人教版初中数学九年级上册第二十五章概率初步单元测试题有答案解析

合集下载

2022年人教版九年级数学上册第二十五章概率初步章节测评试卷(含答案详解)

2022年人教版九年级数学上册第二十五章概率初步章节测评试卷(含答案详解)

人教版九年级数学上册第二十五章概率初步章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为( )A.14B.13C.12D.352、某随机事件A发生的概率()P A的值不可能是()A.0.0001B.0.5C.0.99D.13、班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.234、投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.496、妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是()A.14B.13C.12D.347、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8、甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程210ax bx++=有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.23B.59C.49D.139、在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个10、在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.14B.13C.12D.34第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的盒子里有红色、黄色、白色小球共80个.它们除颜色外均相同,小文将这些小球摇匀后从中随机摸出一个记下颜色,再把它放回盒中,不断重复,多次试验后他发现摸到红色、黄色小球的频率依次为30%和40%,由此可估计盒中大约有白球_____个.2、现有两个不透明的箱子,一个装有2个红球和1个白球,另一个装有1个红球和2个白球,这些球除颜色外完全相同.从两个箱子中各随机摸出1个球,摸出1红1白的概率是______.3、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为_____.4、在1-,3,5,7中随机选取一个数记为a,再从余下的数中随机取一个数记为b,则一次函数=+经过一、三、四象限的概率为______.y ax b5、某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是_________.(用最简分数表示)三、解答题(5小题,每小题10分,共计50分)1、为了迎接建党100周年,学校举办了“感党恩•跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是;(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率.2、2021年,为了能源资源配置更加合理,我国多地发布限电令.某校为了解学生对限电原因的了解程度,在九年级学生中作了一次抽样调查,并将结果分成四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查结果绘制成了如下不完整的统计图:请根据图中信息回答下列问题:(1)本次被调查的学生有_________人;请补全条形统计图;(2)若该校九年级共有1200名学生,请你估计该校九年级学生中“比较了解”限电原因的学生有多少人?(3)九年(1)班被查的学生中A等级的有5人,其中2名男生,3名女生,现打算从这5名学生中随意抽取2人进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率.3、第24届北京冬奥会的开幕式中,“二十四节气的开幕式倒计时”向全世界人民展示了中华文化源远流长的特点,尽显中国式浪漫.杨老师为了让学生深入的了解二十四节气,将每个节气的名称写在形状大小都一样的小卡片上,并将卡片倒扣在桌面上,邀请同学上讲台随机抽取一张卡片,并向大家介绍卡片上对应节气的含义.(1)请问随机抽取一张卡片,上面写有“立春”的概率为;(2)若老师将属于春季的“立春、雨水,惊蛰、春分、清明、谷雨”六张卡片单独拿出,邀请小明和小华同时抽取.请利用画树状图或列表的方法,求两人抽到的卡片上写有相同的字的概率.4、为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是____人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为_____度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.5、为増强学生的实践劳动能力,某校本周为全校1000名学生提供了A、B、C、D四种类型特色活动,为了解学生对这四种特色活动的喜好情况,学校随机抽取部分学生进行了“你最喜欢哪一种特色活动(必选且只选一种)”的问卷调查:并根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)被抽取的学生共有人,在抽取的学生中最喜欢C类活动的人数为;扇形统计图中“D”类对应扇形的圆心角的大小为,估计全体1000名学生中最喜欢B活动的有人;(2)根据題意补全条形统计图;(3)现从甲、乙、丙、丁四名学生会成员中任选两人担任此次特色活动的“监督员”,请用树状图或列表法表示出所有可能的結果,求乙被选为“监督员”的概率.-参考答案-一、单选题1、A【解析】【分析】【详解】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份, 故针头扎在阴影区域的概率为14,故选:A .【考点】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.2、D【解析】【分析】概率取值范围:01p ,随机事件的取值范围是01p <<.【详解】解:概率取值范围:01p .而必然发生的事件的概率P (A )1=,不可能发生事件的概率P (A )0=,随机事件的取值范围是01p <<.观察选项,只有选项D 符合题意. 故选:D .【考点】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.3、C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A,B两位同学座位相邻的概率是61 122.故选C.【考点】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.4、D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【考点】此题主要考查了随机事件的判断,关键是掌握随机事件,确定性事件的定义.5、D【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可.【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,∴所选矩形含点A的概率是4 9故选:D【考点】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.6、A【解析】【分析】根据题意画出树形图,求出在这两个路口都直接通过的概率为14即可求解.【详解】解:由题意画树形图得,由树形图得共有4种等可能性,其中在这两个路口都直接通过的概率是P=14.故选:A【考点】本题考查了列表或画树形图求概率,理解题意,正确列表或画树形图得到所有等可能的结果是解题关键.7、A【解析】【详解】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是12,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.8、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)∵关于x的一元二次方程210ax bx++=有两个不相等的实数根,∴△=b2-4a>0, 画树状图如下:由图可知,共有9种等可能的结果,分别是a=12,b=1,则△=-1<0;a=12,b=3,则△=7>0;a=12,b=2,则△=2>0;a=14,b=1,则△=0;a=14,b=3,则△=8>0;a=14,b=2,则△=3>0;a=1,b=1,则△=-3<0;a=1,b=3,则△=5>0;a=1,b=2,则△=0;其中能使乙获胜的有4种结果数,∴乙获胜的概率为49,故选C.