第六章+定向耦合器

合集下载

什么是定向耦合器

什么是定向耦合器

什么是定向耦合器定向耦合器的工作原理定向耦合器是微波测量和其它微波系统中常见的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。

它是一种有方向性的微波功率分配器,更是近代扫频反射计中不可缺少的部件,通常有波导、同轴线、带状线及微带等几种类型。

图1为其结构示意图。

它主要包括主线和副线两部分,彼此之间通过种种形式小孔、缝、隙等进行耦合。

因此,从主线端上“1”输入的功率,将有一部分耦合到副线中去,由于波的干涉或叠加,使功率仅沿副线-一个方向传输(称“正向”),而另一方向则几乎毫无功率传输(称“反向”)图2为十字定向耦合器,耦合器中端口之一终端接一内装的匹配负载。

定向耦合器的应用1、用于功率合成系统在多载频合成系统中,通常会用到3dB的定向耦合器(俗称3dB电桥),如下图所示。

这种电路常见于室内分布系统,来自两路功率放大器的信号f1和f2经过3dB定向耦合器后,每路的输出均包含了f1和f2两个频率分量,每个频率分量的幅度减少3dB。

如果将其中一个输出端接上吸收负载,另外一路输出可以作为无源互调测量系统的功率源。

如果需要进一步提高隔离度,可以外加一些器件如滤波器和隔离器。

一个良好设计的3dB电桥的隔离度可以做到33dB以上。

定向耦合器用于功率合成系统一定向沟壑区作为功率合成的另外一种应用见下图(a)。

在这个电路中,定向耦合器的方向性得到了巧妙的应用。

假设两个耦合器的耦合度均为10dB,方向性均为25dB,则f1和f2端之间的隔离为45dB。

如果f1和f2的输入均为0dBm,则合成后的输出均为-10dBm。

与下图(b)中的Wilkinson耦合器(其隔离度典型值为20dB)相比,同样输入OdBm的信号,合成后还有-3dBm (未考虑插入损耗)。

作为间样条件下的比较,我们将图(a)中的输入信号提高7dB,这样其输出就和图(b)—致了,此时,图(a)中f1和f2端的隔离度“降低”为38 dB。

第6章 定向耦合器modified

第6章 定向耦合器modified
(b)
图6.10 分支线耦合器电路分解为偶模和奇模 (a)偶模 (b)奇模
第6章 定向耦合器
考虑偶模二端口电路Γe和Te的计算,利用A矩阵和S矩阵的 关系 (6-23) 则 (6-24a) (6-24b) 同样对于奇模有 (6-25) (6-26)
第6章 定向耦合器
将(6-24)和(6-26)代入(6-22)中,有
,此时(6-4)转化为 (6-6)
意即只要(6-5)式满足,则端口①(由对称性,其余端口一样)将 是匹配的。在满足(6-5)时,端口③的电压是 (6-7) 采用(6-2)和(6-5)得 (6-8)
第6章 定向耦合器
定义C为 (6-9) 则 将上两式代入(6-8)中可得 (6-10) 同样我们能证明 (6-11) 以及 (6-12) 根据(6-10)和(6-12)可以作出耦合端口和直通端口电压随频率的 关系曲线,如图6.6所示。
第6章 定向耦合器
2.耦合线耦合器的设计
分析方法:偶-奇模分析技术与线的输入阻抗相结合 单端耦合线耦合器及其示意性电路如图6.4所示,其中端 口①的激励可视为偶模和奇模激励之和。由于对称性,对于偶 模,可认为 I = I , I = I , V = V , V = V ,如图6.5(a)所示;而奇模则 满足 I = − I , I = − I , V = −V , V = −V ,如图6.5(b)所示。
图6.2 (a)边耦合带状线 (b)宽边耦合带状线 (c)耦合微带线
第6章 定向耦合器
三线耦合线可用图6.3所示的结构来表征。若假定传输 TEM模,则耦合线电特性仅决定于线间等效电容和线上电磁波 的传播相速。
考虑耦合线的两种特殊的激励类型,如图6.4所示: •偶模:两带状导体上电流的幅值相等,方向相同 偶模电容 偶模阻抗 •奇模:两带状导体上电流的幅值相等,方向相反 奇模电容 奇模阻抗

