形态学图像处理小结
图像处理的工作总结报告

图像处理的工作总结报告
在当今数字化时代,图像处理技术已经成为许多行业中不可或缺的一部分。
从医疗影像到娱乐产业,图像处理技术的应用范围越来越广泛。
作为一名图像处理工程师,我在过去一年中积累了丰富的工作经验,现在我将对我所做的工作进行总结和报告。
首先,我在图像处理方面的主要工作是利用各种算法和工具对图像进行分析、处理和优化。
这包括了图像的去噪、边缘检测、图像增强、图像分割等多项工作。
通过对图像进行处理,我们能够提高图像的质量和清晰度,使其更适合于后续的分析和应用。
其次,我在图像处理方面还进行了一些研究和创新工作。
我尝试了一些新的图像处理算法,并对其进行了评估和优化。
我还参与了一些图像处理项目的设计和实施,为客户提供了定制化的图像处理解决方案。
另外,我还在图像处理技术与其他领域的融合方面进行了一些探索。
比如,我将图像处理技术应用于医疗影像中,帮助医生更准确地诊断疾病。
我还将图像处理技术与人工智能相结合,开发了一些智能图像识别系统,为客户提供了更便捷和高效的服务。
总的来说,我在过去一年中在图像处理领域取得了一些成绩,但也面临了一些挑战。
未来,我将继续不断学习和探索,不断提升自己的技术水平,为图像处理技术的发展做出更大的贡献。
相信随着技术的不断进步,图像处理技术将会在更多领域得到应用,为人们的生活带来更多的便利和惊喜。
数字图像,形态学处理

《医学图像处理》实验报告摘要本次实验的目的是对二值原始图像进行膨胀和腐蚀,并对经过膨胀和腐蚀后的两张图像进行集合的逻辑运算操作——交集、补集、相减;对二值图像进行边界提取操作;利用阈值处理的方法对二值图像进行连通分量的提取操作;运用上述结果和其他技术解决课本P442的习题9.36。
本次实验的内容是图像腐蚀图像膨胀边界提取连通分量的提取。
一、技术讨论1.1实验原理1.1.1图像的腐蚀腐蚀缩小或细化了二值图像中的物体。
用3X3的结构元,扫描二值图像的每一个元素,将结构元与其覆盖的二值图像做“与”操作,若结果均为1,输出图像的该像素为1,否则输出图像的该像素为0。
图示如下:1.1.2图像的膨胀膨胀会增长或粗化二值图像中的物体。
用3X3的结构元,扫描二值图像的每一个像素,将结构元关于原点的映射与其覆盖的二值图像做“与”操作,若结果均为0,输出图像的该像素为0,否则输出图像的该像素为1。
图示如下:1.1.3图像的边界提取对图像进行边界提取的方法是先对二值图像进行腐蚀,再将经过腐蚀后的输出图像和原始图像做集合差的逻辑运算。
图示如下:1.1.4图像的连通分量提取连通分量是指若像素子集S的全部像素之间存在一个通路,则可以说两个像素p和q之间是连通的,对于S中的任何像素p,S中连通到该像素的像素称为S的连通分量。
图像连通分量的提取方法是先对二值图像进行阈值处理,再对输出图像做腐蚀处理。
1.1.5测地膨胀测地膨胀不是包含一幅输入图像和特定的结构元素而是涉及两幅图像:标记图像和模版图像。
其基本思想是用特定结构元素对标记图像作膨胀运算,并将结果图像限制在模版图像之下。
图示如下:1.2实验函数示例:A.cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, intiterations=1 );——对二值图像进行腐蚀处理。
1.void cvDilate( constCvArr* src, CvArr* dst, IplConvKernel* element=NULL, intiterations=1 );--对二值图像进行膨胀处理;2.void cvThreshold( constCvArr* src, CvArr* dst, double threshold, double max_value, intthreshold_type);--阈值处理函数;二、结果与讨论2.1实验结果(每个实验均要使用3个不同大小的结构元进行处理,并将实验结果列举出来,注明结构元大小)a. Originpicb. intersectionc. img_eroded.img_dilatee. differencingf. Complementation图1.1、图像腐蚀和膨胀(3X3结构元,中心点为1,1)a. Originpicb. intersectionc. img_eroded.img_dilatee. differencingf. Complementation图1.2、图像腐蚀和膨胀(7X7结构元,中心点为3,3)a. Originpicb. intersectionc. img_eroded.img_dilatee. differencingf. Complementation图1.3、图像腐蚀和膨胀(9X9结构元,中心点为4,4)a. Originpicb. img_outc. img