人教版八年级上册数学《14.2乘法公式》同步测试(含答案)
人教版八年级上册数学 14.2乘法公式 同步练习(含解析)

14.2乘法公式同步练习一.选择题1.下列各式中,不能用平方差公式计算的是()A.(x﹣y)(﹣y﹣x)B.(﹣x+y)(x﹣y)C.(4x2﹣y2)(4x2+y2)D.(3x+1)(3x﹣1)2.下列各式中,运算错误的是()A.(x+5)(x﹣5)=x2﹣25B.(﹣x﹣5)(﹣x+5)=x2﹣25C.(x+)2=x2+x+D.(x﹣3y)2=x2﹣3xy+9y23.下列乘法公式的运用,正确的是()A.(2x﹣3)(2x+3)=4x2﹣9B.(﹣2x+3y)(3y+2x)=4x2﹣9y2C.(2a﹣3)2=4a2﹣9D.(﹣4x﹣1)2=16x2﹣8x+14.已知a+b=3,ab=,则a2+b2的值等于()A.6B.7C.8D.95.为了运用平方差公式计算(x+3y﹣z)(x﹣3y+z),下列变形正确的是()A.[x﹣(3y+z)]2B.[(x﹣3y)+z][(x﹣3y)﹣z]C.[x﹣(3y﹣z)][x+(3y﹣z)]D.[(x+3y)﹣z][(x﹣3y)+z]6.若(ax+3y)2=4x2+12xy+by2,则a,b的值分别为()A.a=4,b=3B.a=2,b=3C.a=4,b=9D.a=2,b=9 7.关于x的二次三项式4x2+mx+是一个完全平方式,则m的值应为()A.±B.﹣C.±D.﹣8.下列运算正确的是()A.(x+y)(y﹣x)=x2﹣y2B.(x+y)(﹣y﹣x)=x2﹣y2C.(x﹣y)(y﹣x)=x2﹣y2D.(x+y)(﹣y+x)=x2﹣y29.如图,将一张正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为2m+3,则原正方形边长是()A.m+6B.m+3C.2m+3D.2m+610.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.(a+2b)(a﹣2b)B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)二.填空题11.计算:1992﹣198×202=.12.已知(2020+x)(2018+x)=55,则(2020+x)2+(2018+x)2=.13.已知x2﹣mxy+4y2是完全平方式,则m=.14.已知m+2n=2,m﹣2n=2,则m2﹣4n2=.15.在边长为a的正方形中挖掉一边长为b的小正方形(a>b),把余下的部分剪成直角梯形后,再拼成一个等腰梯形(如图),通过计算阴影部分的面积,验证了一个等式,这个等式是.三.解答题16.计算:(1)9992.(2)计算()2﹣()2.17.(1﹣a)(a+1)(a2+1)(a4+1).18.在求两位数的平方时,可以用完全平方式及“列竖式”的方法进行速算,求解过程如下.例如:求322.解:因为(3x+2y)2=9x2+4y2+12xy,将上式中等号右边的系数填入下面的表格中可得:所以322=1024.(1)下面是嘉嘉仿照例题求892的一部分过程,请你帮他填全表格及最后结果;解:因为(8x+9y)2=64x2+81y2+144xy,将上式中等号右边的系数填入下面的表格中可得:所以892=;(2)仿照例题,速算672;(3)琪琪用“列竖式”的方法计算一个两位数的平方,部分过程如图所示.若这个两位数的个位数字为a,则这个两位数为(用含a的代数式表示).参考答案1.解:A、(x﹣y)(﹣y﹣x)=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、(4x2﹣y2)(4x2+y2)=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、(3x+1)(3x﹣1)=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.2.解:A.(x+5)(x﹣5)=x2﹣25,故本选项不合题意;B.(﹣x﹣5)(﹣x+5)=x2﹣25,故本选项不合题意;C.(x+)2=x2+x+,故本选项不合题意;D.(x﹣3y)2=x2﹣6xy+9y2,故本选项符合题意.故选:D.3.解:A.(2x﹣3)(2x+3)=(2x)2﹣32=4x2﹣9,故本选项符合题意;B.(﹣2x+3y)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,故本选项不合题意;C.(2a﹣3)2=4a2﹣12a+9,故本选项不合题意;D.(﹣4x﹣1)2=﹣16x2﹣8x﹣1,故本选项不合题意.故选:A.4.解:∵a+b=3,∴(a+b)2=32=9,∴a2+b2=(a+b)2﹣2ab=9﹣3=6.故选:A.5.解:运用平方差公式计算(x+3y﹣z)(x﹣3y+z),应变形为[x+(3y﹣z)][x﹣(3y﹣z)],故选:C.6.解:(ax+3y)2=4x2+12xy+by2,则a2x2+6axy+9y2=4x2+12xy+by2,故a2=4且6a=12,b=9,解得:a=2,b=9.故选:D.7.解:4x2+mx+是完全平方式,∴4x2+mx+=(2x±)2=(2x)2±2•2x•+()2=4x2±x+,∴m=±.故选:C.8.解:A、结果是y2﹣x2,故本选项不符合题意;B、结果是﹣x2﹣2xy﹣y2,故本选项不符合题意;C、结果是﹣x2+2xy﹣y2,故本选项不符合题意;D、结果是x2﹣y2,故本选项符合题意;故选:D.9.解:设原正方形的边长为x,则x﹣m=3,解得,x=m+3,故选:B.10.解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为(a+2b)(a ﹣2b),故选:A.11.解:原式=(200﹣1)2﹣(200﹣2)(200+2)=2002﹣2×200×1+12﹣2002+22=﹣400+1+4=﹣395.故答案为:﹣395.12.解:∵(2020+x)(2018+x)=55,∴(2020+x)2+(2018+x)2=[(2020+x)﹣(2018+x)]2+2(2020+x)(2018+x)=22+2×55=114.故答案为114.13.解:∵(x±2y)2=x2±4xy+4y2,∴﹣m=±4,∴m=±4,故答案为:±4.14.