定向耦合器的工作原理及作用

定向耦合器的工作原理及作用

定向耦合器的工作原理及作用嘿,你问定向耦合器的工作原理及作用呀,那咱就来聊聊呗。

定向耦合器呢,就像是一个有点“小聪明”的小装置。

它的工作原理其实还挺有意思的。

你可以把它想象成一个在信号传输道路上的“分流器”。

当信号在传输线中跑的时候,定向耦合器就会从这条传输线上“偷偷”地分出一部分能量来。

它是怎么做到的呢?它里面有一些特殊的结构,比如耦合线或者孔洞之类的。

这些东西就像小“窗口”,让一部分信号能通过它们“溜”到另一个通道里去。

而且它还很“聪明”地只让信号按照特定的方向分流哦,所以才叫定向耦合器嘛。

比如说,信号从左边往右边传,它就能按照设定好的方式把一部分能量准确地引导到旁边的通道里,而如果信号从右边往左边传,它可能就不会让那么多能量“溜”过去啦,是不是有点神奇那它有啥作用呢?作用可不少呢!首先,它可以用来检测信号的强度。

就好比你想知道水流有多大,放个小水表在旁边测一测一样。

定向耦合器能把传输线上的信号分出来一点,然后通过一些测量手段,你就能知道信号有多强啦。

这在很多通信系统里都很重要哦,要是信号太弱了,可能通信质量就不好,就得想办法调整啦。

其次,它还能用来实现信号的分配和合成。

比如说,你有一个信号源,想把它分成几个不同的部分送到不同的地方去,定向耦合器就可以帮你做到。

它把信号按一定的比例分出来,然后送到各个需要的地方。

反过来,如果有几个信号要合成一个,它也能在一定程度上帮忙哦,就像把几条小水流汇聚成一条大水流一样。

还有哦,在一些测量和测试设备中,定向耦合器也大有用处。

比如在射频测试中,它可以帮助工程师们准确地测量各种参数,确保设备正常工作。

我给你讲个例子吧。

有一次在一个通信基站的维护中,工作人员发现信号传输有点问题,怀疑是某个部件出了故障。

他们就用定向耦合器来检测信号的强度和分布情况。

通过它,找到了信号在传输过程中衰减比较大的地方,最后发现是一根传输线老化了。

换了新的传输线后,信号就恢复正常啦。

所以你看,定向耦合器虽然看起来小小的,但是在很多地方都发挥着重要的作用呢,你明白了不。

微波实验 定向耦合器

微波实验  定向耦合器

实验六定向耦合器特性的测量及应用目的:研究定向耦合器的特性及其应用。

原理:定向耦合器是微波测量和其它微波系统中常见的微波器件,它是一种有方向性的微波功率分配器,更是近代扫频反射计中不可缺少的部件,通常有波导、同轴线、带状线及微带等几种类型。

图1为其结构示意图。

它主要包括主线和副线两部分,彼此之间通过种种形式小孔、缝、隙等进行耦合。

因此,从主线端上“1”输入的功率,将有一部分耦合到副线中去,由于波的干涉或叠加,使功率仅沿副线一个方向传输(称“正向”),而另一方向则几乎毫无功率传输(称“反向”),图2为本实验所用的十字定向耦合器,耦合器中端口之一终端接一内装的匹配负载。

主线副线图1(一)定向耦合器的主要特性参量有二:为了便于解释耦合度和方向性,画出了定向耦合器传输示意图(图3),图中P1、P2分别为主线输入、输出功率;PF3为副线中正向输出功率,PR3为副线中反向输出功率。

(1)耦合度(或过度衰减)C如图31243主线副线图3P3F 1243主线副线P1P23RP P1P21(a )所示,主线输入功率P 1,与副线中正向输出功率P F 3之比,称为定向耦合的耦合度,若以分贝(db )表示则:C=10logFP P 31(db) (6.1) (2)方向性D如图3所示,副线中正向输出功率P F 3与反向输出功率P R 3之比称为定向耦合器的方向性,若以分贝表示,则:D=logRFP P 33(db) (6.2) 有时,反映定向程度的指标也用隔离度D ’来表示。

隔离度表示主线输入功率P 与副线反向输出功率之比,即D=10logRP P 31(db) (6.3) 由式子(2)D=10logR F P P 33=10log R P P31=D ’-C (6.4) 从上可知,定向耦合器的方向性等于隔离度与耦合度之差,理想的定向耦合器的方向性D →∞;也就是说,当各端均匹配端接时,若功率从主线端“1”输入,则副线仅端“3”有输出,而端“4”无输出;即端“1”与端“4”彼此隔离;端“2”与端“3”彼此隔离,实际的定向耦合器隔离端的耦合隔离的理想器件。

