初中数学专题训练:锐角三角函数
初中数学锐角三角函数计算题专题训练含答案

初中数学锐角三角函数计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共30题)1、计算:2、计算:3、计算:4、计算:。
5、计算:。
6、2sin45°-|-|-(1-)°+()-7、计算:.8、 |2-tan60°|-(π-3.14)0+(-)-2+.9、10、计算:-sin60°+(-)0-11、计算:12、计算:13、计算:||.14、计算:15、计算:.16、计算:;17、计算:-sin60°+(-)0-18、计算:.19、计算:.20、计算:.21、计算:+×30°22、计算:.23、计算:24、计算:25、计算:.26、计算:27、计算:28、计算:.29、计算:-(-4)+-2cos30°30、计算:============参考答案============一、计算题1、解:2、解:3、4、 15、原式=2+2-2×+1=46、7、计算:(本题7分).==8、【答案】解:原式=|2-|-1+4+=2-+3+=5.9、原式10、计算:-sin60°+(-)0-.解:原式==2.11、= 1 +-1+4 …………………………………………(3分)=-2 …………………………………………(1分)12、解:原式==0(4+2分)13、计算:||.原式= 2分= 1分14、原式………………1分………………1分………………1分15、解:原式==.16、原式…………………………………………………………4分(此步错误扣1分) …………………………………………………………4分17、计算:-sin60°+(-)0-.解:原式==2.18、解:原式=…………………………………………………………4分=.…………………………………………………………………… 5分19、解:原式.20、解: 原式=------------------------------4分=----------------------------------------6分解:原式= = =22、解: 原式=------------------------------4分=----------------------------------------6分23、解:原式=1-4+3+1 …………………………4分= 1 …………………………5分24、解:原式==25、解:==.26、解:原式==1-3+2=027、原式=128、解:原式=············· 4分=4.··············· 8分29、30、原式。
专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。
中考数学复习《锐角三角函数》专项练习题-附带有答案

中考数学复习《锐角三角函数》专项练习题-附带有答案一、选择题1.已知α是锐角,若sinα=12,则α的度数是()A.30°B.45°C.60°D.75°2.如图,在Rt△ABC中,BC=3,斜边AC=5,则下列等式正确的是()A.sinC=35B.cosC=43C.tanA=34D.sinA=453.在Rt△ABC中,∠C=90°,sinA= 513,则tanB的值为()A.1213B.512C.1312D.1254.如图所示,河堤横断面迎水坡AB的坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8 B.16 C.4√5D.4√35.如图所示,△ABC的顶点是正方形网格的格点,则sin∠A的值为()A.12B.√1010C.√55D.2√556.如图,点A到点C的距离为100米,要测量河对岸B点到河岸AD的距离.小明在A点测得B在北偏东60°的方向上,在C点测得B在北偏东30°的方向上,则B点到河岸AD的距离为()A.100米B.50米C.200√33米D.50√3米7.图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若 AB=BC=1,∠AOB=α,则 OC2的值为()A.sin2α+1B.1sin2α+1C.cos2α+1D.1cos2α+18.如图所示,正方形ABCD中AB=4,点E为BC中点,BF⊥AE于点G,交CD边于点F,连接DG,则DG长为()A.95√5B.4 C.165D.85√5二、填空题9.已知∠A是锐角tanA=√32,则sinA=.10.平放在地面上的直角三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B 为36°,边AB的长为2m,BC边上露出部分BD的长为0.9m,则铁板BC边被掩埋部分CD的长是m.(参考数据:sin54°≈0.8,cos54°≈0.6,tan54°≈1.4).11.如图,在⊙O中,弦AB的长为12√3,圆心到弦AB的距离为6,则∠BOC的度数为.12.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,√3),且∠ABC=90°,∠A=30°,则顶点A的坐标是.13.如图,正方形AFEB和正方形BEDC的边长相等,点A、B、C在同一条直线上.连接AD、BD,那么cos ∠ADB的值为.三、解答题14.计算:2sin30°+cos30°•tan60°.15.先化简,再求值:xx2−1÷(1−1x+1),其中x=√2sin45°+2tan60°.16.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)17.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB 由A 向B 移动,已知点C 为一海港,在A 处测得C 港在北偏东45°方向上,在B 处测得C 港在北偏西60°方向上,且 AB =400+400√3 千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据 √2≈1.41 √3≈1.73 √5≈2.24 )18.如图所示,已知BC 是⊙O 的直径,A 、D 是⊙O 上的两点,连接AD 、AC 、CD ,线段AD 与直径BC 相交于点E.(1)若∠ACB =60°,求sin∠ADC 的值.(2)当CD ⌢=12AC ⌢时 ①若CE =√2,BC⋅CE AB =2求∠COD 的度数.②若CD =1,CB =4求线段CE 的长.参考答案1.A2.C3.D4.C5.C6.D7.B8.B9.√217 10.0.711.60°12.(4,√3)13.3√101014.解:原式=2× 12 + √32× √3 =1+ 32= 5215.解: x x 2−1÷(1−1x+1)=x (x+1)(x−1)÷x+1−1x+1 =x (x+1)(x−1)⋅x+1x=1x −1 当x =√2sin45°+2tan60°=√2×√22+2×√3=1+2√3时 1x −1=11+2√3−1=12√3=√36原式=√36. 