方法专题7巧用锐角三角函数解决实际问题

合集下载

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景锐角三角函数在咱们的日常生活中那可是有着超级多的实际应用场景呢,简直无处不在!先来说说建筑领域吧。

你知道吗,建筑工人在盖房子的时候,可离不开锐角三角函数的知识。

比如说,要建造一个有特定倾斜角度的屋顶,这就需要计算出屋顶的角度以及所需材料的长度和数量。

想象一下,工人们站在高高的脚手架上,拿着测量工具,认真地计算着角度和长度。

他们的眼神专注,手中的工具就像是神奇的魔法棒,通过锐角三角函数,把一堆堆的建筑材料变成了坚固又美观的房子。

再讲讲导航和地图。

当我们使用手机导航去一个陌生的地方时,导航软件会根据我们的位置和目的地,计算出最佳的路线。

这背后可就有锐角三角函数的功劳啦!它帮助确定我们与目的地之间的直线距离和实际行走的路程。

就像有一次我自己出门旅行,在一个完全陌生的城市里,靠着导航找到了一家特别棒的小吃店。

那个时候我就在想,要是没有这些数学知识的支撑,我可能还在街头瞎转悠,找不到美食的方向呢。

还有测量山峰的高度。

测量人员没办法直接爬到山顶去测量,那怎么办呢?这时候就轮到锐角三角函数登场啦!他们在山脚下选好测量点,测量出观测点与山顶的角度,再结合测量点与山底的距离,就能算出山峰的高度。

这就像是解开了一个神秘的谜题,让人充满了成就感。

在航海中,锐角三角函数也发挥着重要作用。

船员们需要根据星星的位置和角度来确定船只的方向和位置。

想象一下,在浩瀚的大海上,满天繁星闪烁,船员们依靠着锐角三角函数的知识,勇敢地驶向目的地,是不是特别酷?在日常生活中,我们装修房子的时候,如果想要在墙上挂一幅画,而且要保证画是水平的,那就得用到锐角三角函数来测量和计算。

又比如,我们要搭建一个秋千,要确定秋千的绳子长度和角度,让秋千荡起来既安全又有趣,这也需要锐角三角函数的帮忙。

甚至在体育比赛中也有它的身影。

比如滑雪运动员在从山坡上滑下来的时候,他们需要根据山坡的角度和自己的速度来调整姿势和控制方向,以确保安全和取得好成绩。

锐角三角函数的实际应用

锐角三角函数的实际应用

解:(1)在Rt△BCD中,∠DBC=15°,sin∠DBC= CD,
∴CD=BDsin∠DBC≈20×0.26=5.2 m,

BD
∴CD的值为5.2 m;
(2)如解图,作DH⊥AB,垂足为H. 则FH=ED=1.6 m, 在Rt△BCD中, ∵∴解∠c得oCsB1=5C°9≈01=°9.,4BBDCm∠=,CBB2DC0 =≈01.59°7,,BD=20 m, ∴EF=BC≈19.4 m, 在Rt△AEF中, ∵∠AEF=45°,∠AFE=90∴AF=EF=BC≈19.4 m, ∴AB=AF+FH+BH≈19.4+1.6+5.2=26.2 m, 即楼房AB约为26.2 m.
满分技法 锐角三角函数的实际应用常见模型
抱 子 型
满分技法
锐角三角函数的实际应用常见模型
背靠背型
注:在“抱子型”及“背靠背型”中,若只知两个直角 三角形两条直角边之和或之差,则需要列方程求解.
m,
∴∠DCF=∠EDC=60°,
∴∠ADC=∠ADE+∠EDC=90°,
∴在Rt△ADC中,AD2+CD2=AC2,
∴( 2 3 x+ 4 3 解得x31=4+34
)2+42=( 2x)2, 3,x2=4-4 3 (舍去),
∴AB=4+4 3≈10.8 m.
∴电线杆的高AB约10.8 m.
练习1、如图是一座人行天桥的示意图,天桥的高是10米,
练习3、如图是某儿童乐园为小朋友设计的滑梯平面图.已 知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、 CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB= 31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离 BM的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52, cos 31°≈0.86,tan 31°≈0.60)

锐角三角函数的实际应用问题

锐角三角函数的实际应用问题

锐角三角函数的实际应用问题一、《数学新课程标准》课标要求《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(掌握)。

数学离不开生活,生活也离不开数学。

在实际生活中,有不少问题的解决都涉及到数学中直角三角形的边、角关系。

而锐角三角函数的实际应用注重联系学生的生活实际,侧重于解决与学生生活比较接近的实际问题,突出了学数学、用数学的意识与过程。

二、考向分析结合近五年中考试题分析,锐角三角函数的内容考查主要有以下特点:1.命题方式为运用锐角三角函数解决与直角三角形有关的实际问题. 题型解答题,以中档题出现.分值都是9分;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题;三、锐角三角函数的实际应用这道题的价值1.它是代表初中几何图形的计算中的一个最高水平;2.此题蕴含的数学思想比较多,如化归思想、方程思想等;3.能加入实际生活的背景,增强学生的数学应用意识;4.能把学生的基本思想、基本方法、基本能力呈现出来。