解:∵m+2n=2,m﹣2n=2,∴m2﹣4n2=(m+2n)(m﹣2n)=2×2=4.故答案为:4.15.解:根据题意得a2﹣b2=(2b+2a)•(a﹣b),即a2﹣b2=(a+b)(a﹣b).故答案为a2﹣b2=(a+b)(a﹣b).16.解:(1)9992=(1000﹣1)2=10002﹣2×1000+1=1000000﹣2000+1=9980001;(2)原式=x2+5x+1﹣(x2﹣5x+1)=x2+5x+1﹣x2+5x﹣1=10x.17.解:(1﹣a)(a+1)(a2+1)(a4+1)=(1﹣a2)(1+a2)(a4+1)=(1﹣a4)(1+a4)=1﹣a8.18.解:(1)因为(8x+9y)2=64x2+81y2+144xy,将上式中等号右边的系数填入下面的表格中可得:所以892=7921;故答案为:7921;(2)因为(6x+7y)2=36x2+49y2+84xy,将上式中等号右边的系数填入下面的表格中可得:所以672=4 489.(3)设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为:a+50.。
2020年人教版八年级上册14.2《乘法公式》同步练习卷 含答案

2020年人教版八年级上册14.2《乘法公式》同步练习卷一.选择题1.计算(a+2b)2的结果是()A.a2+4b2B.a2+2ab+2b2C.a2+4ab+2b2D.a2+4ab+4b22.下列从左到右的变形,错误的是()A.(y﹣x)2=(x﹣y)2B.﹣a﹣b=﹣(a+b)C.(m﹣n)3=﹣(n﹣m)3D.﹣m+n=﹣(m+n)3.下列算式能用平方差公式计算的是()A.(3a+b)(3b﹣a)B.(﹣1)(﹣﹣1)C.(x﹣y)(﹣x+y)D.(﹣a﹣b)(a+b)4.若x2﹣kx+81是完全平方式,则k的值应是()A.16B.9或﹣9C.﹣18D.18或﹣185.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.256.代数式(m﹣2)(m+2)(m2+4)﹣(m4﹣16)的结果为()A.0B.4m C.﹣4m D.2m47.如图是用四个相同的矩形和一个正方形拼成的图案,已知此图案的总面积是49,小正方形的面积是4,x,y分别表示矩形的长和宽,那么下面式子中不正确的是()A.x+y=7B.x﹣y=2C.4xy+4=49D.x2+y2=258.如图,将一张正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为2m+3,则原正方形边长是()A.m+6B.m+3C.2m+3D.2m+6二.填空题9.计算:(m﹣2n)2=.10.计算:x(x+2)﹣(x+1)(x﹣1)=.11.若x2﹣6x+k是x的完全平方式,则k=.12.9992﹣998×1002=.13.(a+b)(a﹣b)(a2+b2)(a4+b4)=.14.如果(a+b﹣2)(a+b+2)=77,那么a+b=.15.已知a,b满足a﹣b=1,ab=2,则a+b=.16.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.三.解答题17.(a+1)(a2﹣1)(a﹣1).18.利用乘法公式计算:982.19.已知a﹣b=4,ab=3(1)求(a+b)2(2)a2﹣6ab+b2的值.20.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2 第一步=3002﹣2×300×(﹣4)+42 第二步=90000+2400+16 第三步=92416.第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第几步开始出错;(2)请你写出正确的解题过程.21.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?参考答案一.选择题1.解:(a+2b)2=a2+4ab+4b2.故选:D.2.解:A、(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故本选项不合题意;B、﹣a﹣b=﹣(a+b),故本选项不合题意;C、(m﹣n)3=(m﹣n)(n﹣m)2=﹣(n﹣m)(n﹣m)2=﹣(n﹣m)3,故本选项不合题意;D、﹣m+n=﹣(m﹣n),故本选项符合题意.故选:D.3.解:选项A:没有两项完全相同,也没有两项属于相反数,故不能用平方差公式计算;选项B:和﹣是相反数,﹣1和﹣1是相同项,故可以用平方差公式计算;选项C:x与﹣x是相反数,﹣y与y也是相反数,故不能用平方差公式计算;选项D:﹣a和a是相反数,﹣b和b也是相反数,故不能用平方差公式计算;综上,只有选项B符合题意.故选:B.4.解:∵x2﹣kx+81是完全平方式,81=92,∴k=±2×1×9=±18.故选:D.5.解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.6.解:(m﹣2)(m+2)(m2+4)﹣(m4﹣16)=(m2﹣4)(m2+4)﹣(m4﹣16)=(m4﹣16)﹣(m4﹣16)=0.故选:A.7.解:A、∵此图案的总面积是49,∴(x+y)2=49,∴x+y=7,故本选项正确,不符合题意;B、∵小正方形的面积是4,∴(x﹣y)2=4,∴x﹣y=2,故本选项正确,不符合题意;C、根据题得,四个矩形的面积=4xy,四个矩形的面积=(x+y)2﹣(x﹣y)2=49﹣4,∴4xy=49﹣4,即4xy+4=49,故本选项正确,不符合题意;D、∵(x+y)2+(x﹣y)2=49+4,∴2(x2+y2)=53,解得x2+y2=26.5,故本选项错误,符合题意.故选:D.8.解:设原正方形的边长为x,则x﹣m=3,解得,x=m+3,故选:B.二.填空题9.解:原式=m2﹣4mn+4n2.10.解:原式=x2+2x﹣x2+1=2x+1.故答案为:2x+111.解:∵关于x的多项式x2﹣6x+k是完全平方式,∴x2﹣6x+k=x2﹣2•x•3+32,∴k=32=9,故答案为:9.12.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.13.解:原式=(a2﹣b2)(a2+b2)(a4+b4)=(a4﹣b4)(a4+b4)=a8﹣b8,故答案为:a8﹣b814.