16.解:延长DC 交EA 的延长线于点F ,则CF ⊥EF∵山坡AC上坡度i=1:2.4∴令CF=km,则AF=2.4km在Rt△ACF中,由勾股定理得CF2+AF2=AC2∴k2+(2.4k)2=262解得k=10∴AF=24m,CF=10m∴EF=30m在Rt△DEF中,tanE=DFEF∴DF=EF•tanE=30×tan48°=30×1.11=33.3(m)∴CD=DF﹣CF=23.3m因此,古树CD的高度约为23.3m.17.(1)解:如下图,过点C作CH⊥AB交AB于点H设CH=x在Rt△ACH中在Rt△BCH中∴AB=(√3+1)x=400+400√3∴x=400,∴CH=400∵400<600,海港C受台风影响(2)解:如下图,以CP=600千米为半径画弧交AB于P、Q两点,此时台风在PQ之间时,海港受到影响在 Rt △PCH 中∴PH =√CP 2−CH 2=200√5∴PQ =2PH =400√5则时间: t =400√520=20√5≈45 (小时)答:台风影响该海港持续的时间有45小时.18.(1)解:∵BC 是⊙O 的直径∴∠BAC =90°∵∠ACB =60°∴∠B =30°∵AC ⌢=AC ⌢∴∠ADC =∠B =30°∴sin∠ADC =sin30°=12所以sin∠ADC 的值为12;(2)解:①∵CE =√2 BC⋅CE AB =2∴BC AB =√2∵∠BAC =90°∴cos∠B =AB BC =√22∴∠B =45°∵CD ⌢=12AC ⌢∴∠CAD =12∠B =22.5°∴∠COD =2∠CAD =45°即∠COD 的度数为45°;②∵CD ⌢=12AC ⌢∵∠ADC=∠COD,∠OCD=∠DCE ∴△OCD∽△DCE∴CDOC =CECD∵BC=4∴OC=2∴12=CE1∴CE=12∴线段CE的长为12.。
2023年中考九年级数学高频考点专题训练--锐角三角函数

2023年中考九年级数学高频考点专题训练--锐角三角函数一、综合题1.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交∠O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为∠O切线;(2)若sin∠BAC=35,求tan∠AFO的值.2.如图,一个正方体木箱沿斜面下滑,正方体木箱的边长BE为2m,斜面AB的坡角为∠BAC,且tan∠BAC= 3 4.(1)当木箱滑到如图所示的位置时,AB=3m,求此时点B离开地面AC的距离;(2)当点E离开地面AC的距离是3.1m时,求AB的长.3.如图,在∠ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与∠ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.4.如图,以∠ABC的一边AB为直径的半圆O与边AC,BC的交点分别为点E,点D,且D是BE⌢的中点.(1)若∠A=80°,求∠DBE的度数.(2)求证:AB=AC.(3)若∠O 的半径为5cm,BC=12cm,求线段BE的长.5.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且∠DAM和∠BCE相似,求点M坐标.6.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC∠OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD∠OF于点D.(1)当AC的长度为多少时,∠AMC和∠BOD相似;(2)当点M恰好是线段AB中点时,试判断∠AOB的形状,并说明理由;(3)连结BC.当S∠AMC=S∠BOC时,求AC的长.7.如图1,在∠ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A 重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F,D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;,其他条件不(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= √6+√22变,求线段AM的长.8.(1)【基础巩固】如图1,在∠ABC中,D,E,F分别为AB,AC,BC上的点,DE∠BC,BF=CF,AF交DE于点G,求证:DG= EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG∠DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在∠ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∠BD交AD于点G,EF∠EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.9.在锐角∠ABC中,AB=4,BC=5,∠ACB=45°,将∠ABC绕点B按逆时针方向旋转,得到∠DBE.(1)当旋转成如图①,点E在线段CA的延长线上时,则∠CED的度数是度;(2)当旋转成如图②,连接AD、CE,若∠ABD的面积为4,求∠CBE的面积;(3)点M为线段AB的中点,点P是线段AC上一动点,在∠ABC绕点B按逆时针方向旋转过程中,点P的对应点P′,连接MP′,如图③,直接写出线段MP′长度的最大值和最小值.10.如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么tan∠1tan∠2的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当∠DCG为等腰三角形时,求BE长.11.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠D=85°,则∠C =.(2)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求对角线AC的长.(3)已知:如图2,在平面直角坐标系xOy中,四边形ABCD是“等对角四边形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣√3),点D在y轴上,抛物线y=ax2+bx+c(a<0)过点A、D,且当﹣2≤x≤2时,函数y=ax2+bx+c取最大值为3,求二次项系数a的值.12.如图,已知BC为∠O的直径,点D为CE⌢的中点,过点D作DG∠CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是∠O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.13.已知:如图,AB为∠O的直径,C是BA延长线上一点,CP切∠O于P,弦PD∠AB于E,过点B作BQ∠CP于Q,交∠O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3√3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 √3,连接QC交BC于点M,求QM的长.14.定义:一边上的中线与另一边的夹角为30°的三角形称作美妙三角形。
