工程材料力学性能

合集下载

工程材料力学性能第二章

工程材料力学性能第二章
❖ 6〕不仅适用于脆性也适用于塑性金属材料。
❖ 7〕 缺点 外表切应力大,心部小,变形不均匀。
二、扭转实验 扭转试样:圆柱形式〔d0=10mm,L0=50m或100mm〕 试验方法:对试样施加扭矩T,相对扭转角以Φ表示
弹性范围内外表的切应力和切应变
扭转试验可测定以下主要性能指标: (1) 切变模量G
在弹性范围内,Kt的数值决定于缺口的几何形状和 尺寸 与材料性质无关.
❖ 2.厚板: ❖ εz=0, σz≠0 ❖ 根部:两向拉伸力状态, ❖ 内侧:三向拉伸的立体应力平面应变状态, ❖ σz =ν〔σy+σx〕 ❖ σy>σz >σx
3.缺口效应: 1〕根部应力集中 2〕改变缺口的应力状态,由单向应力状态改变为两
思考题: ❖ 1 缺口效应及其产生原因; ❖ 2 缺口强化; ❖ 3 缺口敏感度。

第六节 硬度
前言 •古时,利用固体互相刻划来区分材料的软硬 •硬度仍用来表示材料的软硬程度。 •硬度值大小取决于材料的性质、成分和显微组织,测
量方法和条件不符合统一标准就不能反映真实硬度。 •目前还没有统一而确切的关于硬度的物理定义。 •硬度测定简便,造成的外表损伤小,根本上属于“无
可利用扭转试验研究或检验工件热处理的外表质量和各 种外表强化工艺的效果。
❖ 4)扭转时试样中的最大正应力与最大切应力在数值 上大体相等,而生产上所使用的大局部金属材料的 正断抗力 大于切断抗力 ,扭转试验是测定这些材 料切断抗力最可靠的方法。
❖ 5〕根据扭转试样的宏观断口特征,区分金属材料 最终断裂方式是正断还是切断。
油孔,台阶,螺纹,爆缝等对材料的性能影响有以下 四个方面: ❖ 1 缺口产生应力集中 ❖ 2 引起三向应力状态,使材料脆化 ❖ 3 由应力集中产生应变集中 ❖ 4 使缺口附近的应变速率增高

材料的力学性能有哪些

材料的力学性能有哪些

材料的力学性能有哪些
1材料力学性能
材料力学性能是指材料受外力作用时产生的结构变形以及产生的变形所抵抗的力之间的相互关系。

材料力学性能决定着物体能够承受多大载荷,从而保证物体的安全和稳定性,也是应用工程材料的重要考量标准。

材料力学性能的分类:
1.1弹性性能
弹性性能是指材料受外力作用时能够承受的恢复力的大小,是衡量材料的强度的重要指标。

包括屈服强度、抗拉强度、抗压强度和断裂强度等级。

若外力作用则材料发生变形,材料结构恢复后变形越小,弹性性能越好。

1.2理论性能
理论性能是指材料在不受外力作用时产生的固有属性,一般包括形状、尺寸、密度、抗剪强度、压缩性能等。

这些性能判断材料的加工性能。

1.3定向性能
定向性能是指材料在特定方向受外力作用时,所产生的变形程度以及抵抗力的大小,一般包括抗断裂性能、抗拉伸性能、抗压缩性能以及特殊材料(如硅胶、聚氨酯)的韧性,用来测试其在特定应用场合时的表现。

1.4加工性能
加工性能是指材料加工时机械性能指标,一般包括热处理性能、热变形性能、焊接性能以及表面质量等。

1.5材料寿命性能
材料寿命性能是指材料受到温度、湿度、外力等作用时的抗老化性能,是材料用途的重要考量标准,一般包括热稳定性、导热性能、环境老化性能、化学稳定性等。