【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9、D【解析】【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】设红球有x个,根据题意得,3:(3+x)=1:5,解得x=12,经检验:x=12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选D.【考点】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.10、C【解析】【分析】利用列表法或树状图法找出所有出现的可能结果,再找出两次摸出的数字之和为奇数出现的可能结果即可求解.【详解】从表中可知,共有4种等可能的结果,其中两次摸出的数字之和为奇数的有2种,所以两次摸出的数字之和为奇数的的概率是21 42 ,故选:C【考点】本题考查了利用列表法或树状图法求概率,正确地列出表格或树状图是解题的关键.注意:从中任意摸出一张,放回搅匀后再任意摸出一张.二、填空题1、24【解析】【分析】根据题意,先求出摸到白色小球的频率,再乘以总球数即可求解.【详解】解:∵多次试验的频率会稳定在概率附近,∴从盒子中摸出一个球恰好是白球的概率约为1-30 %-40 %=30 %,∴白球的个数约为80×30 %=24个.故答案为24.【考点】本题考查了利用频率估计概率,解答此题的关键是要计算出盒中白球所占的比例,再计算其个数.2、5 9【解析】【分析】列表得出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:列表如下:由表知,共有9种等可能结果,其中摸出1红1白有5种结果,所以摸出的两个球颜色相同的概率为59,故答案为:59.【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.3、0.600【解析】【详解】观察图象可知,该射手击中靶心的频率维持在0.600左右,所以该射手击中靶心的概率的估计值为0.600.4、1 4【解析】【分析】先画树状图,确定a,b,再根据图像分布,确定a,b的符号,根据概率公式计算即可.【详解】根据题意,画树状图如下:共有12种等可能性,∵一次函数y ax b =+经过一、三、四象限, ∴a >0,b <0,符合条件的有3种等可能性,∴一次函数y ax b =+经过一、三、四象限的概率为31124=; 故答案为:14.【考点】本题考查了不放回式的概率计算,一次函数的图像分布,熟练掌握概率计算,准确画树状图是解题的关键. 5、13【解析】 【分析】根据题意计算中奖概率即可; 【详解】解:∵每一箱都有6件产品,且每箱中都有2件能中奖,∴P(从其中一箱中随机抽取1件产品中奖)=21 63 ,故答案为:13.【考点】本题主要考查简单概率的计算,正确理解题意是解本题的关键.三、解答题1、(1)14;(2)见解析,12【解析】【分析】(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率.【详解】解:(1)∵共有4种可能出现的结果,其中是舞蹈社团D的有1种,∴小颖从中随机抽取一张卡片是舞蹈社团D的概率是14,故答案为:14;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,∴小颖抽取的两张卡片中有一张是演讲社团C的概率是612=12.【考点】本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键.2、 (1)200,图见详解(2)该校九年级学生中“比较了解”限电原因的学生有360人.(3)35 P【解析】【分析】(1)根据统计图可知B等级的学生有60人,占抽取人数的30%,进而问题可求解;(2)由统计图及题意可直接进行求解;(3)通过列表法进行求解概率即可.(1)解:由统计图可知B等级的学生有60人,占抽取人数的30%,∴本次被调查的学生有60÷30%=200(人),∴C等级的学生有:200-40-60-20=80(人),补全统计图如下:(2)解:由题意得:1200×30%=360(人),答:该校九年级学生中“比较了解”限电原因的学生有360人;(3)解:由题意可得列表如下:由上表可知5人中随机抽取2人的可能性有20种,恰好为一男一女的有12种,∴恰好抽到一男一女的概率为35P .【考点】本题主要考查概率及扇形统计图、条形统计图、样本估计总体,解题的关键是根据题意得到相应的数据进行分析即可.3、 (1)124;(2)16.【解析】【分析】(1)根据概率公式,用写有“立春”的卡片数除以总卡片数即可得出答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与小明和小华同时抽取到的卡片上写有相同字的情况,再利用概率公式求解即可求得答案;(1)解:解:共有24张卡片,其中写有“立春”的卡片数为1,抽取到写有“立春”的概率为124;(2) 解:共有30种等可能性的结果,其中写有相同字的有4种可能性,分别是:(谷雨,雨水)、(雨水,谷雨) 、(春分,立春)、(立春,春分);∴两人抽到的卡片上写有相同的字的概率为:P(抽到相同字)=41 246=.【考点】本题考查了列表法与树状图法,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m是解题的关键,然后利用概率公式计算事件A或事件B的概率.4、 (1)120,见解析(2)90(3)300人(4)见解析,10%【解析】【分析】(1)由B的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)用C的人数除以调查总数再乘以360°即可得到答案;(3)用样本估计总体进行计算即可;(4)列出表格或画出树状图,得到所有可能的结果数,找出符合条件的结果数,再由概率公式求解即可.(1)因为参与B活动的人数为36人,占总人数30%,所以总人数36120 30%==人,则参与E活动的人数为:120303630618----=人;补全统计图如下:故答案为:120;(2)扇形C的圆心角为:3036090 120⨯︒=︒,故答案为:90;(3)最喜爱“测量”项目的学生人数是:301200300120⨯=人;答:估计其中最喜爱“测量”项目的学生人数是300人;(4)列表如下:或者树状图如下:所以,选中B 、E 这两项活动的概率为:()2100%10%20BE P =⨯=选中. 【考点】 本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.5、 (1)100,30,36°,350(2)见解析(3)见解析,12【解析】【分析】(1)用最喜欢A类活动的人数除以最喜欢A类活动的人数所占百分比即可得被抽取的学生的总人数;用总人数减去最喜欢A类、B类、D类活动的人数即可到最喜欢C类活动的人数;用最喜欢D类人数除以被抽取学生总数,求出最喜欢D类人数占被抽取学生总数的百分比,再乘以360°,即可求出“D”类对应扇形的圆心角;用喜欢B类活动人数除以被抽取学生总人数,得到最喜欢B类人数占被抽取学生总数的百分比,再乘以1000,即可求出最喜欢B活动的人数;(2)按照(1)求出的最喜欢C类活动的人数,补全即可;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.(1)解:被抽取学生总人数为:25÷25%=100(人),在抽取的学生中最喜欢C类活动的人数为:100―25―35―10=30(人),扇形统计图中D类占被抽取学生的百分比为:10100%=10% 100⨯,扇形统计图中D类对应扇形的圆心角为:360°×10%=36°,扇形统计图中B类占被抽取学生的百分比为:35100%=35% 100⨯,估计全体1000名学生中最喜欢B活动的有:1000×35%=350(人);故答案为:100,30,36°,350(2)解:补全条形统计图如图所示,(3)解:画树状图为:共有12种等可能的结果数,其中乙被选到的结果数为6,.∴乙被选到的概率为:61=122答:乙被选为“监督员”的概率为1.2【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数目n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