解:(a+b﹣2)(a+b+2)=77,即(a+b)2﹣22=77,(a+b)2=81,a+b=,a+b=±9.故答案为:±9.15.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.16.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).三.解答题17.解:(a+1)(a2﹣1)(a﹣1)=[(a+1)(a﹣1)](a2﹣1)=(a2﹣1)(a2﹣1)=a4﹣2a2+1.18.解:原式=(100﹣2)2=1002﹣2×100×2+4=10000﹣400+4=9604.19.解:(1)∵a﹣b=4,ab=3,∴(a+b)2=(a﹣b)2+4ab=16+3×4=28;(2)∵a﹣b=4,ab=3,∴a2﹣6ab+b2=(a﹣b)2﹣4ab=16﹣12=4.20.解:(1)从第二步开始出错;(2)正确的解题过程是:2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.21.解:(1)图②中的阴影部分的面积为(m﹣n)2,故答案为:(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2,故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)(x﹣y)2=(x+y)2﹣4xy=25,则x﹣y=±5;(4)(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2.。
人教版八年级数学上册同步练习14.2乘法公式(含答案解析)

14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b22.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1 B.x4+1 C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.参考答案:1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.。
8年级数学人教版上册同步练习14.2乘法公式(含答案解析)

14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b22.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1 B.x4+1 C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.参考答案:1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.。
人教版 八年级数学上册 14.2 乘法公式 同步训练(含答案)

人教版 八年级数学上册 14.2 乘法公式 同步训练一、选择题(本大题共10道小题)1. 运用乘法公式计算(a +3)(a -3)的结果是( )A .a 2-6a +9B .a 2-3a +9C .a 2-9D .a 2-6a -92. 下列各式中,运算结果是9m 2-16n 2的是 ( )A .(3m +2n )(3m -8n )B .(-4n +3m )(-4n -3m )C .(-3m +4n )(-3m -4n )D .(4n +3m )(4n -3m )3. 若(a +3b )2=(a -3b )2+A ,则A 等于( )A .6abB .12abC .-12abD .24ab 4. 如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数5. 化简(-2x -3)(3-2x )的结果是( )A .4x 2-9B .9-4x 2C .-4x 2-9D .4x 2-6x +96. 将202×198变形正确的是 ( )A .2002-4B .2022-4C .2002+2×200+4D .2002-2×200+47. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( ) A .2,3B .2,-3C .-2,-3D .-2,38. 计算(x +1)(x 2+1)·(x -1)的结果是() A .x 4+1B .(x +1)4C .x 4-1D .(x -1)49. 设a =x -2018,b =x -2020,c =x -2019,若a 2+b 2=34,则c 2的值是( )A.16 B.12 C.8 D.410. 如图,阴影部分是边长为a的大正方形剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是()A.①②B.②③C.①③D.①②③二、填空题(本大题共6道小题)11. 如果(x-ay)(x+ay)=x2-9y2,那么a=.12. 计算:9982=________.13. 如果(x+my)(x-my)=x2-9y2,那么m=________.14. 多项式x2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是________(任写一个符合条件的即可).15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.abba16. 如图,在边长为a的正方形中剪去一个边长为b的小正方形(a b),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.。
人教版八年级上册数学 14.2乘法公式 同步练习(含解析)