以上就是材料的力学性能的分类及指标,它们的测试可以反映出一种材料的强度、稳定性、耐久性及环境效应等状况。

选择合适的材料并使之满足应用要求,需要对材料力学性能做出合理评估。

工程材料力学性能

工程材料力学性能

工程材料力学性能1. 引言工程材料力学性能是指材料在外力作用下的力学行为和性能特征。

能够准确评估材料的力学性能对于工程设计和材料选择具有重要意义。

本文将介绍一些常见的工程材料力学性能参数及其测试方法。

2. 抗拉强度抗拉强度是衡量材料抗拉能力的指标,通常用Mpa(兆帕)表示。

该值表示材料能够承受的最大拉伸力。

一般情况下,抗拉强度越高,材料的抗拉性能越好。

抗拉强度的测试可以通过拉伸试验来完成。

在拉伸试验中,标准试样会受到均匀的拉力,直到发生材料破裂。

通过测量试样的最大载荷和横截面积,可以计算出抗拉强度。

3. 弹性模量弹性模量是衡量材料刚性和变形能力的指标,通常用Gpa (千兆帕)表示。

弹性模量越大,材料的刚性越好,变形能力越小,即材料在外力作用下不容易发生变形。

弹性模量的测试可以通过弹性试验来完成。

在弹性试验中,标准试样会受到一定的载荷,然后释放。

通过测量载荷-变形关系的斜率,即应力-应变的比值,可以计算出弹性模量。

4. 屈服强度屈服强度是材料在拉伸过程中突破弹性极限后的抗拉能力,通常用Mpa表示。

屈服强度代表了材料的韧性和延展性。

材料的屈服强度越高,其抗变形性能越好。

屈服强度的测试可以通过拉伸试验或压缩试验来完成。

在拉伸试验中,标准试样会受到逐渐增加的拉力,直到发生塑性变形。

通过测量试样的屈服点和横截面积,可以计算出屈服强度。

5. 硬度硬度是衡量材料抗外界划痕和压痕能力的指标。

常见的硬度测试方法包括布氏硬度(HB)、维氏硬度(HV)、洛氏硬度(HRC)等。

硬度测试方法根据材料的硬度特性进行选择。

例如,布氏硬度适用于较软的金属材料,而维氏硬度适用于硬度较高的金属材料。

硬度的测试结果通常以单位压力下形成的压痕直径或者硬度值表示。

6. 断裂韧性断裂韧性是衡量材料抵抗破裂扩展的能力以及吸收塑性能力的指标。

常用的断裂韧性测试包括冲击试验和拉伸试验。

冲击试验通常用于低温下材料的断裂韧性测试。

在冲击试验中,冲击试样受到快速施加的冲击载荷,通过测量试样的断裂能量和断口形貌,可以评估材料的断裂韧性。

工程材料力学性能

工程材料力学性能

工程材料力学性能
工程材料力学性能是指材料在受力作用下所表现出的各种力学特性。

包括材料的强度、刚度、韧性、耐久性、变形特性等。

首先,强度是指材料在受力情况下的抗拉、抗压、抗剪等能力。

强度高的材料能够承受更大的外力,具有更高的抗破坏能力。

常见的工程材料如钢材、混凝土等都具有很高的强度,可以满足不同工程的需求。

其次,刚度是指材料对外力的响应程度。

刚度高的材料在受力时会有较小的变形。

材料的刚度可通过弹性模量来表示,常见的高刚度材料有钢材、铝合金等。

刚度高的材料适用于需要保持结构稳定的工程。

韧性是指材料在受力下的延展性和断裂韧性。

韧性高的材料能够在受力时发生一定的塑性变形而不断裂。

例如,钢材的韧性较好,可以在受力下发生较大的塑性变形,从而吸收能量,减轻外部冲击造成的损伤。

耐久性是指材料在长期使用和外界环境条件的影响下保持其力学性能的能力。

耐久性好的材料不易受到腐蚀、氧化等因素的影响,能够保持较长时间的使用寿命。

例如,不锈钢具有较好的耐久性,可以用于长期在潮湿环境中工作的工程。

变形特性是指材料在受力下发生形变的特点。

包括弹性变形和塑性变形。

弹性变形是指材料在力加载时产生的可恢复的形变,而塑性变形是指材料在超过其弹性限度后产生的不可回复的形
变。

材料的变形特性对于结构设计和材料选择非常重要。

综上所述,工程材料力学性能是描述材料在受力下的各种力学特性的指标。

通过对不同材料的力学性能的研究和评估,可以确保工程结构的安全可靠性,满足不同工程的实际需求。

工程力学中的材料力学性能测试与评估