第6章定向耦合器

第6章定向耦合器
7
第六章 定向耦合器
对于波导的T形接头,我们把主波导的两臂分别称为1和2端口,分 支臂称为3端口。分析波导的T形接头的工作特性,可利用波导中 TE10模的电场分布来分析。E-T接头和H-T接头中TE10模的电场分布 分别如图所示。
8
第六章 定向耦合器
E-T接头具有下列特性:
(1) 当信号从3端口输入时,则1和2端口有等幅反相输出,用散射参量表示
二.分类
第六章 定向耦合器
定向耦合器的种类很多。
按传输线类型
按耦合方式
波导
同轴线 带状线 微带线
单孔耦合
多孔耦合
连续耦合
平行线耦合
输出方向
输出相位
按耦合强弱
同向耦合
反向耦合 90度定向
180度定向
强耦合
中等耦合
弱耦合 1
第六章 定向耦合器
下图给出了几种定向耦合器的结构示意图,其中图(a)为微带分支定 向耦合器,图(b)为波导单孔定向耦合器,图(c)为平行耦合线定向耦 合器,图(d)为波导匹配双T,图(e)为波导多孔定向耦合器,图(f)为微 带混合环。
a1
10C
10
1
1 2
a2 a1 R
b 1 a12 R
注:设计双分支定向耦合器尺寸方法
19
有时用方向性 (dB)来表示耦合器的隔离性能,它是耦合端输出功率P3与 隔离端的输出功率P4之比。也可用散射参量来表示方向性,即
D 10 lg P3 P4
10 lg
S31 2 S41 2
20 lg
S31 S41
DC
5
第六章 定向耦合器
(三) 输入驻波比
将定向耦合器除输入端外,其余各端均接上匹配负载时,输入端的 驻波比即为定向耦合器的输入驻波比。此时,网络输入端的反射系 数即为网络的散射参量S11,故有

定向耦合器(1).ppt

定向耦合器(1).ppt
隔离度等。
(1) 工作频带:
定向耦合器的功能实现主要依靠波程相位的关 系,也就是说与频率有关。 (2) 插入损耗: 主路输出端和主路输入端的功率比值,包括耦 合损耗和导体介质的热损耗。
(3) 耦合度: 描述耦合输出端口与主路输入端口的比例关系, 通常用分贝表示,dB值越大,耦合端口输出功率越小。 耦合度的大小由定向耦合器的用途决定。 (4) 方向性: 描述耦合输出端口与耦合支路隔离端口的比例关 系。理想情况下,方向性为无限大。
( a )
( b )
图 6-2 L-C分支线型耦合 (a) 低通式; (b) 高通式
集总参数定向耦合器的设计步骤: 步骤一: 确定耦合器的指标,包括耦合系数C(dB)、 端口的等效阻抗Z0(Ω)、电路的工作频率fc。 步骤二:利用公式计算出k、Z0s及Z0p:
k 10
c / 10
Z 0s Z 0 1 k Z0p Z0 1 k k
D(dB) 10 lg
6.2 集总参数定向耦合器
6.2.1 集总参数定向耦合器设计方法
常用的集总参数定向耦合器是电感和电容组成 的分支线耦合器。其基本结构有两种: 低通L-C式 和高通L-C式。
1 Z 0 P 1 C p 4 P 4 L s L s 2 P 2 C p 3 P 3 4 P 4 1 Z 0 P 1 L p C s C s 2 P 2 L p 3 P 3
若P1、P2、 P3、P4皆用毫瓦(mW)来表示, 定向耦合器的四大参数则可定义为:
插入损耗 耦合度 隔离度 方向性
T (dB) 10 lg C (dB) 10 lg I (dB) 10 lg P2 1 10 lg P S 21 2 1 P3 1 10 lg P S31 2 1 P4 1 10 lg P S 41 2 1 P3 1 1 10 lg 10 lg I (dB) C (dB) 2 2 P4 S 41 S31

定向耦合器

定向耦合器

定向耦合器相关图片编辑词条参与讨论所属分类:基本物理概念天体物理学电子电子技术电子术语通信通信技术定向耦合器是一种通用的微波/毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。