人教版八年级上册数学14.2乘法公式同步练习(含解析)一.选择题1.下列各式中,运算错误的是()A.(x+5)(x﹣5)=x2﹣25B.(﹣x﹣5)(﹣x+5)=x2﹣25C.(x+)2=x2+x+D.(x﹣3y)2=x2﹣3xy+9y22.下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)3.下列乘法公式的运用,正确的是()A.(2x﹣3)(2x+3)=4x2﹣9B.(﹣2x+3y)(3y+2x)=4x2﹣9y2C.(2a﹣3)2=4a2﹣9D.(﹣4x﹣1)2=16x2﹣8x+14.已知a+b=3,ab=,则a2+b2的值等于()A.6B.7C.8D.95.如图,用4个相同的小长方形与1个小正方形(阴影部分)摆成了一个正方形图案,已知该图案的面积为81,小正方形的面积为25,若用x、y表示小长方形的两边长(x>y),请观察图案.指出以下关系式中,不正确的是()A.x+y=9B.x﹣y=5C.4xy+25=81D.x2+y2=496.为了运用平方差公式计算(x+3y﹣z)(x﹣3y+z),下列变形正确的是()A.[x﹣(3y+z)]2B.[(x﹣3y)+z][(x﹣3y)﹣z]C.[x﹣(3y﹣z)][x+(3y﹣z)]D.[(x+3y)﹣z][(x﹣3y)+z]7.下列计算中,正确的是()A.x(2x2﹣x+1)═2x3﹣x2+1B.(a+b)2=a2+b2C.(x﹣2)2=x2﹣2x+4D.(﹣a﹣b)2=a2+2ab+b28.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b][(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)][a+(b﹣c)]D.[a﹣(b﹣c)][a+(b﹣c)]9.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和30,则正方形A、B的面积之和为()A.33B.30C.27D.24二.填空题10.计算(a﹣2b)2﹣2a(3a﹣4b)的结果是.11.计算(a+b)(a﹣b)的结果等于.12.如图是边长为a+b的大正方形,通过两种不同的方法计并该大正方形的面积,聪明的你可以得到一个乘法公式,请你用含有a,b的等式表达出来,结果是.13.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.14.已知(5+2x)2+(3﹣2x)2=40,则(5+2x)•(3﹣2x)的值为.三.解答题15.计算:(1)9992.(2)计算()2﹣()2.16.23.142﹣23.14×6.28+3.142.17.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.答案1.解:A.(x+5)(x﹣5)=x2﹣25,故本选项不合题意;B.(﹣x﹣5)(﹣x+5)=x2﹣25,故本选项不合题意;C.(x+)2=x2+x+,故本选项不合题意;D.(x﹣3y)2=x2﹣6xy+9y2,故本选项符合题意.故选:D.2.解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.3.解:A.(2x﹣3)(2x+3)=(2x)2﹣32=4x2﹣9,故本选项符合题意;B.(﹣2x+3y)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,故本选项不合题意;C.(2a﹣3)2=4a2﹣12a+9,故本选项不合题意;D.(﹣4x﹣1)2=﹣16x2﹣8x﹣1,故本选项不合题意.故选:A.4.解:∵a+b=3,∴(a+b)2=32=9,∴a2+b2=(a+b)2﹣2ab=9﹣3=6.故选:A.5.解:∵小正方形的面积为25,∴小正方形的为边长为5,∴x﹣y=5,∴选项B正确;∵已知该图案的面积为81,∴4xy+25=81,∴选项C正确,∵由题与图已知x+y=9,x=7,y=2,∴选项A正确,∴选项D不正确,故选:D.6.解:运用平方差公式计算(x+3y﹣z)(x﹣3y+z),应变形为[x+(3y﹣z)][x﹣(3y﹣z)],故选:C.7.解:A、x(2x2﹣x+1)═2x3﹣x2+x,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、(x﹣2)2=x2﹣4x+4,故此选项错误;D、(﹣a﹣b)2=a2+2ab+b2,正确.故选:D.8.解:(a﹣b+c)(a+b﹣c)=[a﹣(b﹣c)][a+(b﹣c)].故选:D.9.解:设正方形A的边长是a,正方形B的边长是b(a>b),由题可得图甲中阴影部分的面积是S甲=(a﹣b)2,图乙中阴影部分的面积是S乙=(a+b)2﹣a2﹣b2=2ab,∵图甲和图乙中阴影部分的面积分别为3和30,∴S甲=(a﹣b)2=3,S乙=2ab=30,∴正方形A、B的面积之和为:S A+S B=a2+b2=(a﹣b)2+2ab=3+30=33,故选:A.10.解:(a﹣2b)2﹣2a(3a﹣4b)=a2﹣4ab+4b2﹣6a2+8ab=﹣5a2+4ab+4b2,故答案为:﹣5a2+4ab+4b2.11.解:(a+b)(a﹣b)=a2﹣b2;故答案为:a2﹣b2.12.解:如图,用不同的方法表示大正方形的面积可得(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.13.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).14.解:∵(5+2x)2+(3﹣2x)2=40,∴[(5+2x)+(3﹣2x)]2﹣2(5+2x)(3﹣2x)=40,即64﹣2(5+2x)(3﹣2x)=40,∴(5+2x)(3﹣2x)=12.故答案为12.15.解:(1)9992=(1000﹣1)2=10002﹣2×1000+1=1000000﹣2000+1=9980001;(2)原式=x2+5x+1﹣(x2﹣5x+1)=x2+5x+1﹣x2+5x﹣1=10x.16.解:原式=23.142﹣2×23.14×3.14+3.142=(23.14﹣3.14)2=400.17.解:(1)如图所示:(2)(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣12xy+9y2﹣x2+4y2=3x2﹣12xy+13y2.。
人教版八年级数学上册《14.2乘法公式》同步练习题(附带答案)