工程力学中的材料力学性能测试与评估

工程力学中的材料力学性能测试与评估工程力学是研究物体受力和变形规律的学科,而材料力学性能测试与评估则是工程力学中的关键环节。

在工程项目中,对材料的力学性能进行准确的测试和评估,对于确保工程质量和安全至关重要。

本文将介绍工程力学中常用的材料力学性能测试方法,以及评估这些测试结果的方法和标准。

一、拉伸性能测试与评估拉伸性能是衡量材料抗拉强度和延展性的重要指标。

常见的拉伸性能测试方法包括拉伸试验和屈服点测试。

拉伸试验通过施加逐渐增大的拉力,测量材料在拉伸过程中的应力和应变关系。

而屈服点测试则是在拉伸试验中,通过测量材料的屈服点来判断材料的抗拉性能。

在对拉伸性能进行评估时,常用的指标有抗拉强度、屈服强度和断裂延伸率等。

抗拉强度是材料在拉伸过程中最大的抗拔应力,而屈服强度是材料开始塑性变形的应力。

断裂延伸率则是材料在断裂前的拉伸过程中发生的延伸程度。

根据工程设计的需要,对于不同材料的拉伸性能指标有相应的要求和标准。

二、压缩性能测试与评估压缩性能是描述材料在压缩作用下的抗压能力的指标。

与拉伸性能测试类似,常用的压缩性能测试方法包括压缩试验和屈服点测试。

压缩试验通过施加逐渐增大的压力,测量材料在压缩过程中的应力和应变关系。

而屈服点测试通过测量材料在压缩试验中的屈服点来判断材料的抗压性能。

在对压缩性能进行评估时,常用的指标有抗压强度、屈服强度和残余应变等。

抗压强度是材料在压缩过程中最大的抗压应力,屈服强度是材料开始塑性压缩的应力。

残余应变则是材料在压缩过程中恢复到原始形状前的变形程度。

不同材料的压缩性能指标也有相应的要求和标准。

三、剪切性能测试与评估剪切性能是描述材料在受到剪切力时的变形和破坏特性的指标。

常用的剪切性能测试方法包括剪切试验和剪切强度测试。

剪切试验通过施加剪切力,测量材料在剪切过程中的应力和应变关系。

剪切强度测试则通过测量材料的剪切强度来评估材料的抗剪特性。

在对剪切性能进行评估时,常用的指标有抗剪强度、剪切模量和剪切应变等。

工程材料力学性能

工程材料力学性能

TEM微观形貌(疲劳辉纹), 显示疲劳断口光亮区裂纹缓 慢扩展过程
疲劳断裂实例
硬度
硬度——衡量材料软硬程度的性能指标,分压入法和刻划法两类 压入法硬度表征材料弹性、微量塑性变形抗力及形变强化能力等,常用的有布氏 硬度(HB)、洛氏硬度(HRA、HRB、HRC)和维氏硬度(HV)。 数值
HB P 0.204P F D ( D D 2 d 2 )
e de dl l ln ln(1 ) l0 l l0
l
S Ke n
其中,S为真应力,e为真应变,K为常数,n——形变强 化指数。 一些金属材料的形变强化指数 材料 n Al ~0.15 -Fe ~ 0.2 Cu ~ 0.30 18-8不锈钢 ~ 0.45
金属压力加工
硬度测试的优点:
制样简单,设备便宜;
基本上是非破坏性; 可大致预测其它一些力学性能。
冲击韧性
冲击韧性——表征材料抵抗冲击载荷的能力。 指标:冲击韧性(冲击值)KU( KV )
mg (h h) KU ( KV ) J/cm2 A • 冲击试验标准试样: • U型缺口(梅氏试样) • V型缺口(夏氏试样)
670℃加热(完全再结晶)
750℃加热(晶粒长大)
屈服强度——条件屈服强度
屈服强度s——材料开始产生塑性变形时的应力
条件屈服强度s:
产生0.2%残余变形
时的应力值
屈服强度
s
低碳钢的拉伸应力-应变曲线 以下屈服点的屈服应力为屈服强度
抗拉强度、断裂强度
抗拉强度(强度极限,UTS)
b——试样断裂前承受的最

c s cos cos
c称为晶体的临界分切应力,其数值取决于材料的本性、温

第一章工程材料的力学性能

第一章工程材料的力学性能
表示方式:600HBW1/30/20 350HBW5/750
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在外力的作用下所表现出来的力学特性和性能。