_erode图2.1、边界提取(3X3结构元,中心点为1,1)a. Originpicb. img_outc. img_erode图2.2、边界提取(7X7结构元,中心点为1,1)a. Originpicb. img_outc. img_erode图2.3、边界提取(10X10结构元,中心点为1,1)a. Originpicb. img_outc. img_erode图2.4、边界提取(10X10结构元,中心点为5,5)a. Originpicb.img_out1c.img_out2图3.1、连通分量的提取(5X5结构元,中心点为3,3)a. Originpicb.img_singlec.img_intersectd. img_boundary图4.1 problem4-362.2实验讨论(详细说明解决课本习题9.36的具体思路和过程,若有更好地解决课本习题9.36的方法,请详细给出解答思路或过程)1.腐蚀的作用是消除物体边界点,使目标缩小,可以消除小于结构元素的噪声点;膨胀的作用是将与物体接触的所有背景点合并到物体中,使目标增大,可添补目标中的空洞。
形态学图像处理实验

形态学图像处理实验1.算法原理1)提取与图像边界融合的颗粒可利用区域填充算法。
如图1所示为源图像,可将图像先转换为二值图像,然后对其进行取反,这样进行区域填充的结果将为与边界相连的颗粒,再与源图像进行比较,即可得出在源图像中与边界相连的颗粒图像。
2)提取彼此交叠的颗粒可利用图像的腐蚀与膨胀操作。
先用模板对图像进行腐蚀操作,由于相交叠的颗粒面积必然比独立的颗粒大,因此腐蚀操作之后剩下的部分为交叠颗粒的部分,再对其进行膨胀,将其与源图像进行比较操作,则可得出交叠的颗粒图像。
3)提取不交叠的颗粒得出交叠的颗粒之后,用源图像对其相减,则得出的为独立分布的颗粒图像。
2.Matlab源代码clear allclcorigin = imread('E:\Documents\BUPT\DIP\第三次作业\grain.jpg');imshow(origin);title('原图');origin = rgb2gray(origin);filterResult = medfilt2(origin);[m,n] = size(origin);%%%%%%%%%%%%取与边界融合的粒子%%%%%%%%%%%%%binaryIm = im2bw(origin);tmp = ~binary Im; %tmp为取反图像fieldFilling = imfill(tmp,'holes');figure, imshow(fieldFilling);title('区域填充结果');boudaryGrains = origin;for i = 1:mfor j = 1:nif fieldFilling(i,j) ==1boudaryGrains(i,j) = 0;endendendfigure, imshow(boudaryGrains);title('与边界融合的粒子结果');%%%%%%%%%%%取交叠与未交叠的粒子%%%%%%%%%%%%mask1 = strel('ball',12,12);%mask2 = ones(13,13);mask2 = strel('ball',7,7);mask3 = strel('disk',4);mask4 = strel('ball',6,6);result1 = imerode(filterResult,ones(15,15));result2 = filter2(fspecial('average',7),im2double(result1)); result2 = medfilt2(result2);result2 = im2uint8(result2);result3 = imdilate(result2,mask1);figure,imshow(result2);title('第一次腐蚀结果'); figure,imshow(result3);title('第一次膨胀结果');result4 = origin;for i = 1:mfor j = 1:nif result3(i,j) <=20result4(i,j) = 0;elseresult4(i,j) = origin(i,j);endendendfigure,imshow(result4);title('阈值处理结果');result5 = imerode(result4,mask4);result6 = imdilate(result5,mask4);figure,imshow(result6);title('交叠粒子结果');result7 = origin-result4;result8 = imerode(result7,mask4);result9 = imdilate(result8,mask4);figure,imshow(result9);title('未交叠粒子结果');3. 运行结果分析1) 提取与边界融合的颗粒原图区域填充结果与边界融合的粒子结果第一次腐蚀所示结果为在腐蚀之后进行了一次中值滤波和一次5X5均值滤波的结果,为使腐蚀的结果更好,去除独立颗粒的腐蚀残留图像。