【单元练】人教版初中九年级数学上册第二十五章《概率初步》知识点总结(含答案解析)

【单元练】人教版初中九年级数学上册第二十五章《概率初步》知识点总结(含答案解析)

一、选择题1.用如图所示的两个转盘进行“配紫色”(红色与蓝色能配成紫色)游戏,配得紫色的概率是( )A.12B.13C.14D.16D解析:D【分析】先画出树状图,从而可得出两个转盘转动时的所有可能结果,再找出一个为红色,一个为蓝色的结果,然后利用概率公式即可得.【详解】由题意,画树状图如下:由此可知,两个转盘转动时的所有可能结果共有6种,它们每一种出现的可能性都相等,其中,一个为红色,一个为蓝色的结果只有1种,则配得紫色的概率是16P ,故选:D.【点睛】本题考查了利用列举法求概率,依据题意,正确画出树状图是解题关键.2.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.38D解析:D【分析】根据几何概率的求法,可得:小球最终停在黑色区域的概率等于黑色区域的面积与总面积的比值.【详解】根据图示,∵黑色区域的面积等于6块方砖的面积,总面积等于16块方砖的面积,∴小球最终停留在黑色区域的概率是:63=168.故选D.【点睛】此题主要考查了几何概率问题,用到的知识点为:概率=黑色区域的面积与总面积之比.3.下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生A解析:A【解析】分析:根据调查的方式、中位数、可能性和样本知识进行判断即可.详解:A、调查舞水河的水质情况,采用抽样调查的方式,正确;B、数据2.0,-2,1,3的中位数是1,错误;C、可能性是99%的事件在一次实验中不一定会发生,错误;D、从2000名学生中随机抽取100名学生进行调查,样本容量为2000,错误;故选A.点睛:此题考查概率的意义,关键是根据调查的方式、中位数、可能性和样本知识解答.4.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14C解析:C【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴,∴,2=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.5.“明天的降水概率为90%”的含义解释正确的是()A.明天90%的地区会下雨B.90%的人认为明天会下雨C.明天90%的时间会下雨D.在100次类似于明天的天气条件下,大约有90次会下雨D解析:D【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得,在100次类似于明天的天气条件下,大约有90次会下雨,正确;故选:D.【点睛】随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.6.某校食堂每天中午为学生提供A、B两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为()A.12B.13C.14D.23A解析:A【分析】画出树状图得出所有等可能的情况数,再找出甲乙两人选择同款套餐的情况数,然后根据概率公式求解即可.【详解】根据题意画图如下:所有等可能的情况有4种,其中甲乙两人选择同款套餐的有2种,则甲乙两人选择同款套餐的概率为:21 42 ;故选:A.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.16C解析:C【分析】画出树状图,找出所有等可能的结果,计算即可.【详解】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴()21 = 63P两盏灯泡同时发光,故选C.【点睛】本题考查了列表法与树状图法,正确的画出树状图是解决此题的关键.8.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。

初中数学人教版九年级上册第二十五章 概率初步单元复习-章节测试习题(1)

初中数学人教版九年级上册第二十五章 概率初步单元复习-章节测试习题(1)

章节测试题1.【题文】如图,假设可以随机在图中取点,(1)这个点取在阴影部分的概率是_______;(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为.【答案】(1) ;(2)见解答,答案不唯一【分析】(1)用阴影部分的面积除以图形总面积即可;(1)使所设计图案阴影部分的面积占整个图案面积的即可.【解答】(1)1÷7=(2)如图所示(红色部分),答案不唯一2.【题文】游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.【答案】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.说明理由见解答【分析】B转盘有2种情况,A转盘有3种情况,要想获胜的概率为,则应让转盘A 分成10份,使配成紫色的情况数有2种即可.【解答】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.则共有20种,能配成紫色的情况有两种,∴P(配成紫色)=3.【题文】在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.(1)从中任意摸出一个球,摸到球的可能性大.(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是,请问放入了多少个黄球?【答案】(1)黄;(2)2.【分析】(1)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大;(2)由红球所占的份数可求出总数目,进而可求出放入黄球的个数.【解答】(1)摸到红球的概率为=,摸到黄球的概率为:,所以摸到黄球的可能性大.故答案为:黄;(2)∵随机摸出一个球是红球的概率是,∴总的小球数=5÷=15(个),∴放入黄球的个数=15-13=2.4.【题文】学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10 三张扑克牌,乙手中有 5、8、9 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.【答案】(1)详见解答;(2).【分析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.【解答】解:(1)由题意可得,每人随机取出手中的一张牌进行比较的所有情况是:,,,,,,,,.(2)由()知共有9种等可能的情况,学生乙获胜的情况有:,,,所以学生乙一局比赛获胜的概率是:.故答案为:(1)见解答;(2).5.【题文】小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【答案】(1);(2)该游戏公平.【分析】(1)根据概率公式直接计算即可;(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【解答】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率= ;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为4,所以小王胜的概率= ;两次的数字都是偶数的结果数为4,所以小张胜的概率= ,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.6.【题文】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据动转盘的次数n100 150 200 500 800 1000落在“铅笔”的次数m68 111 136 345 546 701落在“铅笔”的频率0.68 0.74 0.68 0.69 0.68 0.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为______;(结果保留小数点后一位)(2)铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天大致需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,然后解方程即可.【解答】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为: 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,解得n=36,所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.7.【答题】下列事件是必然事件的是()A. 乘坐公共汽车恰好有空座B. 同位角相等C. 打开手机就有未接电话D. 三角形内角和等于180°【答案】D【分析】本题考查了必然事件。