中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。
xx 。
]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。
(专题精选)初中数学锐角三角函数的难题汇编含答案解析

(专题精选)初中数学锐角三角函数的难题汇编含答案解析一、选择题1.cos60tan45+o o的值等于()A.32B.22C.32D.1【答案】A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:原式13122 =+=.故选A.【点睛】本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A、B、C都是格点,则tan ABC∠=()A.3B.3C.3D.3【答案】A【解析】【分析】直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用ECtan ABCBE∠=得出答案.【详解】解:连接DC ,交AB 于点E .由题意可得:∠AFC=30°, DC ⊥AF,设EC=x,则EF=x =3x tan 30︒, ∴BF AF 2EF 23x === EC 3tan ABC BE 923x 3x 33====+∠, 故选:A【点睛】此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.3.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.4.直角三角形纸片的两直角边长分别为6,8,现将ABC V 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( )A .247B .73C .724D .13【答案】C【解析】试题分析:根据题意,BE=AE .设BE=x ,则CE=8-x .在Rt △BCE 中,x 2=(8-x )2+62,解得x=254,故CE=8-254=74, ∴tan ∠CBE=724CE CB =. 故选C.考点:锐角三角函数.5.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.6.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45︒,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60︒和30°,则该电线杆PQ 的高度( )A .623+B .63+C .103-D .83+【答案】A【解析】 【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.【详解】解:延长PQ 交直线AB 于点E ,设PE=x .在直角△APE 中,∠A=45°,AE=PE=x ;∵∠PBE=60°∴∠BPE=30°在直角△BPE 中,BE=33PE=33x ,∵AB=AE-BE=6米,则x-3x=6,解得:x=9+33.则BE=33+3.在直角△BEQ中,QE=3BE=3(33+3)=3+3.∴PQ=PE-QE=9+33-(3+3)=6+23.答:电线杆PQ的高度是(6+23)米.故选:A.【点睛】本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题. 7.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠2为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .3D .3【答案】D【解析】【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B 处与灯塔P 之间的距离为:BP=22303AB AP -=(海里)故选:D .【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,若O e 的半径是4,1sin 4B =,则线段AC 的长是( ).A .2B .4C .32D .6【答案】A【解析】【分析】 连结CD 如图,根据圆周角定理得到∠ACD =90︒,∠D =∠B ,则sinD =sinB =14,然后在Rt △ACD 中利用∠D 的正弦可计算出AC 的长.【详解】连结CD ,如图,∵AD 是⊙O 的直径,∴∠ACD =90︒,∵∠D =∠B ,∴sinD =sinB =14, 在Rt △ACD 中,∵sinD =AC AD =14, ∴AC =14AD =14×8=2. 故选A .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90 的圆周角所对的弦是直径.也考查了解直角三角形.10.如图,点O为△ABC边 AC的中点,连接BO并延长到点D,连接AD、CD,若BD=12,AC=8,∠AOD=120°,则四边形ABCD的面积为()A.23B.22C.10D.243【答案】D【解析】【分析】分别过点A、C作BD的垂线,垂足分别为M、N,通过题意可求出AM、CN的长度,可计算三角形ABD和三角形CBD的面积,相加即为四边形ABCD的面积.【详解】解:分别过点A、C作BD的垂线,垂足分别为M、N,∵点O为△ABC边 AC的中点,AC=8,∴AO=CO=4,∵∠AOD=120°,∴∠AOB=60°,∠COD=60°,∴342AM AM sin AOB AO ===∠, 342CN CN sin COD CO ===∠, ∴AM=23,CN=23, ∴12231232ABD BD AM S ⨯===g △, 12231232BD CN S ⨯===g △BCD , ∴=123123243ABD BCD ABCD S S S +=+=△△四边形故选:D.【点睛】本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键.11.如图,河堤横断面迎水坡AB 的坡比是,堤高BC=10m ,则坡面AB 的长度是( )A .15mB .C .20mD .【答案】C【解析】【分析】【详解】 解:∵Rt △ABC 中,BC=10m ,tanA=,∴AC===m . ∴AB=m .故选C .