关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。
通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。
下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。
通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。
2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。
我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。
3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。
通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。
4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。
通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。
5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。
通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。
6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。
通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。
7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。
通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。
8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。
图像处理的工作总结怎么写

图像处理的工作总结怎么写
图像处理的工作总结。
图像处理是一项重要的技术工作,它涉及到对图像进行编辑、修饰和优化,以
便用于各种用途,如广告、媒体、医学影像等。
在这篇文章中,我们将总结图像处理工作的关键步骤和技术,以及其在不同领域中的应用。
首先,图像处理的关键步骤包括图像采集、预处理、特征提取和图像识别。
在
图像采集阶段,我们需要使用相机或扫描仪等设备来获取原始图像。
然后,在预处理阶段,我们需要对图像进行去噪、增强和裁剪等操作,以确保图像质量和清晰度。
接下来,特征提取是一个关键步骤,它涉及到从图像中提取出有用的信息和特征,以便用于后续的分析和识别。
最后,图像识别阶段则是利用机器学习和深度学习等技术,对图像进行分类、识别和分析。
在实际工作中,图像处理技术被广泛应用于各个领域。
在广告和媒体行业中,
图像处理可以用于制作广告海报、电影特效和动画等;在医学影像领域,图像处理可以用于医学影像的诊断和分析;在安全监控领域,图像处理可以用于人脸识别和行为分析等。
总之,图像处理技术已经成为了现代社会中不可或缺的一部分,它为我们的生活和工作带来了许多便利和效益。
总的来说,图像处理是一项复杂而重要的技术工作,它涉及到多种技术和领域
的知识。
通过对图像处理工作的总结和分析,我们可以更好地了解这一技术领域的发展和应用,为我们的工作和学习提供了有益的参考和启发。
希望我们可以在未来的工作中,更好地应用图像处理技术,为社会和人类的发展做出更大的贡献。
图形图像处理实训报告总结三篇

图形图像处理实训报告总结一篇通过这次实训,我收获了很多,一方面学习到了许多以前没学过的专业知识与知识的应用,另一方面还进步了自己动手做工程的才能。
本次实训,是对我才能的进一步锻炼,也是一种考验。
从中获得的诸多收获,也是很可贵的,是非常有意义的。
在实训中我学到了许多新的知识。
是一个让我把书本上的理论知识运用于理论中的好时机,原来,学的时候感慨学的内容太难懂,如今想来,有些其实并不难,关键在于理解。
在这次实训中还锻炼了我其他方面的才能,进步了我的综合素质。
首先,它锻炼了我做工程的才能,进步了独立考虑问题、自己动手操作的才能,在工作的过程中,复习了以前学习过的知识,并掌握了一些应用知识的技巧等。
