运筹学习题集二

合集下载

2375运筹学基础2--11章真题整理

2375运筹学基础2--11章真题整理

第二章31.某地区前三个年度的茶叶销售量的实际值见下表。

此外,根据专家估计,第一年度的销售量预测值为350千克。

27.已知某厂2000至2003的利润如表所示,2000年专家的预测值为2450万元,平滑系数,试用指数平滑法,预测该厂2004年的利润。

年份2000 2001 2002 2003利润(万元) 2350 3210 4020 451031.取(单位:吨)试推算1,2月份的实际产量(保留两位小数)31.某企业欲根据其产品前6 个月的售价x(单位:万元)和销售量y(单位:吨)用一元线性回归法预测第7 个月的销售量。

现通过对前6 个月的资料整理,得Σxi=27,Σyi=71,回归方程斜率b=-2.03。

若预计第7 个月售价为6.5 万元,试预测第7 个月销售量(保留两位小数)。

31.某商品前三个月度的售价实际值见题31表。

此外,根据专家估计,第一月度的售价预测值为7500元。

试用指数平滑法,取α=0.931.某企业要对其生产的某种产品的售价进行预测,已知市场上同类商品的售价分别为125元,127元,135元,138元,140元。

(1)试用加权平均数法进行价格预测。

32.为研究某一化学反应过程中温度x(℃)对产品得率y(%)的影响,测得一组数据,经加工整理后,得到=145(℃),=67.3(%)。

又已知回归直线在y轴上的截距为-2.74。

试据此用一元线性回归法估计当温度为125℃时的产品得率(保留两位小数)。

31.某手机制造商推出一款新型手机,通过市场调研,发现功能相近的5种其他品牌手机的价格和销售量如题31表:题31表为保证该款手机有较大的市场占有率,同时又有较高的销售收入,厂商决定采用加权横向比较法为手机定价,试求其价格。

33.某商店统计了最近5个季度某商品的进价与售价数据,具体数据列题33表(单位:元)如下:题33表现希望利用一元线性回归模型预测法来预测第6个季度的售价。

已知:该季度的预计进价为15元。

运筹学与最优化方法习题集

运筹学与最优化方法习题集

一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。

运筹学II习题解答(DOC)

运筹学II习题解答(DOC)

第七章决策论1. 某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是 三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型 决策的五种方法进行决策(使用折衷法时a = 0.6)。

悲观法:根据“小中取大”原则,应选取的经营策略为 乐观法:根据“大中取大”原则,应选取的经营策略为 折中法(a =0.6):计算折中收益值如下:51 折中收益值=0.6x50+0.4x (-5)=28 52 折中收益值=0.6x30+0.4x0=18 S3 折中收益值=0.6x10+0.4x10=10 显然,应选取经营策略s1为决策方案。

平均法:计算平均收益如下:S3: 故选择策略s1,s2为决策方案。

'最小遗憾法:分三步 第一,定各种自然状态下的最大收益值,如方括号中所示;第二,确定每一方案在不同状态下的最小遗憾值, 并找出每一方案的最大 遗憾值如S1: x i = (50+10-5) /3=55/3 S2:X2=(30+25)/3=55/3(4)s3; s1X 3=(1O+1O)/3=1O(5)】(1) (2)圆括号中所示;第三,大中取小,进行决策。

故选取S1作为决策方案。

经营 策略市场状况Q1Q2 Q3 S1 0 (15)15S2 (20) 0 10 S3(40)152•如上题中三种状态的概率分别为:0.3,0.4, 0.3,试用期望值方法和决策树方法决策。

(1)用期望值方法决策:计算各经营策略下的期望收益值如下:CSi ) =£尸住 i )XH 二1匸53-13〔S3) =2 FC^i)X3i = 10j-1故选取决策S 2时目标收益最大。