【点睛】 本题考查解直角三角形的应用(坡度坡角问题),锐角三角函数,特殊角的三角函数值及勾股定理,熟练掌握相关知识点正确计算是本题的解题关键.12.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E,若∠A=30°,则sin∠E的值为()A.12B.22C.32D.33【答案】A【解析】【分析】首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案.【详解】如图,连接OC,∵CE是⊙O的切线,∴∠OCE=90°,∵OA=OC,∴∠OCA=∠A=30°,∴∠COE=∠A+∠OCA=60°,∴∠E=180°-90°-60°=30°,∴sinE=sin30°=1 2 .故选A.13.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B 【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣23;故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.如图,在平面直角坐标系中,AOB∆的顶点B在第一象限,点A在y轴的正半轴上,2AO AB==,120OAB∠=o,将AOB∠绕点O逆时针旋转90o,点B的对应点'B的坐标是()A.3(23)2--B.33(2222---C.3(3,22--D.(3)-【答案】D【解析】【分析】过点'B作x轴的垂线,垂足为M,通过条件求出'B M,MO的长即可得到'B的坐标.【详解】解:过点'B作x轴的垂线,垂足为M,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.15.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE=4OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC=212即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴∴S △ODE =12DE·2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 336a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.16.如图,一架飞机在点A 处测得水平地面上一个标志物P 的俯角为α,水平飞行m 千米后到达点B 处,又测得标志物P 的俯角为β,那么此时飞机离地面的高度为( )A .cot cot m αβ-千米B .cot cot m βα-千米C .tan tan m αβ-千米 D .tan tan m βα-千米 【答案】A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O ,由锐角三角函数知,AO=PO cot α,BO=PO cot β,又AB=m=AO-BO= PO cot α- PO cot β=cot cot m αβ-. 所以答案选A. 【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键.17.如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60 n mile 的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是( )A .303n mileB .60 n mileC .120 n mileD .(303)+n mile【答案】D【解析】【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.【详解】过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=CD AC,∴CD=AC•cos∠ACD=60×3303 .在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=303,∴AB=AD+BD=30+303.答:此时轮船所在的B处与灯塔P的距离是(30+303)nmile.故选D.【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2D.b=2a=2c【答案】A【解析】【分析】利用解直角三角形知识.在边长为a和b两正方形上方的两直角三角形中由正切可得a b c b a c -=-,化简得b =a +c ,故选A. 【详解】请在此输入详解!19.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosA 的值是( )A .45B .35C .43D .34【答案】B【解析】【分析】根据勾股定理,可得AB 的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】解:在Rt △ABC 中,∠C=90°,AC=3,BC=4,由勾股定理,得AB=22AC BC +=5cosA=AC AB =35故选:B .【点睛】 本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.20.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB =4,则光盘表示的圆的直径是( )A .4B .3C .6D .43【答案】B【解析】【分析】 设三角板与圆的切点为C ,连接OA 、OB ,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知,AB=AC=3,AO平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB3∴光盘的直径为3故选:B.【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.小亮家的洗手盆上装有一种抬启式水龙头(如图 1),完全开启后,把手 AM 的仰角为 37°, 此时把手端点 A、出水口点 B 和落水点 C 在同一直线上.洗手盆及水龙头示意图如图 2,其相 关数据为 AM=10cm,MD=6cm,DE=22cm,EH=38cm.求 CH 的长.(参考数据:sin37°
27.阅读材料:在《相似》和《锐角三角函数》的学习中,我们了解了借助太阳光线、利用标杆、 平面镜等测量工具可以测量建筑物的高度. 综合实践活动课上,数学王老师让同学制作了一种简单测角仪:把一根细线固定在量角器的圆 心处,细线的另一端系一个重物(如图一);将量角器拿在眼前,使视线沿着量角器的直径刚 好看到需测量物体的顶端(如图二),这样可以得出需测量物体的仰角 α 的度数(如图 三).利用这种简单的测角仪,可以帮助我们测量角度.