人教版八年级数学上册《14.2乘法公式》同步练习题(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.下列关系式中,正确的是()A.B.C.D.2.若,则括号内应填的代数式是()A.B.C.D.3.已知,m-n=4,则的值为()A.12 B.C.25 D.4.若是完全平方式,则的值是()A.B.C.或D.或5.下列各式能用平方差公式计算的是()A.B.C.D.6.若,则n的值是()A.2024 B.2023 C.2022 D.20217.已知a,b,c为实数,且,则a,b,c之间的大小关系是()A.B.C.D.8.如图分割的正方形,拼接成长方形的方案中,可以验证()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.计算:.10.设是一个完全平方式,则m= .11.已知:,则.12.若,ab=3,则.13.三个连续偶数,若中间的一个为n,则它们的积为:.三、解答题:(本题共5题,共45分)14.(1).(2).15.利用乘法公式计算(1);(2);16.先化简,再求值:,其中, b=-117.已知,求下列各式的值.(1)求的值;(2)求的值.18.如图,长方形拼图,白色部分均由长为、宽为的小长方形卡片拼成.(1)如图1,当图中最大长方形的宽为时,分别求、的值;(2)如图2,若大正方形的面积为81,每张卡片的面积为14,求小正方形的边长;(3)如图3,当两个阴影部分(均为长方形)面积差为定值时,求与的数量关系.参考答案:1.B 2.C 3.A 4.D 5.B 6.D 7.A 8.A9.404110.±3611.712.13.n 3 -4n14.(1)解:.(2)解:.15.(1)解:;(2)解:.16.解:原式=(4a2−6ab+6ab−9b2−4a2+4ab−b2)÷(-4b).=(4ab−10b2)÷(-4b).=4ab÷(-4b)−10b2÷(-4b)= ,当a= ,b=-1时,原式= − =−5.17.(1)解:∵∴;(2)解:由(1)可知,∴.18.(1)解:由最大长方形的宽可得:;由最大长方形的长可得:,从而..(2)解:小正方形的边长为,大正方形的边长为比较图中正方形的面积可得:;当时.(3)解:设最大长方形的长为,则.∴当时,为定值.∴为定值时,.。
【人教版八年级数学上册同步练习试题及答案】14.2乘法公式(含答案解析)
14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b22.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1 B.x4+1 C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.参考答案:1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
2022-2023学年人教版八年级数学上册《14-2乘法公式》同步综合练习题(附答案)
2022-2023学年人教版八年级数学上册《14.2乘法公式》同步综合练习题(附答案)一.选择题1.已知:a+b=3,a﹣b=1,则a2﹣b2等于()A.1B.2C.3D.42.下列整式乘法能用平方差公式计算的是()A.(2a+b)(a﹣2b)B.(b﹣2a)(﹣2a﹣b)C.(2a+b)(﹣2a﹣b)D.(a﹣2b)(2b﹣a)3.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个长方形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣ab=a(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)4.某同学在计算3(4+1)(42+1)时,把3写成4﹣1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=162﹣1=255.请借鉴该同学的经验,计算:=()A.B.C.1D.25.下列计算正确的是()A.x4+x2=x6B.x6÷x3=x2C.(5m﹣n)(﹣5m﹣n)=n2﹣25m2D.(﹣3xy)2=6x2y26.已知a+b=6,则a2﹣b2+12b的值为()A.6B.12C.24D.367.若代数式x2+kx+64是完全平方式,则k等于()A.±16B.16C.±8D.88.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(﹣2a2)3=8a6D.(a+b)2=a2+b29.如果多项式x2+mx+16是一个二项式的完全平方式,那么m的值为()A.8B.+10C.8或﹣8D.﹣810.已知16x2+4(k﹣1)xy+9y2是完全平方式,则k的值为()A.7B.﹣5C.±7D.7或﹣5二.填空题11.计算20192﹣2020×2018的值为.12.计算:=.13.已知a2﹣b2=8,a﹣b=4,则2a+2b=.14.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1….则22022+22021+22020+…+22+2+1的结果为.15.计算(2+1)×(22+1)×(24+1)…(2128+1)+1=.16.已知a+b=6,ab=﹣6,则a2+b2=.17.若关于x的二次三项式x2﹣ax+是完全平方式,则a的值是.18.若a+b=8,ab=5,则a2+b2=.19.已知x2+y2=34,x﹣y=2,则(x+y)2的值为.20.已知x+y=2,xy=﹣1,(x﹣y)2=.三.解答题21.从乘法公式(a+b)2=a2+2ab+b2中,我们可以算出a+b、a2+b2与ab的数量关系,应用此关系解决下列数学问题.(1)若a+b=8,ab=15,求a2+b2的值;(2)若m满足(11﹣m)2+(m+9)2=10,求(11﹣m)(m+9)的值.22.(1)已知a+b=6,ab=﹣3,求代数式a2+b2的值;(2)已知3x=4,9y=7,求3x+2y的值.23.计算:(9x﹣2y)(x+y)﹣(﹣3x+y)(﹣3x﹣y).24.如图,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是:(请选择正确的选项);A.a2﹣ab=a(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)D.a2﹣b2=(a+b)(a﹣b)(2)请利用你从(1)选出的等式,完成下列各题:①已知9a2﹣b2=36,3a+b=9,则3a﹣b=;②计算:.参考答案一.选择题1.解:∵a+b=3,a﹣b=1,∴原式=(a+b)(a﹣b)=3×1=3.