材料力学性能的评价是材料工程中非常重要的一个方面,它直接关系到材料的使用性能和安全性。

下面就常见的材料力学性能进行简要介绍。

1. 强度:材料的强度是指材料在外力作用下抗变形和断裂的能力。

强度是材料力学性能中最基本和重要的指标之一。

常见的强度指标有拉伸强度、屈服强度、抗压强度、剪切强度等。

2. 韧性:材料的韧性是指材料在受到外力作用下的抗冲击和抗断裂能力。

韧性可以通过材料的断裂韧性、冲击韧性等指标来评价。

高韧性的材料具有良好的抗冲击和抗断裂性能。

3. 塑性:材料的塑性是指材料在受到外力作用下能够发生可逆的形变。

材料的塑性可以通过塑性应变、塑性延伸率、塑性饱和应变等指标来描述。

常见的塑性材料有金属材料和塑料材料。

4. 刚性:材料的刚性是指材料在受到外力作用下不易发生形变的能力。

刚性材料具有较高的弹性模量和抗弯刚度。

常见的刚性材料有钢材和铝合金等。

5. 弹性:材料的弹性是指材料在受到外力作用后能自行恢复原状的能力。

弹性材料具有较高的弹性模量和较小的应变率。

常见的弹性材料有弹簧钢和橡胶等。

6. 硬度:材料的硬度是指材料抵抗外部物体对其表面的压入的能力。

硬度指标可以通过洛氏硬度、布氏硬度、维氏硬度等来表示。

硬度高的材料具有较好的抗划伤和抗磨损性能。

7. 耐磨性:材料的耐磨性是指材料在长时间摩擦和磨损作用下的抗磨损能力。

耐磨性可以通过磨损试验来评价。

高耐磨性的材料具有较长的使用寿命。

总的来说,材料力学性能是评价材料使用性能的重要指标,不同材料的力学性能差异很大,选择合适的材料可以提高产品的使用寿命和安全性。

在材料工程中,需要根据具体应用要求和工作环境选择合适的材料,并通过力学性能的评价来保证材料的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、外界因素的影响:1)温度:一般大多数结构钢的KIC都随温度降低而下降;2)应变速率:具有与温度相似的效应;
第五章
一、名词解释(P95、P105)
①应力幅 a: a=
②应力比r:r=
③ :应力强度因子范围
④ :疲劳裂纹扩展速率
二、简答题
1、简述金属疲劳断裂的特点
(1)疲劳是低应力循环延时断裂,即具有寿命的断裂;
(2)疲劳是脆性断裂;
(3)疲劳对缺陷(缺口、裂纹及组织缺陷)十分敏感。
2、试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般办法
三种机理及对应的办法:
(1)滑移带开裂产生裂纹:固溶强化、细晶强化等提高滑移抗力的方法;
(2)相界面开裂产生裂纹:使第二相少、圆、小、均;
(3)晶界开裂产生裂纹:减少杂质和细化晶粒。
试验优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可任意选取,二区压痕测量精度较高,硬度值较为准确。
试验缺点:硬度值需要通过测量压痕对角线长度后才能进行计算或查表,工作效率比洛氏硬度法低得多。
第三章
试验优点:1、其硬度值能反映金属在较大范围内各组成相的平均性能,而不受个别组成相及微小不均匀性的影响。
2、试验数据稳定,重复性强。
试验缺点:1、对不同材料需要更换不同直径的压头球和改变试验力,压痕直径的测量也比较麻烦,因而用于自动检测时受到限制。
2、当压痕直径较大时,不宜在成品上进行试验。
洛氏硬度:
第六章
1、应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。
2、氢蚀:由于氢与金属的第二相作用生成高压气体,使基体金属晶界结合力减弱而导致金属脆化。断口宏观形貌呈氧化色,颗粒状;微观断口上晶界明显加宽,呈沿晶断裂。
5、氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下,经一段孕育期后,在金属内部三向拉应力区形成裂纹,裂纹逐步扩展,最后突然发生脆性断裂。