初三第二十五章概率初步检测题及答案解析

初三第二十五章概率初步检测题及答案解析

初三第二十五章概率初步检测题及答案解析本检测题满分:100分,时刻:90分钟一、选择题(每小题3分,共30分)1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出3个球.下列事件是必定事件的是( ) A.摸出的3个球中至少有1个球是黑球 B.摸出的3个球中至少有1个球是白球 C.摸出的3个球中至少有2个球是黑球 D.摸出的3个球中至少有2个球是白球2从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .233.如图所示,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯同时发光的概率为( )A. B. C. D. 4. 随机掷两枚硬币,落地后全部正面朝上的概率是( ) A.1 B.12 C.13 D.145.有一个正方体,6个面上分别标有1到6这6个整数,投掷那个正方体一次,则显现向上一面的数字是偶数的概率为( ) A.13 B.16 C.12 D.146.将一颗骰子(正方体)连掷两次,得到的点数差不多上4的概率是( ) A.61 B.41 C.161 D.361 7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A.54 B.53 C.52 D.51 8.甲、乙、丙三人进行乒乓球竞赛,规则是:两人竞赛,另一人当裁判,输者将在下一局中担任裁判,每一局竞赛没有平局.已知甲、乙各竞赛了4局,丙当了3次裁判.问第2局的输者是( )A.甲B.乙C.丙D.不能确定9.一个不透亮的口袋里装有除颜色外都相同的5个白球和若干个红球,在不承诺将球倒出来数的前提下,小亮为了估量其中的红球数,采纳如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估量口袋中的红球大约有()个.A.45B.48C.50D.5510.做重复试验:抛掷同一枚啤酒瓶盖次.通过统计得“凸面向上”的频率约为,则能够由此估量抛掷这枚啤酒瓶盖显现“凹面向上”的概率约为()二、填空题(每小题3分,共24分)11.王刚的身高今后会长到4米,那个事件发生的概率为_______.12.我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1 000米跑肺活量测试”为必测项目,另外从“引体向上”或“推铅球”中选一项测试.小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是.13. 如图所示,A是正方体小木块(质地平均)的一个顶点,将木块随机投掷在水平桌面上,则稳固后A与桌面接触的概率是 .14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.15.小芳掷一枚硬币次,有次正面向上,当她掷第次时,正面向上的概率为______.16.下表为某乡村100名居民的年龄分布情形(每组含最小值,不含最大值):年龄0~10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90人数8 10 12 12 14 19 13 7 5假如老人以60岁为标准,那么该村老人所占的比例约是________%.17.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在那个圆面上平均地撒一把豆子,则豆子落在阴影部分的概率第17题图是_______.18.已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________.三、解答题(共46分)19.(5分)下列问题哪些是必定事件?哪些是不可能事件?哪些是随机事件? (1)太阳从西边落山;(2)某人的体温是;(3)221a b +=-(其中a ,b 差不多上实数);(4)水往低处流; (5)三个人性别各不相同;(6)一元二次方程2230x x ++=无实数解;(7)通过有信号灯的十字路口,遇见红灯. 20.(5分)如图所示,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等但面积相等的三角形是 (只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC 面积相等的概率. 21.(6分)在一个不透亮的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.那个游戏规则对双方公平吗?请你利用树状图或列表法说明理由(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 22.(6分)有形状、大小和质地都相同的四张卡片,正面分别写有和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能显现的所有情形(结果用A ,B ,C ,D 表示).(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜;若至少有一个等式成立,则小强胜.你认为那个游戏公平吗?若公平,请说明理由;若不公平,则那个规则对谁有利?什么缘故?23.(6分)在一个不透亮的盒子里,装有三个分别写有数字的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)若随机选一个年级的学生代表和一项活动内容,请你用画树状图法表示所有可能显现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.25.(6分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地平均的正方体)试验,他们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6显现的次数7 9 6 8 20 10(1)运算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“依照上述试验,一次试验中显现5点朝上的概率最大”;小红说:“假如投掷600次,那么显现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?什么缘故?26.(6分)小明和小刚做摸纸牌游戏.如图所示,有两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.那个游戏对双方公平吗?请说明理由.第二十五章 概率初步检测题参考答案1.A 解析:一定会发生的事件为必定事件.从4个黑球和2个白球中摸出3个球,一定至少有1个球是黑球,故A 为必定事件.2. B 解析:绝对值小于的卡片有三种,故所求概率为3193=. 3. B 解析:随机闭合开关K 1,K 2,K 3中的两个,共有三种可能:闭合开关K 1,K 2;闭合开关K 1,K 3;闭合开关K 2,K 3.而能让两盏灯同时发光的只有闭合开关K 1,K 3这一种情形,故其概率为.4. D 解析:随机掷两枚硬币,有四种可能:(正,正),(正,反),(反,正),(反,反),落地后全部正面朝上的情形只有(正,正),因此落地后全部正面朝上的概率是14.5 .C 解析:显现向上一面的数字有6种,其中是偶数的有3种,故概率为12. 6.D 解析:连掷两次骰子显现的点数情形,共36种: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6). 而点数差不多上4的只有(4,4)一种. 7.B 解析:把三名男生分别记为,,,两名女生分别记为,,产生的所有结果有:,共10个; 选出的恰为一男一女的结果有:,共6个.因此选出的恰为一男一女的概率是.53106=8.C 解析:设总共赛了局,则有,说明甲、乙、丙三人共赛了5局.而丙当了3次裁判,说明丙赛了两局,则丙和甲,丙和乙各赛了一局,那么甲和乙赛了3局.甲和乙同赛不可能显现在任何相邻的两局中,则甲、乙两人竞赛在第一、三、五局中,第三局丙当裁判,则第二局中丙输了.9.A 解析:本题考查了简单随机事件的概率运算,设口袋中有x 个红球,由题意得,P (摸到白球)==,解得x =45.10.D 解析:在大量重复试验下,随机事件发生的频率能够作为概率的估量值,因此抛掷这枚啤酒瓶盖显现“凹面向上”的概率约为.11.0 解析:“王刚的身高今后会长到4米”那个事件是不可能事件,因此那个事件发生的概率是0.12.14解析:分别用A ,B 代表“引体向上”与“推铅球”,画树状图如图所示.∵ 共有8种等可能的结果,小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的有2种情形, 第12题答图 ∴ 小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是2184. 13.21解析:将木块随机投掷在水平桌面上,正方体的六个面都可能与桌面接触,因为A 是正方体小木块三个面的交点,因此当这三个面中的任一面与桌面接触时,A 都与桌面接触.因此P (A 与桌面接触)==21. 14.45解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,因此抽到有中心对称图案的卡片的概率是45.15. 21 解析:掷一枚硬币正面向上的概率为21,概率是个固定值,不随试验次数的变化而变化.16.25 解析:∵ 60岁及以上的老人共有,∴ 该村老人所占的比例约是.17.21解析:由图可知阴影部分的面积是大圆面积的一半,因此豆子落在阴影部分的概率是21. 18. 34解析:四条线段组成三角形三边有四种情形:. 其中不能组成三角形,因此从中任取三条线段能组成三角形的概率是34.19.解:(1)(4)(6)是必定事件,(2)(3)(5)是不可能事件,(7)是随机事件.20.分析:本题综合考查了三角形的面积和概率.(1)依照“同(等)底同(等)高的三角形面积相等”解答.(2)画树状图求概率.解:(1)△DFG或△DHF;(2)画树状图如图所示:由树状图可知共有6种等可能结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,因此所画三角形与△ABC面积相等的概率P = = .答:所画三角形与△ABC面积相等的概率为.点拨:树状图法能够不重复不遗漏地列出所有等可能的结果,适合两步或两步以上完成的事件.注意:P(E)= .21.解:此游戏规则对双方不公平.理由如下:树状图如下:开始红红黄蓝红红黄蓝红红黄蓝红红黄蓝红红黄蓝第21题答图或列表如下:红红黄蓝红(红,红)(红,红)(红,黄)(红,蓝)红(红,红)(红,红)(红,黄)(红,蓝)黄(黄,红)(黄,红)(黄,黄)(黄,蓝)蓝(蓝,红)(蓝,红)(蓝,黄)(蓝,蓝)由上述树状图或表格知:所有可能显现的结果共有16种.∴,.∴此游戏规则对双方不公平,小亮赢.22.解:(1)列表如下:第二次第一次A B C DA (A,B) (A,C) (A,D)B (B,A)(B,C) (B,D)C (C,A)(C,B) (C,D)D (D,A)(D,B) (D,C)所有情形有12种:.(2)游戏不公平.那个规则对小强有利.理由如下:∵61122=,=651210=,,∴那个规则对小强有利.23.解:树状图如下:第2次第1次(1)13; (2)49. 24.解:(1)画树状图如下:(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==. 25.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大, 只有当试验的次数足够大时,该事件发生的频率稳固在事件发生的概率邻近. 小红的说法也是错误的.因为事件的发生具有随机性,因此“6点朝上”的次数不一定是100次.26.分析:本题考查了概率的运算与实际应用,利用列表法或树状图法列出两张牌的牌面数字之积的所有等可能结果,利用概率运算公式可求两张牌的牌面数字之积为奇数的概率. 解:第一张牌面上的数字积第二张牌面上的数字232 4 6 369∴ P (积为奇数)=,P (积为偶数)=.∴ 小明得分:×2=(分),小刚得分:×1=(分).∵≠,∴那个游戏对双方不公平.点拨:判定游戏的公平性,关键是运算每个事件的概率,假如概率相等就公平,否则就不公平.。