故选:C.2.解:A、(2a+b)(a﹣2b)不能用平方差公式计算,故此选项不符合题意;B、(b﹣2a)(﹣2a﹣b)=(2a﹣b)(2a+b)=4a2﹣b2,故此选项符合题意;C、(2a+b)(﹣2a﹣b)=﹣(2a+b)2,故此选项不符合题意;D、(a﹣2b)(2b﹣a)=﹣(a﹣2b)2,故此选项不符合题意.故选:B.3.解:∵左图阴影的面积是a2﹣b2,右图的阴影的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b).故选:D.4.解:原式=2×(1﹣)×=2×(1﹣)(1+)=2×(1﹣)(1+)(1+)+=2×(1﹣)(1+)+=2×(1﹣)+=2﹣+=2,故选:D.5.解:A、x4与x2不是同类项,故不能合并,故A不符合题意.B、原式=x3,故B不符合题意.C、原式=﹣(5m﹣n)(5m+n)=﹣25m2+n2,故C符合题意.D、原式=9x2y2,故D不符合题意.故选:C.6.解:∵a+b=6,∴a2﹣b2+12b=(a+b)(a﹣b)+12b=6(a﹣b)+12b=6a﹣6b+12b=6a+6b=6(a+b)=6×6=36,故选:D.7.解:∵x2+kx+64=x2+kx+82,∴kx=±2×8x,解得k=±16.故选:A.8.解:A、原式=3a,原计算错误,故此选项不符合题意;B、原式=a5,原计算正确,故此选项符合题意;C、原式=﹣8a6,原计算错误,故此选项不符合题意;D、原式=a2+2ab+b2,原计算错误,故此选项不符合题意.故选:B.9.解:∵x2+mx+16是一个完全平方式,∴m=±8.故选:C.10.解:∵16x2+4(k﹣1)xy+9y2是完全平方式,∴16x2+4(k﹣1)xy+9y2=(4x±3y)2,即4(k﹣1)=±24,解得k=7或﹣5,故选:D.二.填空题11.解:原式=20192﹣(2019+1)×(2019﹣1)=20192﹣(20192﹣1)=20192﹣20192+1=1.故答案为:1.12.解:原式=﹣=﹣.故答案为:﹣.13.解:∵a2﹣b2=(a+b)(a﹣b)=8,且a﹣b=4,∴a+b=2,∴2a+2b=2(a+b)=2×2=4.故答案为:4.14.解:由题意得,(2﹣1)(22022+22021+22020+…+22+2+1)=22023﹣1.故答案为:22023﹣1.15.解:原式=(2﹣1)(2+1)×(22+1)×(24+1)…(2128+1)+1=(22﹣1)×(22+1)×(24+1)…(2128+1)+1=(24﹣1)×(24+1)…(2128+1)+1=2256﹣1+1=2256,故答案为:2256.16.解:∵(a+b)2=a2+2ab+b2,a+b=6,ab=﹣6,∴a2+b2=(a+b)2﹣2ab=36﹣2×(﹣6)=48.故答案为:48.17.解:∵x2﹣ax+=x2﹣ax+()2,∴﹣a=±2×=±,∴a=±,故答案为:±,18.解:∵(a+b)2=a2+2ab+b2,又∵a+b=8,ab=5,∴64=a2+b2+10,∴a2+b2=54,故答案为:54.19.解:把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4,∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64.故答案为:64.20.解:(x﹣y)2=(x+y)2﹣4xy,当x+y=2,xy=﹣1时,原式=22﹣4×(﹣1)=4+4=8.故答案为:8.三.解答题21.解:(1)∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab.∵a+b=5,ab=3,∴a2+b2=(a+b)2﹣2ab=52﹣2×3=19.(2)∵(11﹣m)2+(m+9)2=10,∴[(11﹣m)+(m+9)]2﹣2(11﹣m)(m+9)=10,即:400﹣2(11﹣m)(m+9)=10.∴(11﹣m)(m+9)=195.22.解:(1)a2+b2=(a+b)2﹣2ab=62﹣2×(﹣3)=36+6=42;∴代数式a2+b2的值是42;(2)3x+2y=3x•32y=3x•9y=4×7=28.∴3x+2y的值是28.23.解:(9x﹣2y)(x+y)﹣(﹣3x+y)(﹣3x﹣y)=9x2+9xy﹣2xy﹣2y2﹣(9x2﹣y2)=9x2+9xy﹣2xy﹣2y2﹣9x2+y2=7xy﹣y2.24.解:(1)图1阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,图2阴影部分是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),由图1、图2的面积相等得,a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)①∵9a2﹣b2=36,∴(3a+b)(3a﹣b)=36,又∵3a+b=9,∴3a﹣b=36÷9=4,故答案为:4;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)(1+) (1))(1+)=××××××××…××=×=.。
2022-2023学年人教版八年级数学上册《14-2乘法公式》同步自主达标测试题(附答案)
2022-2023学年人教版八年级数学上册《14.2乘法公式》同步自主达标测试题(附答案)一.选择题(共10小题,满分30分)1.下列各式中不能用平方差公式计算的是()A.B.(﹣2x+3y)(﹣3y﹣2x)C.(﹣2x+y)(﹣2x﹣y)D.(x﹣1)(﹣x+1)2.已知:a+b=5,a﹣b=1,则a2﹣b2=()A.5B.4C.3D.23.下列计算正确的是()A.x4+x2=x6B.x6÷x3=x2C.(5m﹣n)(﹣5m﹣n)=n2﹣25m2D.(﹣3xy)2=6x2y24.下列运算正确的是()A.2a2+a3=3a5B.a3•a2=a6C.(2a2)3=8a6D.(a+2)2=a2+45.已知x﹣y=3,xy=2,则(x+y)2的值等于()A.12B.13C.14D.176.已知a+b=2,求代数式a2﹣b2+4b的值为()A.0B.4C.5D.﹣77.用如图所示的几何图形的面积可以解释的代数恒等式是()A.