其次,实训中的工程作业也使我更加有团队精神。
从那里,我学会了下面几点找工作的心态:一、继续学习,不断提升理论修养。
在信息时代,学习是不断地汲取新信息,获得事业进步的动力。
作为一名青年学子更应该把学习作为保持工作积极性的重要途径。
走上工作岗位后,我会积极响应单位号召,结合工作实际,不断学习理论、业务知识和社会知识,用先进的理论武装头脑,用精良的业务知识提升才能,以广博的社会知识拓展视野。
二、努力理论,自觉进展角色转化。
只有将理论付诸于理论才能实现理论自身的价值,也只有将理论付诸于理论才能使理论得以检验。
同样,一个人的价值也是通过理论活动来实现的,也只有通过理论才能锻炼人的品质,彰显人的意志。
必须在实际的工作和生活中潜心体会,并自觉的进展这种角色的转换三、进步工作积极性和主动性。
实习,是开端也是完毕。
展如今自己面前的是一片任自己驰骋的沃土,也清楚感受到了沉甸甸的责任。
在今后的工作和生活中,我将继续学习,深化理论,不断提升自我,努力创造业绩,继续创造更多的价值。
可以说这次实训不仅使我学到了知识,丰富了经历。
也帮助我缩小了理论和理论的差距。
这次实训将会有利于我更好的适应以后的工作。
我会把握和珍惜实训的时机,在将来的工作中我会把学到的理论知识和理论经历不断的应用到实际工作中,为实现理想而努力。
12形态学图像处理介绍

腐蚀运算的示例
图(a)中的阴影部分为集合X,图(b)中的中的阴 影部分为结构元素S,而图(c)中黑色部分给出 了腐蚀结果。
由图可见,腐蚀将图如果B上 的所有点都包含在X的范围内,则该点保留, 否则删除。
matlab中与腐蚀相关的两个函数为 (1) imerode I2=imerode(I, SE) I为原始图像,对应为二值图像 SE为由strel函数返回的自定义或预设的结构元 素对象 (2) strel strel函数为形态学运算生成结构元素SE,当生 成供二值形态使用的结构元素时,调用形式为: SE= strel(shape, parameters)
第二种情形说明S+x与X不相关,
而第三种情形说明S+x与X只是部分相关
2. 二值图像中形态学运算
1、腐蚀及其实现
对于集合A和S,使用S对A进行腐蚀,记为A S, 定义为:
AS {z | (S ) z A}
如果当S的原点移到z点时S能够完全包含于A中, 则所有这样的z点构成的集合即为S对A的腐蚀 图像。 腐蚀运算的结果不仅与结构元素的形状(矩形、 圆形、菱形等)选取有关,而且还与原点位置的 选取有关。
形态学图像处理
形态学即数学形态学(Mathematical Morphology)主要用于从图像中提取对表达和描 绘区域形状有意义的图像分量。 基本思想:用具有一定形态的结构元素去度量 和提取图像中的对应形状以达到对图像分析和 识别的目的 形态学图像处理的数学基础和所用语言是集合 论
形态学图像处理表现为一种邻域运算形式;
一种特殊定义的邻域称之为“结构元素” (Structure Element),在每个像素位置上它与 二值图像对应的区域进行特定的逻辑运算,逻 辑运算的结果为输出图像的相应像素。 形态学运算的效果取决于结构元素的大小、内 容以及逻辑运算的性质。
图像处理实验总结

图像分割主程序
• • • •
th=graythresh(I); I5 = im2bw(I,th); figure; imshow(I5);
图像分割是将图像划分成若干个互不相交的小区域的过程小区域是某种意义下具有共同属性的像素的连通集合
实验 图像分割与边缘提取
实验要求Βιβλιοθήκη 用边缘检测法、阈值分割 法进行图像分割,并分析图 像分割后的视觉效果。
图像分割与边缘提取
图像分割是将图像划分成若干个互不相交的 小区域的过程,小区域是某种意义下具有 共同属性的像素的连通集合。图像分割常 用的方法有区域分割法和边缘分割法,边 缘,是指其周围像素灰度有阶跃变化的那 些像素的集合。边缘检测可以使图像的轮 廓更加突出,而边缘以外的图像区域通常 被削弱甚至被完全去掉。
实验结果
实验图像如下:
实验结果
实验图像如下:
实验结果
Canny算子检测边缘如下:
实验结果
Sobel算子检测边缘如下:
实验结果
Log算子检测边缘如下:
实验结果
Robert算子检测边缘如下:
实验程序及结果
全局阈值分割结果如下:
边缘提取主程序
• • • • • • • • • • • • • • • • I = imread('005.jpg'); figure; imshow(I); I=rgb2gray(I); I1=edge(I,'canny'); figure; imshow(I1); I2=edge(I,'sobel'); figure; imshow(I2); I3=edge(I,'log'); figure; imshow(I3); I4=edge(I,'roberts'); figure; imshow(I4);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.形态学基础知识理解