主要技术指标有方向性、驻波比、耦合度、插入损耗。

用来分配或合成微波信号功率并具有定向耦合特性的微波元件。

它是在主、副两根传输线(简称主、副线)之间设置适当的耦合结构组成的。

定向耦合器采用同轴线、带状线、微带线、金属波导或介质波导等各种型式。

耦合结构有耦合孔、耦合分支线和连续结构耦合等型式。

目录·• 工作原理·• 网络特性定向耦合器-工作原理主线中传输的功率通过多种途径耦合到副线,并互相干涉而在副线中只沿一个方向传输。

图1 图2 图3图1为矩形波导定向耦合器的三种典型耦合结构。

a是相距1/4导波长的双孔耦合;b是间距和长度都等于1/4导波长的双串联分支线耦合;c是在裂缝区域内TE和TE两种传播模式的连续耦合。

以a和b两种结构为例,从端口①输入的信号分两路耦合到副线后,朝端口④方向因行程相等而同相叠加,有输出;朝③方向则行程相差1/2导波长而反相抵消,被隔离而无输出。

图2为微带定向耦合器的两种典型的耦合结构。

a是间距和长度都等于1/4导波长的双并联的分支线耦合,b是在平行区域内电场和磁场两种结构连续耦合。

以b的结构为例,从端口①输入的信号由电场耦合在副线的两个端口上产生同相感应电压,磁场耦合则产生反相感应电压。

结果在端口④处相加而有输出,③处则抵消而呈隔离无输出。

此外,也可构成其他传输线的定向耦合器(图3)。

定向耦合器-网络特性定向耦合器可被看作为四端口网络,其特性可用散射矩阵【s】表示,即其中各端口的反射系数s ii(i=1、2、3、4)的值很小(理想值为零),表示各端口的匹配情况;衰减系数s13=s31=s24=s42的值也很小(理想值为零),表示隔离情况;s14=s41=s23=s32是耦合系数,其值根据需要而设计。