(2)用决策树方法,画决策树如下:尸(內)=0. 4 八十)=0- 317.531抉策19 /—f …—30of 尸®曲4 △圧佥八、尸(内)二0・3 灵0 ——— 1010 尸(内)二0・3 P(&1)二Q ・3 P (i j l e i ) 构造差(11)构造一般(12)构造好(l 3)无油(e 1) 0.6 0.3 0.1 贫油(e 2)0.30.4 0.3 富油(e 3)0.10.40.5假定勘探费用为1万元,试确定:3.某石油公司拟在某地钻井,可能的结果有三:无油 (e 1),贫油(e 2)和富油(e3), 估计可能的概率为:P (e 1)=0.5, P (e 2)=O .3, P (e 3)=0.2。

运筹学习题集

运筹学习题集

二、填空选择题:(每空格2分,共16分)1、线性规划的解有划的唯一最优解、无穷多最优解、无界解和无可行解四种。

2、在求运费最少的调度划的运划的输问题中,如划的果某划的一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加划的4 。

3、“如果线性规划的原问题存在可行解,则其对划的偶问题一定存在可行解”,这句话对还是划的错?错4、如果某一整数规划:MaxZ=X划的1+X2划的X1+9/1划的2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优划的解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在划的要对X1进行分枝,划的应该分为X1≤1和X1≥2。

5、在用逆向解法求动态规划时,f k(s k)的含义是:从第k个阶段到第n个阶段的最优解。

6.假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D 和B的关系为 D 包含 B7.已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:(1)写出B-1=⎪⎪⎪⎭⎫⎝⎛---13/20.3/1312(2)对偶问题的最优解: Y=(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi )是不超过bi的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和 Xi≤INT(bi),分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分)MaxZ=3X 1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。

(完整版)《运筹学》习题集

(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

运筹学习题集(第二章)

运筹学习题集(第二章)

运筹学习题集(第二章)判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=C B B-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划A约束条件相同B目标函数相同C最优目标函数值相同D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证A使原问题保持可行B 使对偶问题保持可行C逐步消除原问题不可行性D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系A若最优解存在,则最优解相同B原问题无可行解,则对偶问题也无可行解C对偶问题无可行解,原问题可能无可行解D一个问题无界,则另一个问题无可行解E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为A—(λ1,λ2,……λn)B (λ1,λ2,……λn)C —(λn+1,λn+2,……λn+m)D (λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解C可能一个问题有最优解,另一个问题具有无界解D原问题与对偶问题都有最优解计算题线性规划问题和对偶问题2.1 对于如下的线性规划问题min z = 3x1 + 2x2 +x3s.t. x1 + x2+ x3 ≤ 15 (1)2x1 - x2+ x3≥ 9 (2)-x1 + 2x2+2x3≤ 8 (3)x1 x2x3 ≥ 01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3s.t. y1 + 2y- y3 ≤ 3 (1)y1 - y2+ 2y3≤ 2 (2)y1 + y2+ 2y3≤ 1 (3)y1≤0、y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3s.t. x1 + x2+ x3+ x4= 15 (1)-2x1 + x23+ x5= -9 (2)-x1 + 2x2+2x3+x6= 8 (3)原始问题的最优解为(X 1 X 2 X 3 X 4 X 5 X 6)=(2,0,5,8,0,0),minz=11 对偶问题的最优解为(y 1 y 2 y 3 y 4 y 5 y 6)=(0,7/5,-1/5,0,19/5,0),maxw=112.2 对于以下线性规划问题max z = -x 1 - 2x 2s.t. -2x 1 + 3x 2 ≤ 12 (1) -3x 1 + x 2 ≤ 6 (2) x 1 + 3x 2 ≥ 3 (3) x 1 ≤ 0,x 2 ≥ 01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、写出这个(极大化)线性规划问题的对偶问题;4、求出对偶问题的最优解和最优解的目标函数值;5、第(2)个约束右端常数b 2=6在什么范围内变化,最优解保持不变。