【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试

【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试

(2)若小军事先选择的数是5,用列表法或画树状图的方法求他获胜的概率.
23.有,,三种款式的帽子,甲,乙两种款式的围巾,穿戴时小华任意选一顶帽子
和一条围巾.
(1)用列表法或树状图表示搭配的所有可能性结果.
(2)求小华恰好选中她所喜欢的款帽子和乙款围巾的概率.
24.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做
19.在一个不透明的袋子中有6个红球和若干个白球,这些球除颜色外均相同,每次从
袋子中摸出一个球记录颜色后再放回,经过大量重复试验,摸到白球的频率稳定在
0.25,则袋子中白球的个数是 ______.
20.在一个不透明的盒子中装有个球,它们除了颜色之外其它都没有区别,其中含有
3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放
3.下列说法正确的是( )
A. 为了解人造卫星的设备零件的质量情况,应选择抽样调查
B. 了解九年级(1)班同学的视力情况,应选择全面调查
C. 购买一张体育彩票中奖是不可能事件
D. 抛掷一枚质地均匀的硬币刚好正面朝上是必然事件
4.翻开鲁教版八年级下册数学课本,恰好是45页,这个事件是( )
A. 不可能事件
回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出的值
大约是______.
三 、解答题(本大题共 4 小题,共 32 分)
21.某校为了加强同学们的安全意识,随机抽取部分同学进行了一次安全知识测试,按
照测试成绩分为优秀、良好、合格和不合格四个等级,绘制了如下不完整的统计图.
等,则小球从出口落出的概率是( )
1
1
1
1
A. 2

九年级数学上册第二十五章概率初步专项训练题(带答案)

九年级数学上册第二十五章概率初步专项训练题(带答案)

九年级数学上册第二十五章概率初步专项训练题单选题1、王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为( )答案:A分析:用“实验频率”的稳定值估计“概率”,从而得到合格零件的概率;解:∵随着实验次数的增多,合格零件的频率逐渐靠近常数0.9,∴从该批零件中任取一个,为合格零件的概率为0.9.故选:A .小提示:本题考查利用频率估计概率,掌握“大量反复试验下频率稳定值即概率”是解本题的关键.2、,甲,乙两辆汽车即将经过该丁字路口,它们各自可能向左转或向右转,且两种情况的可能性相等,则它们经过丁字路口时,都向右转的概率为( )A .14B .13C .12D .23 答案:A分析:通过画树状图法或列表法找出所有等可能的结果数,再找出符合题意(都向右转)的结果数,利用概率公式计算即可.:由题意,画树状图如下:可知共有4种等可能的结果,符合条件的只有1种,故两辆汽车都向右转的概率为14, 故选:A .小提示:本题考查简单概率的计算,熟练掌握概率公式,能够通过列表或画树状图法找出所有等可能的结果数是解题的关键.3、如图,点D 在△ABC 的边AC 上,连接BD ,点P 的位置如图所示,在图中随机选择一个三角形,则点P 在选择的三角形内部的概率是( )A .12B .13C .23D .1 答案:C分析:先找到图中一共有3个三角形,再找到符合要求的三角形有2个,即可求出概率.解:∵图干图形中,三角形有△ABD 、△ABC 、△BCD ,则点P 在△ABD 、△ABC 内部∴P (点P 在选择的三角形内部的概率)=23故选:C .小提示:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4、关于频率和概率的关系,下列说法正确的是( )A.当实验次数很大时,概率稳定在频率附近B.实验得到的频率与概率不可能相等C.当实验次数很大时,频率稳定在概率附近D.频率等于概率答案:C分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.解:A、概率是定值,故本选项错误,不符合题意;B、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同,故本选项错误,不符合题意;C、当实验次数很大时,概率稳定在频率附近,正确,故本选项符合题意;D、频率只能估计概率,故本选项错误,不符合题意;故选:C.小提示:此题考查利用频率估计概率,大量反复试验下频率稳定值即概率.5、小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:)A.20B.300C.500D.800答案:C分析:随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C.小提示:本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.6、如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .π12B .π24C .√10π60D .√5π60 答案:A分析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.解:由图可知,总面积为:5×6=30,OB =√32+12=√10,∴阴影部分面积为:90·π×10360=5π2,∴飞镖击中扇形OAB (阴影部分)的概率是5π230=π12,故选:A .小提示:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7、小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B.从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率答案:C分析:根据统计图可知,实验结果频率在33%左右,因此事件的概率也为33%,符合此概率的即为正确答案.=50%,故A选项错误,不符合题意;A、掷一枚硬币,正面朝上的概率为12B、从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率为1=25%,故B选项错误,不符合题意;4≈33%,故C选项正C、从一个装有2个白球和1个红球的不透明袋子中任意摸出一球,摸到红球的概率为13确,符合题意;D、任意买一张电影票,座位号是2的倍数的概率在是50%,故D选项错误,不符合题意;故选C.小提示:本题考查了利用频率估计概率的知识,分别求得每个选项的概率是解题的关键.8、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24答案:B分析:先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选B.小提示:本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值.9、抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.可能有50次反面朝上B.每两次必有1次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上答案:A分析:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:A.小提示:本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.10、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2答案:B分析:本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x,20当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,=0.35,解得x=7.综上有:x20故选:B.小提示:本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.填空题11、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.答案:8分析:首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,∴摸出红球的概率为0.2,=0.2,由题意,22+m解得:m=8,经检验,m=8是原方程的解,且符合题意,所以答案是:8.小提示:本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.12、从3、5、6、9四个数中随机取一个数,不放回,再随机取一个数,把第一个数作为十位数字,第二个数作为个位数字,组成一个两位数,则这个两位数是奇数的概率是______.答案:34分析:从4个数中取两个数组成两位数,把所有情况全部列出来,找出其中的奇数,用奇数的个数除以两位数的总个数就是这个两位数是奇数的概率.从3、5、6、9这四个数中取两个数组成两位数有下列情况:35、36、39、53、56、59、63、65、69、93、95、96,共12种结果,其中奇数有9种结果,∴P(这个两位数是奇数)= 912=34所以答案是:34小提示:本题考查了概率的计算,事件A发生的概率=事件A发生的所有可能结果数所有事件发生的可能结果数,掌握概率的计算方法是解题的关键.13、如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是__.答案:16分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是16;故答案为16.小提示:此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.14、一个木盒里装有除颜色不同以外其他完全相同的2枚黑色围棋子和3枚白色围棋子.现从木盒中随机取出1枚棋子,记下颜色后放回篮中搅拌均匀.再从木盒里取出一枚棋子,则前后两次取到都是白棋的概率是__________.答案:925分析:画树状图,共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,再由概率公式求解即可.解:画树状图如下:共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,∴前后两次取到都是白棋的概率是925所以答案是:925.小提示:本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15、投掷一枚正方体骰子,朝上的一面是合数的可能性大小是_____.答案:13分析:正方体骰子共6个数,其中4和6为合数,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3.解:正方体骰子共6个数,合数为4,6共2个,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3,所以答案是:13.小提示:本题考查判断事件发生的可能性大小,利用概率来求解是解题的关键.解答题16、“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:用A、B、C、D表示选取结果)(1)居民甲接种的是新冠病毒灭活疫苗的概率为;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.答案:(1)12(2)居民甲、乙接种的是相同种类疫苗的概率为12分析:(1)利用概率公式直接计算即可;(2)先画出树状图求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.(1)解:由概率的定义可得:居民甲接种的是新冠病毒灭活疫苗的概率是24=1 2.所以答案是:12.(2)画树状图如图:由上表可知:一共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种, ∴居民甲、乙接种的是相同种类疫苗的概率为816=12 .小提示:本题考查的是随机事件的概率,利用列表法或画树状图求解概率,掌握列表的方法与画树状图的方法是解题的关键.17、某组织就2022年春节联欢晚会节目的喜爱程度,在万达广场进行了问卷调查,将问卷调查结果分为“非常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作A ,B ,C ,D ,根据调查结果绘制出如图的“扇形统计图”和“条形统计图”,请结合图中所给信息解答下列问题:(1)这次被调查对象共有 人,被调查者“不太喜欢”有 人; (2)补全扇形统计图和条形统计图;(3)在“非常喜欢”调查结果里有5人为80后,分别为3男2女,在这5人中,该民间组织打算随机抽取2人进行采访,请你用列表法或列举法求出所选2人均为男生的概率. 答案:(1)50;5 (2)见解析 (3)310分析:(1)利用公式“该部分的人数÷部分所占的百分比=总人数”求解即可.(2)先算出B 所占的百分比,然后再算出C 的百分比及C 对应的人数即可作图.(3)利用列表法求出5人中3男2女,选2人接受采访均为男生的所有可能的情况,然后根据概率的计算方法求解即可.(1)∵15÷30%=50(人),∴50×10%=5(人)即:这次被调查对象共有 50人,被调查者“不太喜欢”有 5人;所以答案是:50;5(2)∵B占总数的百分比为20÷50×100%=40%,∴C占总数的百分比为:1﹣10%﹣30%﹣40%=20%,∴C的人数为:50×20%=10(人),所求扇形统计图和条形统计图如下图所示:(3)用列表法表示选2人接受采访的所有可能如下:故:P(所选2人均为男生)=20=10小提示:本题考查了列表法与树状图、条形统计图、扇形统计图等问题,解题的关键是要掌握整体与部分之间的数量关系及条形统计图与扇形统计图的作法.18、某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1 .抽奖方案有以下两种:方案A,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案B,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中.2 .抽奖条件是:顾客购买商品的金额每满100元,可根据方案A抽奖一次:每满足150元,可根据方案B抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案A抽奖三次或方案B抽奖两次或方案A,B各抽奖一次).已知某顾客在该商场购买商品的金额为250元.(1)若该顾客只选择根据方案A进行抽奖,求其所获奖金为15元的概率;(2)以顾客所获得的奖金的平均值为依据,应采用哪种方式抽奖更合算?并说明理由.;答案:(1)49(2)选择方案A、方案B各抽1次的方案,更为合算.理由见解析分析:(1)利用列表法表示获得奖金15元所有可能出现结果情况,进而求出相应的概率即可;(2)由种抽奖方案,即:2次都选择方案A,1次方案A1次方案B,1次方案B,分别求出各种情况下获得奖金的平均值即可.(1)解:由于某顾客在该商场购买商品的金额为250元,只选择方案进行抽奖,因此可以抽2次,由抽奖规则可知,两次抽出的结果为一红一白的可获得奖金15元,从1个红球,2个白球中有放回抽2次,所有可能出现的结果情况如下:共有9种等可能出现的结果,其中一红一白,即可获奖金15元的有4种,所以该顾客只选择根据方案A 进行抽奖,获奖金为15元的概率为49;(2)解:①由(1)可得,只选择方案A ,抽奖2次,获得15元的概率为49,获得30元(2次都是红球)的概率为19,两次都不获奖的概率为49,所以只选择方案A 获得奖金的平均值为:15×49+30×19=10(元),②只选择方案B ,则只能摸奖1次,摸到红球的概率为23,因此获得奖金的平均值为:10×23≈6.7(元), ③选择方案A 1次,方案B 1次,所获奖金的平均值为:15×13+10×23≈11.7(元), 因此选择方案A 、方案B 各抽1次的方案,更为合算.小提示:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.。