微观:1、派纳力(τp-n)是短程力,对温度非常敏感,T下降,派纳力上升。bcc中的派纳力较fcc高很多,由于派纳力在屈服强度中占的比例很大,故bcc的低温脆性很明显。
2、bcc的低温脆性还可能与迟屈服现象有关。迟屈服即对低碳钢施加一高速载荷到高于σs,材料并不立即产生屈服而是经过一段孕育期才ห้องสมุดไป่ตู้始塑性变形。在孕育期中只产生弹性变形,由于没有塑性变形消耗能量,故有利于裂纹的扩展,从而易表现为脆性破坏。
第一章
滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~2%),卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。
韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变.
应用范围:对于承受弯曲载荷的机件,测定其力学性能。
4扭转试验
特点:1扭转的应力状态软性系数=0.8,比拉伸时大,易于显示金属的塑性行为。2圆柱形试样扭转时,整个长度上塑性变形是均匀的,没有颈缩现象,所以能实现大塑性变形量下的试验。3能较敏感的反映出金属表面缺陷及硬化层的性能。4扭转时试样中的最大正应力与最大切应力在数值上大体相等,而生产上所使用的大部分金属材料的正断强度大于切断强度,所以,扭转试验是测定这些材料切断最可靠的办法。
4、拉应力在蚀坑或原有裂纹尖端形成应力集中,使阳极电位降低,加速阳极金属的溶解,如果裂纹尖端的应力集中始终存在,那么微电池反应不断进行,钝化膜不能恢复,裂纹将逐步向纵深扩展。
30.何为氢致延滞性断裂?为什么高强度钢的氢致延滞断裂是在一定的应变速率下和一定的温度范围内出现?
应用范围:研究金属在热加工条件下的流变性能与断裂性能,评定材料的热压力加工性;研究或检验工件热处理的表面质量和各种表面强化工艺的效果。
5.缺口试样拉伸时应力分布有何特点?
当缺口试样拉伸,处于弹性状态下时,缺口截面上的应力分布是不均匀的,轴向应力在缺口根部最大。随着离开根部距离的增大,不断下降,即在缺口根部产生应力集中。并且在缺口根部内侧还出现了横向拉应力,它是由于材料横向收缩引起的,自缺口根部向内部发展,收缩变形阻力增大,因此?x逐渐增加。当增大到一定数值后,随着的不断减小,也随之下降。基试样处于塑性状态下时,在存在缺口的条件下会出现三向应力状态,并产生应力集中,试样的屈服应力比单向拉伸时高,产生所谓“缺口强化”现象。
名词解释
1 冲击吸收功:冲击吸收功是指规定形状和尺寸的试样在冲击试验力一次作用下折断时所吸收的功。
2低温韧性:体心立方晶体金属及合金或某些密排六方晶体金属及合金,在试验温度低于某一温度时,会由韧性状态变为脆性状态的现象。
3韧脆转变温度:材料呈现低温脆性的临界转变温度。
简答:
4 试说明低温脆性转变温度的物理本质及影响因素。
总的来说,断裂韧度随强度升高而降低。
KIC∝[(σc)(1+n)/2/(σy)(1-n)/2]Xc1/2
5.试述影响KIC的冶金因素(P81)
一、材料成分、组织对KIC的影响:工程上最常用的金属材料是钢铁,其相组成为基体相和第二相。裂纹扩展主要在基体相中进行,但受第二相的影响。不同的基体相和第二相的组织结构将影响裂纹扩展的途径、方式和速率,从而影响KIC。包括:1)化学成分的影响:细化晶粒的合金元素因提高强度和塑性使KIC提高;强烈固溶强化的合金元素因降低塑性使KIC明显降低,并且随合金元素含量的提高,KIC降低越甚;形成金属化合物并呈第二相析出的金属元素,因降低塑性有利于裂纹的扩展,也是KIC降低;2)基体相结构和晶粒大小的影响:一般来说,晶粒越细小,n和σc就越高,则KIC也越高;3)杂质及第二相的影响:钢中的非金属夹杂物和第二相在裂纹尖端的应力场中,若本身脆裂或在相界面开裂而形成微孔,微孔和主裂纹连接使裂纹扩展,从而使KIC降低;4)显微组织的影响。