四、近五年锐角三角函数的实际应用中考试题变与不变1.价值不变2.基本模型不变;3. 2012.2014.2015.2016四年都是考察解直角三角形的应用-仰角俯角问题.2013年考察解直角三角形的应用-坡度坡角问题.4. 2012. 2013. 2016年的都能在图中找到与已知和未知相关联的直角三角形,2014.2015年要通过作高或垂线构造直角三角形,把实际问题划归为直角三角形中边角关系问题加以解决.5.外形变化,实际背景变化,一些条件和结论的变化。

五、近五年锐角三角函数的实际应用中考试题回顾1.(河南省2012)(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅。

如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直固定。

小明为了测量此条幅的长度,他先测得楼顶A 点的仰角为45°,已知点C 到大厦的距离BC =7米,∠ABD =90°.请根据以上数据求条幅的长度(结果保留整数。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。

一、 化简或求值例1 (1)已知tan 2cot 1αα-=,且α的值。

(2)化简()()22sin cos cos sin a b a b αααα++-。

分析 (1)由已知可以求出tan α可用1tan cot αα=⋅;(2)先把平方展开,再利用22sin cos 1αα+=化简。

解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得tan 2α=或tan 1α=-。

又α是锐角,∴tan 2α=。

==tan cot αα-。

由tan 2α=,得1cot 2α==tan cot αα-=13222-=。

(2)()()22sin cos cos sin a b a b αααα++-=2222sin 2sin cos cos a ab b αααα+⋅⋅++2222cos 2cos sin sin a ab b αααα-⋅⋅+=()()222222sin cos sin cos a b αααα+++=22a b +。

说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα⋅=等。

二、已知三角函数值,求角例2 在△ABC 中,若223cos sin 022A B ⎛⎫-+-= ⎪ ⎪⎝⎭(),A B ∠∠均为锐角,求C ∠的度数。

分析 几个非负数的和为0,则这几个数均为0。

由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

解 由题意得2cos 0,23sin 0.2A B ⎧-=⎪⎪⎨⎪-=⎪⎩解得2cos ,23sin .3A B ⎧=⎪⎪⎨⎪=⎪⎩又∵,A B ∠∠均为锐角,∴45A ∠=,60B ∠=。

∴18075C A B ∠=-∠-∠=.说明 解这类问题首先要熟记特殊角的三角函数值,还要掌握一些化简的技巧。

锐角三角函数应用题解题思路

锐角三角函数应用题解题思路

锐角三角函数应用题解题思路的实际应用情况1. 应用背景锐角三角函数是三角学的重要分支,它研究的是以锐角为基础的三角函数,包括正弦、余弦和正切。

这些函数可以用来描述直角三角形和一般三角形中的角度关系。

在实际应用中,锐角三角函数可以被广泛地应用于物理、工程、地理、天文、航空等领域。

2. 应用过程考虑到篇幅限制,接下来我们将选取几个典型的应用案例,来具体阐述锐角三角函数的应用过程,并给出详细解题思路。

2.1 三角测量三角测量是指利用三角形的边长和角度信息来测量其他距离或高度的方法。

在实际测量中,我们常常需要利用已知边长和角度来求解未知边长和角度。

这时,可以利用正弦、余弦和正切等锐角三角函数来解决问题。

以求解未知边长为例,假设我们需要测量一个高耸的塔楼的高度。

首先,我们可以通过一定的测量手段获得塔顶处与地面的夹角α。

然后,我们可以选择一个合适的位置,在该位置与塔顶连线处测量出与地面的夹角β。

此时,我们可以利用正切函数来计算塔楼的高度h。

具体的解题思路如下所示:步骤1:根据测量手段,得到α的数值。

步骤2:选择合适的测量位置,测量得到β的数值。

步骤3:利用正切函数的定义,根据α和β的数值求解出α和β的弧度值。

步骤4:根据正切函数的性质,可以得到塔楼的高度h与β的正切值tan(β)的关系,即h = d * tan(β),其中d为已知的水平距离。

通过上述步骤,我们可以得到塔楼的高度h的数值。

2.2 航空导航在航空领域,飞行器的导航是一项重要的任务。

为了准确地确定飞行器的位置和方向,我们需要利用锐角三角函数来计算飞机的航向角、仰角等信息。

以计算航向角为例,假设我们需要确定某个飞机相对于正北方向的航向角。

首先,我们需要测量飞机相对于正东方向的角度α。

然后,利用余弦函数可以计算出航向角θ。

具体的解题思路如下所示:步骤1:根据测量手段,得到α的数值。

步骤2:利用余弦函数的定义,根据α的数值求解出α的弧度值。

步骤3:根据余弦函数的性质,可以得到航向角θ与α的余弦值cos(α)的关系,即cos(θ) = cos(α)。

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题

锐角三角函数及应用经典例题锐角三角函数是指在单位圆上,从原点出发,与 x 轴正半轴之间的夹角小于90° 的角的三角函数。

其中包括正弦函数sinα、余弦函数cosα、正切函数tanα,以及它们的倒数函数cscα、secα、cotα。

锐角三角函数在数学中有广泛的应用,尤其在几何、物理以及工程学中涉及到角度测量、距离计算等方面经常用到。

下面我们来看一些经典的例题,以加深对锐角三角函数的理解:例题1:已知在锐角 ABC 中,边长 BC = 5, AC = 13、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于边长BC=5,AC=13,我们可以根据勾股定理求得边长AB=√(AC^2-BC^2)=12角 A 的正弦值 sinA = BC / AC = 5 / 13,余弦值 cosA = AB / AC = 12 / 13,正切值 tanA = BC / AB = 5 / 12例题2:已知在锐角 ABC 中,角B = 35°,边长 BC = 8、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。