(核定版)人教版九年级上册数学第二十五章 概率初步含答案

(核定版)人教版九年级上册数学第二十五章 概率初步含答案

人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是().A.两枚骰子朝上一面的点数和为6B.两枚骰子朝上一面的点数和不小于2 C.两枚骰子朝上一面的点数均为偶数 D.两枚骰子朝上一面的点数均为奇数2、在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是( )A.14B.12C.6D.43、甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现6点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率4、学校组织学生外出集体劳动时,为九年级学生安排了三辆车.九年级的小明与小亮都可以从这三辆车中任选一辆搭乘,则他俩搭乘同一辆车的概率为()A. B. C. D.5、一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A. B. C. D.6、如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A. B. C. D.7、掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()A.一定是6B.是6的可能性大于是1~5中的任意一个数的可能性 C.一定不是6 D.是6的可能性等于是1~5中的任意一个数的可能性8、在一个不透明的口袋中,装有5个红球和3个绿球,这些球除了颜色外都相同,从口袋中随机摸出一个球,它是红球的概率是()A. B. C. D.9、在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到红球的频率稳定在0.6左右,则袋中白球约有()A.5个B.10个C.15个D.25个10、在一个不透明的盒子里装有200个红、黄两种颜色的小球,这些球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀,任意摸出一个球,记下颜色后再放回盒子,通过大量重复试验后发现,摸到黄球的频率稳定在45%,那么估计盒子中黄球的个数为()A.80B.90C.100D.11011、在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是()试验种子数n(粒)50 200 500 1000 3000 发芽频数m 45 188 476 951 28500.9 0.94 0.952 0.951 0.95发芽频率A.0.8B.0.9C.0.95D.112、某灯泡厂生产节能灯泡1000只,其中有5只是次品,如果从中任取1只,这只灯泡是次品的概率是()A. B. C. D.13、将几张纸片分别制成圆形、等腰梯形、菱形、平行四边形、正方形纸片后放置在不透明的袋子中,从中随机抽取两个图形,则抽到的图形都呈中心对称的概率是()A. B. C. D.14、下列实验中,概率最大的是()A.抛掷一枚质地均匀的硬币,出现正面;B.抛掷一枚质地均匀的正方体骰子(六个面分别刻有数字1到6),掷出的点数为奇数;C.在一副洗匀的扑g(背面朝上)中任取一张,恰好为方块;D.三张同样的纸片,分别写有数字2,3,4,和匀后背面朝上,任取一张恰好为偶数15、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有________ 个.17、在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为________18、如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向________颜色的可能性大.19、一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,摸出至少有一只次品是________ 事件.20、甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是________.21、在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是________.22、在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n=________.23、一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为________.24、在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是________.25、不透明的盒中装着大小、外形、质地一样的红色、黑色、白色的乒乓球共20个,通过多次摸球实验后发现其中摸到红色、黑色球的概率稳定在5%和15%,则盒子中白色球的个数很可能是________个.三、解答题(共5题,共计25分)26、篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率27、商场为了促销某件商品,设置了如图的一个转盘,它被分成了3个相同的扇形.各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取,每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买商品的价格不超过30元的概率是多少?28、小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.29、一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.30、桌子上放有质地均匀,反面相同的3张卡片,正面分别标有数字1、2、3.将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标的数字作为十位上的数字,将取出的卡片反面朝上放回洗匀;再从中任意抽取1张卡片,用卡片上所标的数字作为个位数字.试用列表或画树状图的方法分析,组成的两位数恰好能被3整除的概率是多少?参考答案一、单选题(共15题,共计45分)2、C3、D4、A5、B6、B7、D8、D9、B10、B11、C12、C13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案