tanA=
∠A的对边 ∠A的邻边
4.特殊角的三角函数值:
∠A
sinA
cosA
tanA
0°
0
1
0
30°
______
3 2
3 3
45°
2 2
2 2
1
60°
3 2
______
3
90°
1
0
不存在
5.锐角三角函数的性质:
①同角三角函数关系:sin2A+cos2A=1;tanA= sin A cos A
②互为余角三角函数关系:sinA=cos(90°-∠A); cosA=____________
角分别为∠α=48°和∠β=65°,矩形建筑物宽度 AD=20m,高度 CD=30m,则信号发射塔顶
端到地面的高度 FG 为
米(结果精确到 1m).
参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
19.如图,灯塔 A 在测绘船的正北方向,灯塔 B 在测绘船的东北方向,测绘船向正东方向航行 20
10. 因为 cos60°= ,cos240°=﹣ ,所以 cos240°=cos(180°+60°)=﹣cos60°;由此猜想、推理
知:当 α 为锐角时有 cos(180°+α)=﹣cosα,由此可知:cos210°=( )
A.﹣
B.﹣
C.﹣
D.﹣
二.填空题(共 10 小题)
11.计算:
=
.
12.4cos30°+
在我校九年级数学《测量》实践活动中,有一位同学参考阅读材料自制了测角仪,他想利用所
学的知识测量北海公园白塔的塔顶到山下地面的高度,请你从下面问题(1)(2)中选取一个
问题作答:
(1)这位同学第一次站在琼华岛山下的平地上进行测量活动,他设计了一种测量方案,求出了
北海白塔的塔顶到山下地面的高度,下面的图片反映了他的测量方法.
①根据上述思路,在图中标出字母,写出需要并且能测量的角或线段(用图中的字母表示)
_________;测量时使用的工具是
;
②结合示意图,简要说明计算的思路(不必写出结果).
(2)这位同学第二次站在琼华岛的对岸,巧妙地利用白塔在水中的倒影计算出了塔顶到山下地
面的高度,下面的图片反映了他的测量方法.
①根据上述思路,在图中标出字母,写出需要并且能测量的角或线段(用图中的字母表
线在水平线______的角叫做俯角.
9.方向角
指北或指南方向线与目标方向线所成的小于______的角叫做方向角.
10.坡度:坡面的_________和_________的比值叫做坡度(或坡比),记作 i,即 .
单元检测
一.选择题(共 10 小题) 1.已知在 Rt△ABC 中,∠C=90°,BC=5,那么 AB 的长为(
6.sin240°+cos240°的值为( )
A.0
B.
C.1
D.2
7.若角 α,β 都是锐角,以下结论:
①若 α<β,则 sinα<sinβ;②若 α<β,则 cosα<cosβ;③若 α<β,则 tanα<tanβ;④若 α+β=
90°,则 sinα=cosβ.其中正确的是( )
A.①②
B.①②③
A.5sinA
B.5cosA
C.
) D.
2.如图,△ABC 中,∠C=90°,BC=2,AB=3,则下列结论正确的是( )
A.sinA=
B.cosA=
C.sinA=
D.tanA=
3.在 Rt△ABC 中,∠C=90°,∠B=α,若 BC=m,则 AB 的长为( )
A.