内因:1晶体结构,体心立方金属及其合金存在低温脆性
2化学成分,间隙溶质元素溶入铁素体基体中,偏聚于位错线附近,阻碍位错运动,致σs升高,钢的韧脆转变温度提高
3显微组织,晶粒大小,细化晶粒使材料韧性增加;金相组织,当第二相尺寸增大时,材料韧性下降,韧脆转变温度升高。
外因:温度,加载速率。
7试从宏观和微观解释为什么有些材料有明显的韧脆转变,而另一些材料则没有?
裂纹扩展G判据(P77):裂纹在受力时只要满足GI≥GIC,裂纹失稳扩展断裂。反之,即使存在裂纹,若GI<GIC也不会断裂
2.试述低应力脆断的原因及防止方法(P66)
原因:在材料的生产,机件的加工和使用过程中产生不可避免的宏观裂纹,从而使机件在低于屈服应力的情况下断裂。
防止方法:将断裂判据用于机件的设计上,在给定裂纹尺寸的情况下,确定机件允许的最大工作应力,或者当机件的工作应力确定后,根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸。
答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
22.
第二章
缺口效应:由于截面上缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,而影响金属材料的力学性能的效应。
布氏硬度:用一定直径D的硬质合金球,以一定的压力F压在金属试样表面上,保持T秒后卸除压力,在试样表面形成压痕,用压力F除以压痕球形面积,所得的值表示材料硬度。
3、试述疲劳裂纹扩展速率的主要因素,并和疲劳裂纹萌生的影响因素进行对比分析
答:影响疲劳裂纹扩展速率的因素有:应力比r(或平均应力ζm)、过载峰、材料的组织;影响疲劳裂纹萌生因素有:表面滑移开裂,第二相、夹夹杂物或其界面开裂;晶界或亚晶界开裂等。从两者来看,疲劳裂纹的产生的主要影响因素是由于材料内部缺陷所引起的,而与外载几乎没有关系。
洛氏硬度:试验测量压痕深度h表示材料的硬度值,压头有两种:圆锥角120°的金刚石圆锥体;一定直径的小淬火钢球或硬质合金球。
3.试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。
1单向拉伸试验
特点:温度、应力状态和加载速率是确定的,且常用标准的光滑圆柱试样进行试验。 应用范围:一般是用于那些塑性变形抗力与切断强度较低的所谓塑性材料试验。
试验原理:洛氏硬度是以顶角为120度的金刚石圆锥体或一定直径的小淬火钢球作为压头,以规定的试样力将其压入试样表面。试验时,先加初试验力,然后加主试验力,压入试样表面之后卸除主试验力,在保留初试验力的情况下,根据试样表面压痕深度,确定被测金属材料的洛氏硬度值。
试验优点:操作简便、迅速,硬度值可直接读书;压痕较小,可在工件上进行试验;采用不同标尺可测定各种软硬不同的金属盒厚度不一的试样的硬度。
2压缩试验
特点:单向压缩试验的应力状态系数=2,比拉伸,弯曲,扭转的应力状态都软,拉伸时塑性很好的材料在压缩时只发生压缩变形而不会断裂。
应用范围:拉伸时呈脆性的金属材料的力学性能测定。如果产生明显屈服,还可以测定压缩屈服点。
3弯曲试验
特点:试样形状简单,操作方便,弯曲试样应力分布不均匀,表面最大,中心为零。可较灵敏的反映材料表面缺陷。
3.金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能指标?【P4】
答:金属的弹性模量主要取决于金属原子本性和和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型,故弹性模量对组织不敏感。
5、 决定金属屈服强度的因素有哪些?【P12】
宏观:1、对于中低强度的fcc材料和大部分hcp材料,如铜等,在很低的温度下冲击值还是较高的,可以不考虑它的低温脆性。
相关文档
最新文档