人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案

人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,必然事件是()A.随机抛掷一颗骰子,朝上的点数是6B.今天考试小明能得满分C.明天气温会升高D.早晨的太阳从东方升起2.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是().A.13B.19C.29D.4273.在抛硬币的游戏中,若抛了10000 次,则出现正面的频率恰好是50%,这是() A.很可能的B.必然的C.不可能的D.不太可能的4.甲、乙、丙、丁四位同学去看电影,还剩下如图所示座位,乙正好坐在甲旁边的概率是()A.25B.35C.12D.345.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.156.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.147.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.18.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6B.5C.4D.39.如图,湖边建有A,B,C,D共4座凉亭,从入口处进,先经过凉亭A(已经参观过的凉亭,再次经过时不作停留),则最后一次参观的凉亭为凉亭D的概率为()A.14B.13C.12D.2310.某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是()A.16B.13C.19D.12二、填空题11.下列成语描述的事件:①水中捞月①水涨船高①守株待兔①瓮中捉鳖①拔苗助长,属于必然事件的是(填序号).12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的概率是.13.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率 .14.我市某校举行“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,校团委为了让同学们进一步了解中国科技的发展,请同学们从选出的以下五个内容中任选两个内容进行手抄报的制作:“北斗卫星”“5G时代”“智轨快运系统”“东风快递”“神舟十三号”.其中恰好选择“北斗卫星”“5G时代”的概率是.15.现有如图所示“2022·北京冬梦之约”的四枚邮票,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小萱从中随机抽取一枚不放回,再从中随机抽取一枚,则小萱抽到的两枚邮票恰好是冰墩墩和雪容融的概率是.16.下列事件:①打开电视机,它正在播放广告;①从一只装有红球的口袋中,任意摸出一个球,恰是白球;①两次抛掷正方体骰子,掷得的数字之和小于13;①抛掷硬币1000次,第1000次正面向上,其中为随机事件的是.17.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球,那么袋中的红球有个.是黑球的概率为14三、解答题18.为进一步挖掘全国春茶优质产品,2023年第七届中国昆明(国际)春茶周于4月28日如约开启.云南省111个著名山头和125个村寨春茶都在本次活动中展示,其中就包括著名的班章、冰岛、昔归、易武等著名山头品牌,小芸和小楠参加了本次活动,并打算分别从A:班章,B:冰岛,C:昔归,D:易武四个著名山头品牌茶叶中选择一个了解相关山头品牌茶文化知识.(1)小芸选择“冰岛”著名山头品牌茶叶的概率是______;(2)用列表法或画树状图法中的一种方法,求小芸和小楠恰好选择到同一著名山头品牌茶叶了解相关茶文化知识的概率.19.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是1,那么x的值可以取4吗?请用列表法或画树状图法说3明理由;如果x的值不可以取4,请写出一个符合要求的x的值.20.有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?21.有五张形状、大小和质地相同的卡片A、B、C、D、E,正面分别写有一个正多边形(所有正多边形的边长相等),把五张卡片洗匀后正面朝下放在桌面上(1)若从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;(2)从这5张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?22.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;①乙抢到金额为4元的红包①甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;①若甲没抢到红包A,则乙能抢到红包A的概率又是多少?参考答案1.D2.B3.D 4.A 5.A 6.D 7.A 8.D 9.C 10.A 11.②④ 12.57 13.1214.110 15.16 16.①④ 17.918.(1)14 (2)1419.(1)0.33 (2)不可以取4,x =6 20.(1)P (甲)=716,(2)不公平 21.31022.(1)事件①,①是不确定事件,事件①是确定事件;(2)①13;①12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册第二十五章《概率初步》单元测试题一、选择题(每小题只有一个正确答案)1.若某个班级内有40名学生,抽10名学生去参加某项活动,每个学生被抽到的概率为,则下列解释正确的是() A. 4个人中,必有1个被抽到B.每个人被抽到的可能性为C.由于有被抽到与不被抽到两种情况,故不被抽到的概率为D.以上说法都不正确2.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.B.C.D.3.下面关于投针试验的说法正确的是()A.针与平行线相交的概率受两平行线间距离的影响B.针与平行线相交的概率与针的长度是没有关系的C.试验次数越多,估算的针与平行线相交的概率越精确D.针与平行线相交和不相交的概率是相同的4.下列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上5.某商店举办有奖销售活动,活动内容如下:每购买满100元的物品就获奖券一张,多购多得. 商场在100000张奖券中,设特等奖一个,一等奖10个,二等奖100个,那么一张奖券中一等奖的概率是()A.B.C.D.6.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.7.下列事件:(1)向上抛掷一枚均匀的硬币,出现正面朝上和反面朝上的可能性;(2)掷一枚图钉,尖端朝地和尖端朝上的可能性;(3)从一副扑克牌中任抽一张,抽到红桃和黑桃的可能性;(4)有两个人用抓阄的方法定胜负,先抓获胜与后抓获胜的可能性.其中可能性相等的有( )A. 1个B. 2个C. 3个D. 4个8.做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A. 0.22B. 0.44C. 0.50D. 0.569.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5” 表示每抛一枚硬币2次就有一次正面朝上出现C.“彩票中奖的概率是1%” 表示买100张彩票一定会中奖D.“抛一枚正方体骰子朝上面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝上面的数为奇数10.下列说法中,正确的是( )A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生11.