(2a)2=4a2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.2a(2a+b)=4a2+2ab8.若二次三项式x2+kx+4是一个完全平方式,则k的值是()A.4B.﹣4C.±2D.±49.如图将4个长、宽分别均为a和b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数式是()A.a2+2ab+b2=(a+b)2B.a2+2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b210.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式()A.(a+b)(a+2b)=a2+3ab+2b2B.(a+b)(2a+b)=2a2+3ab+b2C.(a+b)(a+2b)=2a2+3ab+b2D.(a+b)(2a+b)=a2+3ab+2b2二.填空题(共6小题,满分18分)11.计算982﹣99×97=.12.已知(a﹣b)2=13,ab=6,则a2+b2=.13.计算:(a﹣b+2c)2=.14.计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=.15.计算:=.16.如果x﹣y=+1,y﹣z=﹣1,那么x2+y2+z2﹣xy﹣yz﹣zx=.三.解答题(共6小题,满分52分)17.已知(a+b)2=5,ab=﹣2,求代数式(a﹣b)2的值.18.计算:(x+y)2﹣2(x﹣y)(2x+y).19.用乘法公式进行计算:(1)20212﹣2022×2020;(2)112+13×66+392.(3)(9x﹣2y)(x+y)﹣(﹣3x+y)(﹣3x﹣y).20.已知x+=3,求下列各式的值:(1)(x﹣)2;(2)x4+.21.如图1,从边长为a的大正方形中剪去一个边长为b的小正方形,把剩下的阴影部分拼成如图2所示的长方形.(1)上述操作能验证的公式是;(2)请应用这个公式完成下列各题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=;②计算:(1﹣)(1﹣)(1﹣)…(1﹣).22.如图1是一个长为4a,宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是.(2)根据(1)中的结论,若x+y=5,,求x﹣y的值.(3)变式应用:若(2020﹣m)2+(m﹣2021)2=7,求(2020﹣m)(m﹣2021).参考答案一.选择题(共10小题,满分30分)1.解:A、(+2b)(a﹣2b)=(a)2﹣(2b)2=﹣4b2,故能用平方差公式计算,故选项不符合题意;B、(﹣2x+3y)(﹣3y﹣2x)=(﹣2x)2﹣(3y)2=4x2﹣9y2,故能用平方差公式计算,故选项不符合题意;C、(﹣2x+y)(﹣2x﹣y)=(﹣2x)2﹣y2=4x2﹣y2,故能用平方差公式计算,故选项不符合题意;D、(x﹣1)(﹣x+1),不能用平方差公式计算,故选项符合题意.故选:D.2.解:∵a+b=5,a﹣b=1,∴a2﹣b2=(a+b)(a﹣b)=5×1=5,故选:A.3.解:A、x4与x2不是同类项,故不能合并,故A不符合题意.B、原式=x3,故B不符合题意.C、原式=﹣(5m﹣n)(5m+n)=﹣25m2+n2,故C符合题意.D、原式=9x2y2,故D不符合题意.故选:C.4.解:A.2a2和a3不能合并,故本选项不符合题意;B.a3•a2=a5,故本选项不符合题意;C.(2a2)3=8a6,故本选项符合题意;D.(a+2)2=a2+4a+4,故本选项不符合题意;故选:C.5.解:∵x﹣y=3,xy=2,∴(x+y)2=(x﹣y)2+4xy=9+8=17,故选:D.6.解:由a+b=2得:a=2﹣b,则a2﹣b2+4b=(2﹣b)2﹣b2+4b=4﹣4b+b2﹣b2+4b=4.故选:B.7.解:整体是长为2a,宽为a+b的长方形,因此面积为2a(a+b),这个长方形是由4个部分组成的,这4个部分的面积和为2a2+2ab,所以有2a(a+b)=2a2+2ab,故选:C.8.解:中间项为加上或减去x和2乘积的2倍,故k=±4.故选:D.9.解:由图可知,拼接后大正方形的边长为a+b,小正方形的边长为a﹣b,∴阴影部分的面积=(a+b)2﹣(a﹣b)2,∵阴影部分的面积是4个小长方形的面积和,∴阴影部分的面积=4ab,∴4ab=(a+b)2﹣(a﹣b)2,故选:C.10.解:整体是长为a+2b,宽为a+b的长方形,因此面积为(a+2b)(a+b),整体是由6个部分的面积和,即a2+3ab+2b2,因此有(a+2b)(a+b)=a2+3ab+2b2,故选:A.二.填空题(共6小题,满分18分)11.解:982﹣99×97=982﹣(98+1)(98﹣1)=982﹣(982﹣1)=982﹣982+1=1.故答案为:1.12.解:∵(a﹣b)2=13,ab=6,∴a2+b2=(a﹣b)2+2ab=13+12=25.故答案为:25.13.解:原式=(a﹣b)2+4c(a﹣b)+4c2=a2﹣2ab+b2+4ac﹣4bc+4c2.故答案为:a2﹣2ab+b2+4ac﹣4bc+4c2.14.解:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2,=[(2b﹣3c)+4][﹣(2b﹣3c)+4]﹣2(b﹣c)2,=16﹣(2b﹣3c)2﹣2(b﹣c)2,=16﹣4b2+12bc﹣9c2﹣2b2+4bc﹣2c2,=﹣6b2﹣11c2+16bc+16.15.解:原式=(1﹣)×××…×=×…×==.故答案为:.16.解:∵x﹣y=+1①,y﹣z=﹣1②,∴x﹣z=2③,则①2+②2+③2=(x﹣y)2+(y﹣z)2+(x﹣z)2=(+1)2+(﹣1)2+(2)2=14,即2(x2+y2+z2﹣xy﹣yz﹣yx)=14,∴x2+y2+z2﹣xy﹣yz﹣yx=7.故答案为:7.三.解答题(共6小题,满分52分)17.解:(a﹣b)2=a2﹣2ab+b2=a2+2ab+b2﹣4ab=(a+b)2﹣4ab.当(a+b)2=5,ab=﹣2时,(a﹣b)2=(a+b)2﹣4ab=5﹣4×(﹣2)=13.18.解:原式=x2+2xy+y2﹣2(2x2﹣xy﹣y2)=x2+2xy+y2﹣4x2+2xy+2y2=﹣3x2+4xy+3y2.19.