形态学图像处理基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。
1.膨胀与腐蚀
最基本的形态学操作有二种:膨胀与腐蚀(Dilation与Erosion)。
膨胀是在二值图像中“加长”和“变粗”的操作。
这种方式和变粗的程度由一个结构元素组成的集合来控制。
腐蚀是“收缩”或“细化”二值图像中的对象。
同样,收缩的方式和程度由一个结构元素控制。
腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。
膨胀就是图像中的高亮部分进行膨胀,“领域扩”,效果图拥有比原图更大的高亮区域。
腐蚀就是原图中的高亮部分被腐蚀,“领域被蚕食”,效果图拥有比原图更小的高亮区域。
常用的三种膨胀与腐蚀的组合:开运算、闭运算、击中或击不中变换。
(1)开运算和闭运算: A被B的形态学开运算是A被B腐蚀后再用B来膨胀腐蚀结果。
其几何解释为:B在A完全匹配的平移的并集。
形态学开运算完全删除了不能包含结构元素的对象区域,平滑了对象的轮廓,断开了狭窄的连接,去掉了细小的突出部分;(2)闭运算: A被B的形态学闭运算是先膨胀再腐蚀的结果,其几何解释为:所有不与A重叠的B的平移的并集。
形态学闭运算会平滑对象的轮廓,与开运算不同的是,闭运算一般会将狭窄的缺口连接起来形成细长的弯口,并填充比结构元素小的洞。
(3)击中击不中变换: 击中与击不中变换先对目标图像进行目标结构元素的腐蚀操作;后对目标图像的对偶进行背景结构元素的腐蚀操作;最后取两次结果的交集。
2.重构
重构是一种涉及到两幅图像和一个结构元素的形态学变换。
一幅图像,即标记(marker),是变换的开始点。
另一幅图像是掩模(mask),用来约束变换过程。
结构元素用于定义连接性。
3.灰度图像形态学
对于灰度图像来说,膨胀和腐蚀是以像素邻域的最大值和最小值来定义的。
膨胀和腐蚀可以组合使用,以获得各种效果。
例如,从膨胀后的图像中减去腐蚀过的图像可以产生一个“形态学梯度”,可以用来度量图像局部灰度变化。
开运算和闭运算用于形态学平滑。
由于开运算可以去除比结构元素更小的明亮细节,闭运算可以去除比结构元素更小的暗色细节,所以它们经常组合在一起用来平滑图像并去除噪声。
形态学图像处理方法构成了一组提取图像特征的有力工具。
针对二值图像和灰度图像的腐蚀、膨胀和重构的基本操作可以组合使用,以完成非常宽泛的处理任务。
二. 本部分实验结果
图1(a)包括残缺文本的输入图像 (b)膨胀后的图像
(a)(b)
(c)(d)
图2(a)原图像;(b)用半径为10的圆盘腐蚀后的图像;(c)用半径为5的圆盘腐蚀后的图像;
(d)用半径为20的圆盘腐蚀后的图像
图3(a)原图像;(b)开运算后的图像;(c)闭运算后的图像;(d)图像(b)经闭运算后的结果
(a) (b) (c)
(d) (e) (f)
图4 (a)带有杂散点的指纹图像;(b)经开运算后的图像;(c)经开运算后再做闭运算所得到的图像(d)对(c)细化一次后的图像;(e) 对(c)细化两次后的图像;(f) 对(c)细化到稳定状态的图像;
图5 (a)骨头图像;(b)使用bwmorph得到的骨骼
图6(a)包含10个物体的图像(b)叠置在相应连接分量上的质心(白色星号)
(a)(b)
(c)(d)
(e)(f)
图7 形态学重构:(a)原图像;(b)使用竖线腐蚀后的图像;(c)使用竖线做开运算后的结果;
(d)使用竖线由重构做开运算后的结果;(e)填充的孔洞;(f)删除边界字符后的图像
(a)(b)
(c)(d)
图8 膨胀和腐蚀:(a)原图像;(b)膨胀后的图像;(c)腐蚀后的图像;(d)形态学梯度
(a)(b)
(c)(d)
图9使用开运算和闭运算进行平滑:(a)木暗钉的原图像;(b)使用半径为5的圆盘执行开运算后图像;(c)经开运算再经闭运算后的图像;(d)交替顺序滤波后的图像
(a)(b)
(c)(d)
(e)(f)
图10 顶帽变换:(a)原图像;(b)经阈值处理后的图像;(c)经开运算后的图像;(d)顶帽变换;(e)经阈值处理后的顶帽变换图像(f)使用顶帽变换和底帽变换增强对比度
(a)(b)
(c)(d)
(e)(f)
(g)(h)
图11灰度重构的一个应用:(a)原图像;(b)经开运算重构后的图像;(c)开运算后的图像;(d)经顶帽重构后的图像;(e)经顶帽变换后的图像;(f)对图像(d)使用一条水平线开运算重构后的图像;(g)使用一条水平线对图像(f)膨胀后的图像;(h)最后的重构结果。