运筹学习题集

运筹学习题集

《运筹学》习题集目录第一章线性规划 (1)第二章运输问题 (9)第三章整数规划 (14)第四章目标规划 (20)第五章动态规划 (21)第六章图与网络分析 (24)第七章存储论 (27)第八章对策论 (28)第一章 线性规划1、将下列线性规划问题化为标准型(1) max Z = 3x 1+ 5x 2- 4x 3+ 2x 4⎪⎪⎩⎪⎪⎨⎧≥=+≥+≤++0x , x , x 9 5x -3x -4x x -13 2x -2x 3x -x 18 3x x -6x 2x s.t.421432143214321 (2) min f = 3x1+ x2+ 4x3+ 2x4 ≤ 1⎪⎪⎩⎪⎪⎨⎧≤≥=++≥+≤+0 x 0, x , x15 2x 3x -4x 2x 7- x -2x 2x -3x 51- 2x - x -3x 2x s.t. 4214214321 43213 (3) min F=x1+x2+x3+x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+≥+≥+≥+0x ,x ,x ,x 7x x 8x x 6x x 5x x s.t.432143222141 (4) 3213min x x x F -+=⎪⎪⎩⎪⎪⎨⎧≤≤≥≥0x ,x ,x 4x +5x +x -22x +x -3x +x +x ..32132121321t s 2、求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点):⎪⎩⎪⎨⎧≥≥++≥++0 x ,x ,x 12 4x 3x 2x -6 3x 3x 2x 3213213213、用图解法求解下列线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+=0x ,x 3 x 122x +3x 6 x -2x ..max )1(211212121t s X X Z⎪⎩⎪⎨⎧≥≥≥++-=0 x ,x 155x -3x 56 7x 4x ..3min )2(21212121t s x x Z4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。

运筹学课后答案2

运筹学课后答案2

运筹学(第2版)习题答案2第1章 线性规划 P36~40第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100 第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页由于大小限制,此文档只显示第6章到第12章,第1章至第5章见《运筹学课后答案1》习题六6.1如图6-42所示,建立求最小部分树的0-1整数规划数学模型。

【解】边[i ,j ]的长度记为c ij ,设⎩⎨⎧=否则包含在最小部分树内边0],[1j i x ij数学模型为:,12132323243434364635365612132434343546562324463612132446362335244656121324354656m in 52,22,233344,510ij ijij i j ij Z c x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ==++≤++≤++≤++≤+++≤+++≤+++≤++++≤++++≤+++++≤=∑或,[,]i j ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩所有边6.2如图6-43所示,建立求v 1到v 6的最短路问题的0-1整数规划数学模型。

图6-42【解】弧(i ,j )的长度记为c ij ,设⎩⎨⎧=否则包含在最短路径中弧0),(1j i x ij数学模型为:,1213122324251323343524344546253545564656m in 100,00110,(,)ijiji jij Z cx x x x x x x x x x x x x x x x x x x x x x i j =⎧+=⎪---=⎪⎪+--=⎪⎪+--=⎨⎪++-=⎪⎪+=⎪=⎪⎩∑或所有弧 6.3如图6-43所示,建立求v 1到v 6的最大流问题的线性规划数学模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学习题集二习题一1.1 用法求解下列线性规划问题并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。

(1) min z =6x1+4x2 (2) max z =4x1+8x2 st. 2x1+x2≥1 st. 2x1+2x2≤103x1+4x2≥1.5 -x1+x2≥8x1, x2≥0 x1, x2≥0(3) max z =x1+x2 (4) max z =3x1-2x2 st. 8x1+6x2≥24 st. x1+x2≤14x1+6x2≥-12 2x1+2x2≥42x2≥4 x1, x2≥0x1, x2≥0(5) max z =3x1+9x2 (6) max z =3x1+4x2 st. x1+3x2≤22 st. -x1+2x2≤8-x1+x2≤4 x1+2x2≤12x2≤6 2x1+x2≤162x1-5x2≤0 x1, x2≥0x1, x2≥01.2. 在下列线性规划问题中找出所有基本解指出哪些是基本可行解并分别代入目标函数比较找出最优解。