解答:由于已知角B = 35°,边长 BC = 8,我们可以根据正弦函数的定义求得角 A 的正弦值为 sinA = BC / AC。

由于 sinA = BC / AC,我们可以得到 AC = BC / sinA = 8 /sin(180° - A - B)。

根据余弦定理,可以计算出边长AC = √(AB^2 + BC^2 - 2 * AB * BC * cosB)。

代入已知的B = 55° 和 BC = 8,我们可以求得AC = √(AB^2 +8^2 - 2 * AB * 8 * cos35°)。

我们可以进一步根据余弦函数的定义计算 AB 的值,即 cosA = AB / AC,所以 AB = AC * cosA。

初中数学九年级下册苏科版7.6用锐角三角函数解决问题说课稿

初中数学九年级下册苏科版7.6用锐角三角函数解决问题说课稿
课中,我将采用问题驱动法和案例分析法为主要教学方法。问题驱动法能够激发学生的学习兴趣和动机,引导学生主动探索和解决问题。案例分析法能够让学生直观地理解和掌握锐角三角函数在实际问题中的应用。这两种方法都符合建构主义学习理论,即学生通过主动构建知识体系来提高学习效果。
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和数学软件等技术工具。多媒体课件能够生动地展示锐角三角函数的图像和性质,帮助学生直观地理解知识点。实物模型和数学软件则可以让学生亲身体验和操作,增强他们的动手能力和解决问题的能力。
3.动手实践:让学生利用实物模型或数学软件进行操作和实践,亲身体验锐角三角函数的应用过程。这样的实践活动能够增强学生的动手能力和解决问题的能力。
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾所学知识,总结锐角三角函数的概念和性质。然后,我会鼓励学生分享自己的学习心得和体会,让其他同学和学习成果。最后,我会对学生的表现进行点评,给予肯定和鼓励,并提出改进的建议和指导。
(二)新知讲授
在新知讲授阶段,我会逐步呈现锐角三角函数的知识点,引导学生深入理解。首先,我会回顾一下锐角三角函数的定义和性质,为学生提供一个知识框架。然后,我会通过多媒体课件展示锐角三角函数的图像,让学生直观地理解函数的变化规律。接下来,我会通过案例分析法,引导学生分析和解决实际问题,让学生将理论知识运用到实际情境中。在这个过程中,我会鼓励学生积极参与,提出问题和解决问题,从而加深对锐角三角函数的理解。
五、板书设计与教学反思
(一)板书设计
我的板书设计将注重布局的合理性、内容的精炼性和风格的简洁性。板书将包括本节课的主要知识点,如锐角三角函数的定义、图像和性质,以及解决实际问题的方法。布局上,我会将板书分为几个部分,每个部分都有明确的标题和内容,以便学生能够清晰地理解和把握知识结构。板书在教学过程中的作用是提供一个视觉辅助工具,帮助学生梳理和巩固知识点。为了确保板书清晰、简洁且有助于学生把握知识结构,我会尽量使用简洁的文字和图示,并注意字体的清晰度和大小。

锐角三角函数应用题的方法与技巧

锐角三角函数应用题的方法与技巧

锐角三角函数应用题的方法与技巧
x
《锐角三角函数应用题的方法与技巧》
一、总体思路
1、识别出三角形所涉及的三角函数,并确定三角函数的参数:根据题干里面提供的线段、角度等长度或角度来初步判断三角形的形状,并由此来计算出三个角度和三条边。

2、判断题目的性质:根据题目要求,判断出是求边长还是求角度。

3、解答:
(1)求边长:利用相应的三角函数关系(正弦定理、余弦定理、正切定理等),求出答案;
(2)求角度:利用相应的三角函数关系,求出角度的三角函数值,再用反三角函数求出角度。

二、技巧总结
1、画图法:根据题干中提供的信息,画出准确的三角形图形,便于计算和判断。

2、直角三角形快速求角度:根据对边比斜边的特点,找出角度所对应的三角函数值,再用反三角函数计算出角度。

3、正弦定理、余弦定理:正弦定理可用于计算夹角的一边的长度,余弦定理可用于求另一边的长度。

4、正切定理:正切定理可以用于求夹角的角度大小。

5、各种三角函数的关系:在计算三个角度的大小时,可以利用三个角度的和为180°;在计算三条边的长度时,可以利用三条边之和的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档