定向耦合器的工作原理

定向耦合器的工作原理

定向耦合器的工作原理定向耦合器是一种常见的微波器件,广泛应用于无线通信系统、雷达系统、卫星通信系统等领域。

它具有将微波能量从一个波导传输到另一个波导的功能,同时能够实现对微波能量的定向耦合和解耦。

在本文中,我们将详细介绍定向耦合器的工作原理。

定向耦合器通常由主波导、辅助波导和耦合装置组成。

主波导和辅助波导分别用于传输微波能量,而耦合装置则用于实现微波能量的定向耦合和解耦。

在定向耦合器中,主波导和辅助波导之间通过耦合装置进行能量的传输和耦合。

当微波能量从主波导传输到辅助波导时,耦合装置将一部分微波能量耦合到辅助波导中,同时将剩余的微波能量继续传输到主波导中。

这样,就实现了微波能量的定向耦合。

定向耦合器的工作原理可以通过电磁场理论来解释。

当微波能量在主波导中传输时,会产生一定的电磁场分布。

而耦合装置的设计则能够利用这种电磁场分布,实现微波能量的定向耦合和解耦。

通过合理设计耦合装置的结构和参数,可以实现不同程度的定向耦合效果,从而满足不同的应用需求。

除了电磁场理论,定向耦合器的工作原理还涉及到微波传输理论和波导理论。

在微波传输过程中,波导的特性对能量的传输和耦合起着重要作用。

定向耦合器的设计需要考虑到波导的特性,以实现高效的微波能量传输和定向耦合。

在实际应用中,定向耦合器还需要考虑到频率响应、功率损耗、耦合效率等因素。

通过优化设计,可以实现定向耦合器在特定频率范围内的高效能量传输和定向耦合。

同时,定向耦合器还需要考虑到耦合装置的制造工艺和材料选择,以实现稳定可靠的性能。

总之,定向耦合器是一种重要的微波器件,它通过合理设计的耦合装置,实现了微波能量的定向耦合和解耦。

在实际应用中,定向耦合器的工作原理涉及到电磁场理论、微波传输理论和波导理论等多个方面。

通过深入理解定向耦合器的工作原理,可以实现对其性能的更好把控和优化设计,从而满足不同应用场景的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步骤四: 利用模拟软件检验,再微调。
成都信息工程学院电子工程学院
RF&mw
RF&MW
6.2.2 集总参数定向耦合器设计实例
设计一个工作频率为400 MHz的10 dB低通L-C支 路型耦合器。Z0=50 Ω,要求S11≤-13dB, S21≥-2 dB, S31≥-13 dB,S41≤-10 dB。 步骤一: 确定耦合器的指标,C=-10dB,fc=400MHz, Z0=50 Ω。 步骤二: 计算K、Z0s、 Z0p:
成都信息工程学院电子工程学院
RF&mw
RF&MW
k 10C /10 0.1 Z 0 s Z 0 1 k 47.43 Z0 p Z0 1 k 150 k
步骤三: 利用下列公式计算元件值:
1 C1 8.59 pF 2f c Z 0 s L2 Z0 p 2f c 56.68nH
成都信息工程学院电子工程学院
RF&mw
RF&MW
6.4.2 平行耦合线耦合器设计方法
平行线耦合定向耦合器的设计步骤: 步骤一: 确定耦合系数C(dB)、 各端口的特性阻 抗Z0(Ω)、中心频率fc、基板参数(εr,h)。 步骤二:计算奇模阻抗和偶模阻抗Z0e和Z0o。
成都信息工程学院电子工程学院
RF&mw
1 To (1 j ) 2
o 0
奇偶模叠加,得
B1 0B2 j / 2 B3 1/ 2 B4 0
成都信息工程学院电子工程学院
RF&mw
当频率在中心频率附近变化10%时,相差也改变 ±50,由于超出带宽10%外的隔离度不能接受,其有用 带宽限制在10%,理论上能设计成3~9dB的耦合度。
b
串联臂 Zs 2 Z0
RF&MW
1
gp
4
a1
并联臂
a2
Zp
4
3
gs
4
成都信息工程学院电子工程学院
RF&mw
RF&MW
接上页
k 10
C /10
b
1 1 k 2
a1 a1 bk a2 R
分支线定向耦合器
R k b a1 a2 1 0.707 1.414 1 1 0.75 0.614 1.61 1 1.34 0.5 0.5 2 1 2 1 3 1/3
RF&MW
Z 0e Z 0
1 C 1 C
1 C Z 0o Z 0 1 C Z 0e Z 0o (C S14 ) Z 0e Z 0o
步骤三: 依据基板参数(εr, h),利用软件 ADS计算微带耦合线的宽度及间距(W, S)和四分 之一波长的长度(P)。 步骤四: 利用模拟软件检验,再微调。
成都信息工程学院电子工程学院
RF&mw
RF&MW