(1) max z =3x1+5x2 (2) min z =4x1+12x2+18x3 st. x1 +x3 =4 st. x1 +3x3-x4 =32x2 +x4 =12 2x2+2x3 -x5=53x1+2x2 +x5 =18 xj ≥0 (j=1, (5)xj ≥0 (j=1, (5)1.3. 分别用法和单纯形法求解下列线性规划问题并对照指出单纯形法迭代的每一步相当于法可行域中的哪一个顶点。

(1) max z =10x1+5x2st. 3x1+4x2≤95x1+2x2≤8x1, x2≥0(2) max z =100x1+200x2st. x1+x2≤500x1 ≤2002x1+6x2≤1200x1, x2≥01.4. 分别用大M法和两阶段法求解下列线性规划问题并指出问题的解属于哪一类:(1) max z =4x1+5x2+x3 (2) max z =2x1+x2+x3 st. 3x1+2x2+x3≥18 st. 4x1+2x2+2x3≥42x1+x2 ≤4 2x1+4x2 ≤20x1+x2-x3=5 4x1+8x2+2x3≤16xj ≥0 (j=1,2,3)xj ≥0 (j=1,2,3)(3) max z =x1+x2 (4) max z =x1+2x2+3x3-x4 st. 8x1+6x2≥24 st. x1+2x2+3x3=154x1+6x2≥-12 2x1+x2+5x3=202x2≥4 x1+2x2+x3+x4=10x1, x2≥0 xj ≥0 (j=1, (4)(5) max z =4x1+6x2 (6) max z =5x1+3x2+6x3 st. 2x1+4x2 ≤180 st. x1+2x2+x3≤183x1+2x2 ≤150 2x1+x2+3x3≤16x1+x2=57 x1+x2+x3=10x2≥22 x1, x2≥0x3无约束x1, x2≥01.5 线性规划问题max z=CXAX=bX≥0如X*是该问题的最优解又λ0为某一常数分别讨论下列情况时最优解的变化:(1)目标函数变为max z=λCX;(2)目标函数变为maxz=(C+λ)X;(3)目标函数变为max z=X约束条件变为AX=λb。

1.6 下表中给出某求极大化问题的单纯形表问表中a1, a2, c1, c2, d为何值时以及表中变量属于哪一种类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)表中解为退化的可行解;(4)下一步迭代将以x1替换基变量x5 ;(5)该线性规划问题具有无界解;(6)该线性规划问题无可行解。

x1 x2 x3 x4 x5x3 d 4 a1 1 0 0x4 2 -1 -5 0 1 0x5 3 a2 -3 0 0 1cj -zj c1 c2 0 0 01.7 战斗机是一种重要的作战工具但要使战斗机发挥作用必须有足够的驾驶员。

因此生产出来的战斗机除一部分直接用于战斗外需抽一部分用于驾驶员。

已知每年生产的战斗机数量为aj(j=1,…,n)又每架战斗机每年能出k名驾驶员问应如何分配每年生产出来的战斗机使在n年内生产出来的战斗机为空防作出最大贡献?1.8. 某石油管道公司希望知道在下图所示的管道络中可以流过的最大流量是多少及怎样输送弧上数字是容量限制。

请建立此问题的线性规划模型不必求解。

2 5 4103 111 4 3 656 8 73 51.9. 某昼夜服务的公交线每天各时间区段内所需司机和乘务人员数如下:班次时间所需人数1 6:00-10:00 602 10:00-14:00 703 14:00-18:00 604 18:00-22:00 505 22:00-2:00 206 2:00-6:00 30设司机和乘务人员分别在各时间区段一开始时上班并连续工作八小时问该公交线至少配备多少名司机和乘务人员。