解:(1)20212﹣2022×2020=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=1;(2)112+13×66+392=112+13×2×3×11+392=112+2×11×39+392=(11+39)2=502=2500.(3)(9x﹣2y)(x+y)﹣(﹣3x+y)(﹣3x﹣y)=9x2+9xy﹣2xy﹣2y2﹣(9x2﹣y2)=9x2+9xy﹣2xy﹣2y2﹣9x2+y2=7xy﹣y2.20.解:(1)∵=,∴===﹣4x•=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.21.解:(1)图1中阴影部分的面积为边长为a,边长为b的面积差,即a2﹣b2,图2长方形的长为a+b,宽为a﹣b,因此面积为(a+b)(a﹣b),所以有a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)①∵4a2﹣b2=24,∴(2a+b)(2a﹣b)=24,又∵2a+b=6,∴2a﹣b=24÷6=4,故答案为:4;②原式====.22.解:(1)∵图2面积可表示为(a+b)2或(a﹣b)2+4ab,∴可得(a+b)2=(a﹣b)2+4ab;(2)由(1)题结论(a+b)2=(a﹣b)2+4ab可得,(a﹣b)2=(a+b)2﹣4ab,∴a﹣b=±,∴当x+y=5,时,x﹣y=±====±4,(3)∵(a+b)2=a2+2ab+b2,∴ab=,∴当(2020﹣m)2+(m﹣2021)2=7时,(2020﹣m)(m﹣2021)====﹣3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2乘法公式同步测试
一、单选题
1. 下列各式中,运算正确的是()
A.(a3)2=a5
B.(a﹣b)2=a2﹣b2
C.a6÷a2=a4
D.a2+a2=2a4
2. 下列运算正确的是()
A.(﹣ab2)3÷(ab2)2=﹣ab2
B.3a+2a=5a2
C.(2a+b)(2a﹣b)=2a2﹣b2
D.(2a+b)2=4a2+b2
3. 下列计算正确的是()
A.a2+a2=a4
B.a2•a3=a6
C.(﹣a2)2=a4
D.(a+1)2=a2+1
4. 若a2﹣b2=1
8
,a+b=
1
4
,则a﹣b的值为()
A.﹣1
2
B.
1
2
C.1
D.2
5. 若x2﹣xy+2=0,y2﹣xy﹣4=0,则x﹣y的值是()
A.﹣2
B.2
C.±2
D.2
6. 若x2+2(m-3)x+16是完全平方式,则m的值等于()
A.3
B.-5
C.7
D.7或-1
7. 如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )
A.2m+3
B.2m+6
C.m+3
D.m+6
8. 若x n-1=(x+1)(x-1)(x2+1)(x4+1),则n等于( )
A.16
B.4
C.6
D.8
9. 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式().
A.(a+b)2=a2+2ab+b2
B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)
D.(a+b)(a-2b)=a2-ab-2b2
10. 若a+b=3,ab=2,则a2+b2的值是()
A.2.5
B.5
C.10
D.15
二、填空题
11. 已知(x﹣2016)2+(x﹣2018)2=80,则(x﹣2017)2=_________.
12. 若m=4n+3,则m2﹣8mn+16n2的值是________.
13. 计算:2008×2010﹣20092=____________.
14. 已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=____________.
15. (2x+y )(2x-y )=__________.
16. 已知225y my ++是完全平方式,则m =________.
三、计算题
17. 计算:(1)(a+b )2﹣a (a+2b+1) (2)2(23)(2)(2)x y x y x y +-+-
(3)2(2)(3)(3)x x x --+- (4)(23)(23)a b a b ---
18. 已知22x x +=,求2(2)(3)(1)(1)x x x x x +-+++-的值
19. 已知:A=(a+b )2﹣2a (a+b )
(1)化简A ;
b =0,求A的值.
(2)已知(a﹣1)22
20. 大家一定知道杨辉三角(Ⅰ),观察下列等式(Ⅱ)
(1)根据前面各式规律,则(a+b)5=____________________________.
(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.
21. 阅读下文,寻找规律.
计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….
(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=________.
(2)根据你的猜想,计算:1+3+32+33…+3n=__________.(其中n是正整数)22. 化简与解方程
(1)化简:(x+y)(x﹣y)﹣(2x﹣y)(x+3y);
(2)解方程:(3x+1)(3x﹣1)﹣(3x+1)2=﹣8.
23. 已知:x+y=3,xy=1,试求:
(1)x2+y2的值;
(2)(x-y)2的值.
答案:1-5.CACBD 6-10.DADCB
11.39
12.9
13. -1
14. -2
15. 4x 2-y 2
16. ±10
17. (1)b 2-a (2)12xy+10y 2 (3)-4x+13 (4)9b 2-4a 2
18. 原式=x 2+x+3=5
19. (1)b 2-a 2(2)3
20. (1)54322345510105a a b a b a b ab b +++++ (2)原式=(2-1)5=1
21. (1)1-x 1n + (2)11(13)2
n +-- 22. (1)2252x xy y --+ (2)-6x-2=-8
23. (1)7 (2)5
24.。