
可用于不同的仿真。
Creating a Request
Build menu Measure REQUEST New.
• Predefined Data Type and Marker
• Specifying Function Expressions
• Specifying a Subroutine
滤波 Filtering
• Butterworth filter - butter() in MATLAB
H (s)H (s)
1 (s
1
j ) 2 N
,
N 为滤波器阶次
• Transfer function - A filter you define by directly specifying the coefficients of a transfer function.
曲线
动画
ADAMS / PostProcessor Window
Toolbar
• 主工具箱: • 曲线编辑工具箱: • 统计工具箱:
相关文档
最新文档