列出此问题的线性规划模型。

1.10 某班有男生30人女生20人周日去植树。

根据经验一天男生平均每人挖坑20个或栽树30棵或给25棵树浇水;女生平均每人挖坑10个或栽树20棵或给15棵树浇水。

问应怎样安排才能使植树(包括挖坑、栽树、浇水)最多?请建立此问题的线性规划模型不必求解。

1.11.某糖果用原料A、B、C加工成三种不同牌号的糖果甲、乙、丙。

已知各种牌号糖果中A、B、C含量原料成本各种原料的每月限制用量三种牌号糖果的单位加工费及售价如下表所示。

问该每月应生产这三种牌号糖果各多少千克使该获利最大?试建立此问题的线性规划的数学模型。

甲乙丙原料成本(/千克) 每月限量(千克)A≥60%≥15% 2.00 2000B 1.50 2500C ≤20%≤60%≤50% 1.00 1200加工费(/千克)0.50 0.40 0.30售价 3.40 2.85 2.251.12. 某商店制定7-12月进货售货计划已知商店仓库容量不得超过500件6月底已存货200件以后每月初进货一次假设各月份此商品买进售出单价如下表所示问各月进货售货各多少才能使总收入最多?请建立此问题的线性规划模型不必求解。

月份7 8 9 10 11 12买进单价28 24 25 27 23 23售出单价29 24 26 28 22 251.13 .某农场有100公顷土地及15000资金可用于发展生产。

农场劳动力情况为秋冬季3500人日春夏季4000人日如劳动力本身用不了时可外出干活春夏季收入为2.1/人日秋冬季收入为1.8/人日。

该农场种植三种作物:大豆、玉米、小麦并饲养奶牛和鸡。

种作物时不需要专门投资而饲养动物时每头奶牛投资400每只鸡投资3。

养奶牛时每头需拨出1.5公顷土地种饲草并占用人工秋冬季为100人日春夏季为50人日年净收入400/每头奶牛。

养鸡时不占土地需人工为每只鸡秋冬季需0.6人日春夏季为0.3人日年净收人为2/每只鸡。

农场现有鸡舍允许最多养3000只鸡牛栏允许最多养32头奶牛。

三种作物每年需要的人工及收人情况如下表所示。

大豆玉米麦子秋冬季需人日数203510春夏季需人日数507540年净收入(/公顷)175300120试决定该农场的经营方案使年净收人为最大。

(建立线性规划模型不需求解)习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3 (2) max z =2x1+x2+3x3+x4 st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4 ≤54x1+x2+x3≤20 2x1-x2+3x3 =-4xj ≥0 (j=1,2,3)x1 -x3+x4≥1x1x3≥0x2x4无约束(3) min z =3x1+2 x2-3x3+4x4 (4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3 ≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3 ≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5x1≥0x4≤0x2x3 无约束x1≤0 x2≥0x3 无约束2.2 已知线性规划问题max z=CXAX=bX≥0。

分别说明发生下列情况时其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);(4)模型中全部x1用3 代换。

2.3已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2 +x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2xj≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1120)试根据对偶理论直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2xj≥0(j=1,2,3,4)其对偶问题的最优解y1*=4;y2*=1试根据对偶问题的性质求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80xj≥0 (j=1,2,3)(1)写出其对偶问题(2)用单纯形法求解原问题列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

2.6 已知线性规划问题max z=10x1+5x2st. 3x1+4x2≤95x1+2x2≤8xj≥0(j=1,2)用单纯形法求得最终表如下表所示:x1x2x3x4bx201—x110—1j=cj-Zj00——试用灵敏度分析的方法分别判断:(1)目标函数系数c1或c2分别在什么范围内变动上述最优解不变;(2)约束条件右端项b1b2当一个保持不变时另一个在什么范围内变化上述最优基保持不变;(3)问题的目标函数变为max z =12x1+4x2时上述最优解的变化;(4)约束条件右端项由变为时上述最优解的变化。

2.7 线性规划问题如下:max z=—5x1+5x2+13x3st. —x1+x2+3x3≤20 ①12x1+4x2+10x3≤90 ②xj≥0 (j=1,2,3)先用单纯形法求解然后分析下列各种条件下最优解分别有什么变化?(1)约束条件①的右端常数由20变为30;(2)约束条件②的右端常数由90变为70;(3)目标函数中x3的系数由13变为8;(4)x1的系数列向量由(—112)T变为(05)T;(5)增加一个约束条件③:2x1+3x2+5x3≤50;(6)将原约束条件②改变为:10x1+5x2+10x3≤100。

相关文档
最新文档