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A. 3B. 5C. 8D. 1012.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为( )A.B.C.D.二、填空题13.与一个同学合作,均写出0~9中的一个数字,用试验的方法估计,两人所写的数字相同的概率为.14.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.15.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6,,,-2,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是.16.围棋有黑、白两种棋子,混合在一起后,随意从中摸出3个棋子,正好颜色相同,这是事件(填“必然”、“不可能”或“不确定”)17.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数是1的结果18次,则出现1点的频率是.其中正确命题有________.三、解答题18.某书店参加某校读书活动,并为每班准备了A,B两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班决定采用游戏方式发放,其规则如下:将三张除了数字为2,5,6不同外其余均相同的扑克牌,字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A名著;若牌面数字之和为奇数,则乙获A名著.你认为此规则合理吗?为什么?19.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.20.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.21.毕业晚会上有一个“砸蛋”节目,讲台桌上放了三枚形状、大小、颜色完全相同的彩蛋,其中两枚会砸出“金花四溅”.现从甲、乙、丙三位幸运同学中随机挑选一位砸蛋,且只能砸一次.求甲被选中且第一次能砸出“金花四溅”的概率.(用列表法或树状图法求解,能砸出“金花四溅”的彩蛋记为“金”,不能砸出“金花四溅”的彩蛋记为“空”)22.某学校课程安排中,各班每天下午只安排三节课.(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都由同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率.23.某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是,你赞成他的观点吗?请用列表法或画树形图法分析说明.答案解析1.【答案】B【解析】显然C、D两个选项错误.A选项错误的原因是忽略了是从整个班级内抽取,而不是仅从一部分中抽取,误解了前提条件和概率的意义.2.【答案】B【解析】画树状图得:因为有8种等可能结果,所以经过3次传球后球仍回到甲手中的有2种情况,所以经过3次传球后球仍回到甲手中的概率是:,故选B.3.【答案】C【解析】4.【答案】C【解析】A.明天太阳从西边升起,不可能事件;B.篮球队员在罚球线投篮一次,未投中,随机事件;C.实心铁球投入水中会沉入水底,必然事件;D.抛出一枚硬币,落地后正面向上,随机事件.5.【答案】B【解析】因为在100000张奖券中一等奖10个,所以某人中一等奖的概率是,所以B选项是正确的.6.【答案】B【解析】∵﹣,0,,π,3.5这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选B.7.【答案】C【解析】(1)向上抛掷一枚均匀的硬币,出现正面朝上和反面朝上的可能性;(3)从一副扑克牌中任抽一张,抽到红桃和黑桃的可能性;(4)有两个人用抓阄的方法定胜负,先抓获胜与后抓获胜的可能性.8.【答案】D【解析】在大量重复试验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为1-0.44=0.56.9.【答案】D【解析】四个选项中给出的事件都是不确定事件.A选项表示下雨的可能性有80%,但也有可能不下雨,显然有80%的时间降雨是错误的;B选项中每次试验都具有随机性,当试验次数不断增多时,正面向上的频率逐渐稳定在0.5附近,并不是每抛2次就有1次出现正面朝上;C选项中尽管彩票中奖的概率是1%,买100张也不一定中奖;D选项的说法是正确的,符合利用频率估计概率的思想.10.【答案】C【解析】根据事件的分类对各选项进行逐一分析即可.本题考查的是可能性的大小,熟知事件的分类是解答此题的关键.A:生活中,如果一个事件不是不可能事件,那么它就可能不发生,故本选项错误;B:生活中,如果一个事件可能发生,那么它是随机事件,故本选项错误;C:生活中,如果一个事件发生的可能性很大,那么它也可能不发生,故本选项正确;D:生活中,如果一个事件不是必然事件,那么它就可能发生也可能不发生,故本选项错误.故选C.11.【答案】C【解析】∵摸到红球的概率为,∴,解得n=8.故选C.12.【答案】A【解析】根据正方形和圆形的对称性质,正方形的对角线把正方形分成的四个三角形均为同底等高的三角形,故其面积相等,因此阴影区域的面积是正方形面积的.因此针头扎在阴影区域的概率为. 故选A.13.【答案】【解析】题目就相当于“00 - 99”100个数字,有十个十位和个位相同的,分别是00,11,22,33,44,55,66,77,88,99,即概率 ==.14.【答案】【解析】画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的情况有4种,∴甲、乙二人相邻的概率是P==.15.【答案】【解析】在这5个数中,比3小的数有:,-2,三个,因此从中随机抽取一张卡片,正面的数比3小的概率是.16.【答案】不确定【解析】黑、白两种棋子,混合在一起后,随意从中摸出3个棋子,可能是3黑或3白,也可能是2黑、1白或1黑、2白,所以是不确定事件.17.【答案】④【解析】①错,次品率是大量产品的估计值,并不是针对200件产品来说的.②③混淆了频率与概率的区别.④正确.18.【答案】解:我认为此规则不合理. 画树状图如下:可知等可能的6种结果中,和为偶数的有2次,和为奇数的有4次,∴P(甲获A名著)=,P(乙获A名著)=,则乙获得A名著的概率大些,所以此规则不合理.【解析】19.【答案】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同的结果有2个,20.【答案】解:根据题意,画表格:由表格可知,共有16种等可能的结果,而且它们出现的可能性相等;其中是4的倍数的有4种:12,24,32,44.所以(4的倍数).【解析】21.【答案】解:画出树状图如图所示:由树状图可知一共有9种结果,每种结果出现的可能性相同,而甲被选中且第一次能砸出“金花四溅”的可能性有两种,分别是(甲、金),(甲、金),因此甲被选中且第一次能砸出“金花四溅”的概率为.【解析】22.【答案】解:(1)画树状图如下:∵三节课安排共有6种等可能情况,数学科安排在最后一节有2 种情况,∴数学科安排在最后一节的概率是.(2)画树状图如下:所有等可能情况共有6×6=36种.初二(1)班的6种情况,在对应初二(2)班的6种情况时,有2种情况数学课冲突,其余4种情况不冲突.例如,初二(1)班(数学,物理,政治)对应初二(2)班的6种情况时,与初二(2)班的(数学,语文,地理)和(数学,地理,语文)冲突.初二(1)班(物理,数学,政治)对应初二(2)班的6种情况时,与初二(2)班的(语文,数学,地理)和(地理,数学,语文)冲突.∴不冲突的情况有4×6=24.∴两个班数学课不相冲突的概率为.【解析】23.【答案】解:不赞成小蒙同学的观点. 理由如下:记七、八年级两名同学为A,B,九年级两名同学为C,D.画树形图分析如下:由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种,所以前两名是九年级同学的概率为.【解析】。

相关文档
最新文档