Z Z0
的结果
可提供更宽的带宽,但需接地点
成都信息工程学院电子工程学院
RF&mw
RF&MW
分支线耦合 器的另一类 型:圆形分 支线耦合器
成都信息工程学院电子工程学院
RF&mw
6.4 RF&MW 耦合线定向耦合器
6.4.1 平行耦合线耦合器基本原理
(5) 隔离度:
描述主路输入端口与耦合支路隔离端口的比例关 系。理想情况下,隔离度为无限大。
成都信息工程学院电子工程学院
RF&mw
描述定向耦合器特性的三个指标间有严格的关 系,即方向性=隔离度-耦合度。
RF&MW
6.1.2 混合接头与耦合器的原理
以四端口网络结构为例
1 P1 4 P4 2 P2 定向耦合器 3 P3
成都信息工程学院电子工程学院
RF&mw
6.3.4 如何直接写出其S矩阵(3dB)? RF&MW
6.3.5 如何由奇偶模分析法验证其S矩阵?
成都信息工程学院电子工程学院
RF&mw
RF&MW
成都信息工程学院电子工程学院
RF&mw
e o Te To B1 B2 2 2 Te To e o 对于偶模, B3 2 B4 2
如图示,各条支线在中心频率上是四分之一波 导波长,由于微带的波导波长还与阻抗有关,故图中 支线与主线的长度不等,阻抗越大, 尺寸越长。
Zs 1 串联臂 Z0 Zp 2
gp
4 并联臂
4
3
gs
4
图 6-5分支线耦合器
成都信息工程学院电子工程学院
RF&mw
RF&MW
如果分支线耦合器的各个端口接匹配负载,信号 从1口输入,4口没有输出,为隔离端,2口和3口的相位 差为90°,功率大小由主线和支线的阻抗决定。
D(dB) 10 lg
成都信息工程学院电子工程学院
RF&mw
6.2 集总参数定向耦合器 RF&MW
6.2.1 集总参数定向耦合器设计方法
常用的集总参数定向耦合器是电感和电容组成 的分支线耦合器。其基本结构有两种: 低通L-C式 和高通L-C式。
1 Z0 P1 Cp 4 P4 Ls Ls 2 P2 Cp 3 P3 4 P4 1 Z0 P1 Lp Cs Cs 2 P2 Lp 3 P3
6.3.2 分支线型定向耦合器设计
设计步骤: 步骤一: 确定耦合系数C(dB)、 各端口的特性 阻抗Z0(Ω)、中心频率fc、基板参数(εr,h)。 步骤二: 计算支线和主线的归一化导纳a和b:
成都信息工程学院电子工程学院
RF&mw
RF&MW
b2 1 C 20 lg b 1 a 2 b 2
RF&MW
AB 10 0 j / 2 10 1 j CD j1 j 1 j 1 e j / 20
通常,它由主线和辅线构成,两条平行微带的长度 为四分之一波长。信号由1口输入,2口输出,4口是耦合 口,3口是隔离端口。
成都信息工程学院电子工程学院
RF&mw
RF&MW
因在辅线上耦合输出的方向与主线上波传播的方向 相反,它也被称为“反向定向耦合器”。当导线1—2中 有交变电流i1流过的时候,由于4—3线和1—2线相互靠 近,4—3线中耦合有能量,能量既通过电场(以耦合电容 表示)又通过磁场(以耦合电感表示)耦合。通过耦合 电容Cm的耦合,在传输线4—3中引起的电流为ic4和ic3。
A B C D e 0 A B C D
2 1 Te (1 j ) A B C D 2
成都信息工程学院电子工程学院
RF&mw
对于奇模, AB
RF&MW
1 j CD j1 o
Zc sin ( ) Z cos Cb Zc
1
cos jZ sin 10 AB 10 jC 1 CD jC 1 j sin cos b b Z
1/ 6
6
成都信息工程学院电子工程学院
RF&mw
RF&MW
分支线耦合器可增加节数以拓展带宽
成都信息工程学院电子工程学院
RF&mw
RF&MW 尺寸压缩的准集中式分支线耦合器
0 jZ c AB CD j 0 Z c
(a )
(b )
图 6-2 L-C分支线型耦合器 (a) 低通式; (b) 高通式
成都信息工程学院电子工程学院
RF&mw
集总参数定向耦合器的设计步骤: 步骤一: 确定耦合器的指标,包括耦合系数C(dB)、 端口的等效阻抗Z0(Ω)、电路的工作频率fc。 步骤二:利用公式计算出k、Z0s及Z0p:
RF&MW
成都信息工程学院电子工程学院
RF&mw
RF&MW 步骤四 : 仿真计算。
图 6-3低通L-C支路型耦合器等效电路
成都信息工程学院电子工程学院
RF&果
成都信息工程学院电子工程学院
RF&mw
6.3 分支线型定向耦合器 RF&MW
6.3.1 分支线型定向耦合器原理
成都信息工程学院电子工程学院
RF&mw
RF&MW
步骤三: 计算特性阻抗:
1 1 Za 50 Ya aY0 1 1 Zb 35.3 Yb bY0
步骤四: 计算微带实际尺寸: 支线 50Ω W=0.83 mm, L=6.02mm 主线 35.3Ω W=1.36 mm, L=5.84 mm
图 6-1 耦合器方框图
成都信息工程学院电子工程学院
RF&mw
RF&MW
定向耦合器的参数则可定义为: 插入损耗 耦合度 隔离度 方向性
T (dB) 10 lg C (dB) 10 lg I (dB) 10 lg P2 1 10 lg 2 P S 1 21 P3 1 10 lg 2 P S 1 31 P4 1 10 lg 2 P S 1 41 P3 1 1 10 lg 10 lg I (dB) C (dB) 2 2 P4 S 41 S31
成都信息工程学院电子工程学院
RF&mw
RF&MW ④

图 6-6平行线型耦合器
i1 1 Cm ic3 3 iL 2
ic4 4
图6-7
耦合线方向性的解释
成都信息工程学院电子工程学院
RF&mw
RF&MW
同时由于i1的交变磁场的作用,在线4—3上感应有 电流iL。 根据电磁感应定律,感应电流iL的方向与i1的方向 相反, 所以能量从1口输入, 耦合口就是4口。而在3口 因为电耦合电流的ic3与磁耦合电流iL的相位相反而叠 加抵消,故3口是隔离口。
相关文档
最新文档