B.m•cosα
C.m•sinα
= ,cos37°= ,tan37°= , ≈1.7)
23.郑州市某中学体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知着台 高为 1.6 米,现要做一个不锈钢的扶手 AB 及两根与 FG 垂直且长为 1 米的不锈钢架杆 AD 和 BC(杆子的底端分别为 D,C),且∠DAB=66.5°求所用不锈钢材料的总长度 (即 AD+AB+BC,结果精确到 0.1 米)参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)
∴AC=
=
=
sinA= ,cosA= ,tanA= =
只有选项 D 正确,故选:D. 【知识点】1,2,3 3.【分析】根据解直角三角形的三角函数解答即可 【解答】解:如图所示:
∵
∴AB=
故选:A 【知识点】2 4.【分析】由 sinα 随 α 的增大而增大且 30°<∠A<45°,结合特殊锐角的三角函数值可得答案 【解答】解:∵sinα 随 α 的增大而增大,且 30°<∠A<45°
17.如图,在直升机的镜头下,观测牡丹园 A 处的俯角为 30°,B 处的俯角为 45°,如果此时直升 机镜头 C 处的高度 CD 为 200 米,点 A、B、D 在同一条直线上,则 A、B 两点间的距离为 _________米.(结果保留根号)
18.如图,某高楼顶部有一信号发射塔,在矩形建筑物 ABCD 的 A、C 两点测得该塔顶端 F 的 仰
四.附加题(共 2 小题) 26.如图是小米洗漱时的侧面示意图.洗漱台(矩形 ABCD)靠墙摆放,高 AD=80cm,宽 AB=
48cm,小米身高 160cm,下半身 FG=100cm,洗漱时下半身与地面成 80°(∠FGK=80°), 身体前倾成 125°(∠EFG=125°),脚与洗漱台距离 GC=15cm(点 D,C,G,K 在同一直线 上). (1)此时小米头部 E 点与地面 DK 相距多少? (2)若小米的头部 E 恰好在洗漱盆 AB 的中点 O 的正上方,她应向前或向后移动多少厘米? (sin80°≈0.98,cos80°≈0.18, ≈1.41,结果精确到 0.1)
C.①③④
D.①②③④
8.△ABC 中,∠A,∠B 都是锐角,且 sinA= ,cosB= ,则△ABC 的形状是( )
A.直角三角形 C.锐角三角形 9.下列等式成立的是( ) A.sin45°+cos45°=1 C.2sin30°=tan45°
B.钝角三角形 D.锐角三角形或钝角三角形
B.2tan30°=tan60° D.sin45°cos45°=tan45°
6. 锐角三角函数的变化规律:
当角度在 0°∼90°范围内变化时,正弦值随角度增大(或减小)而______(或减小);余弦值随
角度增大(或减小)而______(或增大);正切值随角度增大(或减小)而______(或减小).
比较角的正弦、余弦、正切值的大小,其规律是:
若∠A、∠B 为锐角,且∠A>∠B,则 sinA>sinB,cosA<cosB,tanA>tanB
该规律反过来也成立.
28.2 解直角三角形及其应用
7.解直角三角形的概念:在直角三角形中,除直角外,一共有 5 个元素,即 3 条边和 2 个锐角,
由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.
8. 仰角与俯角:
在测量过程中,常常会遇到仰角和俯角.
如图,当我们进行测量时,在视线与水平线所成的角中,视线在水平线______的角叫做仰角,视
第二十八章 锐角三角函数
基础知识通关
28.1 锐角三角函数
在 Rt△ABC 中,
1.正弦:∠A
的对边与斜边的比值是∠A
的______,记作
sinA=
∠A的对边 斜边
2.余弦:∠A
的邻边与斜边的比值是∠A
的______,记作
cosA=
∠A的邻边 斜边
3.正切:∠A
的对边与邻边的比值是∠A
的______,记作
25.如图是某区域的平面示意图,码头 A 在观测站 B 的正东方向,码头 A 的北偏西 60°方向上有
一小岛 C,小岛 C 在观测站 B 的北偏西 15°方向上,码头 A 到小岛 C 的距离 AC 为 10 海里.
(1)填空:∠BAC=
度,∠C=
度;
(2)求观测站 B 到 AC 的距离 BP(结果保留根号).
海里后,恰好在灯塔 B 的正南方向,此时测得灯塔 A 在测绘船北偏西 63.5°的方向上,则灯塔
A,B 间的距离为
海里(结果保留整数).(参考数据 sin26.5°≈0.45,cos26.5°≈0.90,
tan26.5°≈0.50, ≈2.24)
20.“奔跑吧,兄弟!”节目组预设计一个新游戏:“奔跑”路线 A、B、C、D 四地,如图 A、B、C
24.如图,小明在家乡的楼顶上 A 处测得池塘的一端 B 处的俯角为 10°,测得池塘 D 处的俯角∠ EAD=60°,B、D、C 三点在同一水平直线上.已知楼高 AC=15 米,求池塘宽 BD 为多少 米?