2021届江西省中考数学复习题 (1)

合集下载

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)1.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+72.如图,直线l:与y轴交于点A,将直线l绕点A顺时针旋转75°后,所得直线的解析式为()A.y=x+B.y=x﹣C.y=﹣x+D.y=x+3.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10B.y=﹣2x+14C.y=2x+2D.y=﹣x+5 4.将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2 5.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+3 6.将直线y=﹣2x+1向下平移2个单位,平移后的直线表达式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x﹣1D.y=﹣2x+3 7.将直线y=x平移,使得它经过点(﹣2,0),则平移后的直线为()A.y=x﹣2B.y=x+1C.y=﹣x﹣2D.y=x+28.将一次函数y=3x向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离()A.4B.6C.6D.129.把直线y=2x﹣1向下平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+210.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3 11.将直线y=3x沿y轴向下平移1个单位长度后得到的直线解析式为()A.y=3x+1B.y=3x﹣1C.y=x+1D.y=x﹣112.在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2B.y=2x﹣5C.y=2x+1D.y=2x﹣113.将直线y=2x+1向上平移3个单位后得到的解析式为.14.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为.16.将直线y=2x﹣5向上平移3个单位长度,所得直线的解析式为.17.把直线y=﹣2x+5向下平移2个单位,得到的直线解析式是.18.在平面直角坐标系xOy中,将函数y=3x+3图象向右平移5个单位长度,则平移后的图象与x轴、y轴分别交于A、B两点,则△AOB的面积为.19.将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.20.将直线y=﹣2x+3向下平移5个单位,得到直线.21.将直线y=2x向上平移2个单位后得到的直线解析式为.22.在平面直角坐标系中,把直线y=x沿y轴向上平移后得到直线AB,如果点P(m,n)是直线AB上的一点,且m﹣n+8=0,那么直线AB的函数表达式为.23.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.24.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x轴交点的坐标;(3)在(2)的条件下,直接写出y>0时,x的取值范围.25.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进行应用的过程.小红对函数y=的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)小红列出了如下表格,请同学们把下列表格补充完整,并在平面直角坐标系中画出该函数的图象:x…﹣10123456…y……(2)根据函数图象,以下判断该函数性质的说法,正确的有(填正确答案的序号).①函数图象关于y轴对称;②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.(3)若直线y=x+b与函数y=的图象只有一个交点,求b的值.26.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A,B两点.(1)在图中画出该一次函数并求其表达式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图形,并直接写出新函数图象对应的表达式.27.有这样一个问题:探究函数y=|x+1|的图象与性质.小明根据学习一次函数的经验,对函数y=|x+1|的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=|x+1|的自变量x的取值范围是;(2)如表是x与y的几组对应值.x…﹣5﹣4﹣3﹣2﹣10123…y…432m01234…m的值为;(3)在如图网格中,建立平面直角坐标系xOy,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)小明根据画出的函数图象,得出了如下几条结论:①函数有最小值为0;②当x>﹣1时,y随x的增大而增大;③图象关于过点(﹣1,0)且垂直于x轴的直线对称.小明得出的结论中正确的是.(只填序号)28.已知正比例函数的图象经过点A(2,3);(1)求出此正比例函数表达式;(2)该直线向上平移3个单位,写出平移后所得直线的表达式,并画出它的图象.29.一次函数y=2x+a的图象与x轴交与点(2,0),(1)求出a的值;(2)将该一次函数的图象向上平移5个单位长度,求平移后的函数解析式.30.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.31.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点.(1)求一次函数的解析式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.32.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x、y轴分别相交于点A、B,此直线向下平移后与y轴相交于点C、与x轴相交于点D,四边形ABCD的面积为18.(1)求直线CD的表达式;(2)如果点E在直线CD上,四边形ABED是等腰梯形,求点E的坐标.参考答案1.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.2.解:由直线l:可知,直线与x轴的夹角为60°,∴与y轴的夹角为30°,∴直线l绕点A顺时针旋转75°后的直线与y轴的夹角为45°,∴旋转后的直线的斜率为1,∵直线l:与y轴交于点A,∴A(0,).∴旋转后的直线解析式为:y=x+,故选:D.3.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.4.解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.5.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+1+2,即y=﹣2x+3故选:D.6.解:由题意得:平移后的解析式为:y=﹣2x+1﹣2=﹣2x﹣1,即.所得直线的表达式是y=﹣2x﹣1.故选:C.7.解:设平移后直线的解析式为y=x+b.把(﹣2,0)代入直线解析式得0=﹣2+b解得b=2所以平移后直线的解析式为y=x+2.故选:D.8.解:设平移的距离为k(k>0),则将一次函数y=3x向左平移后所得直线解析式为:y =3(x+k)=3x+3k.易求得新直线与坐标轴的交点为(﹣k,0)、(0,3k)所以,新直线与坐标轴所围成的三角形的面积为:•3k=24,解得k=4或﹣4(舍去).故选:A.9.解:根据题意,把直线y=2x﹣1向下平移1个单位后得到的直线解析式为:y=2x﹣1﹣1,即y=2x﹣2,故选:A.10.解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.11.解:由“上加下减”的原则可知:将直线y=3x沿y轴向下平移1个单位长度后,其直线解析式为y=3x﹣1.故选:B.12.解:由题意得:平移后的解析式为:y=2x﹣3+2,即y=2x﹣1.故选:D.13.解:由“上加下减”的原则可知,把直线y=2x+1上平移3个单位长度后所得直线的解析式为:y=2x+1+3,即y=2x+4,故答案为:y=2x+4.14.解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.15.解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移3个单位所得函数的解析式为y=2x﹣5+3,即y=2x﹣2.故答案为:y=2x﹣2.17.解:由“上加下减”的原则可知,把直线y=﹣2x+5向下平移2个单位后所得直线的解析式为:y=﹣2x+5﹣2,即y=﹣2x+3.故答案为:y=﹣2x+3.18.解:根据题意知,平移后直线方程为y=3(x﹣5)+3=3x﹣12.所以A(4,0),B(0,﹣12).故OA=4,OB=12.所以S△AOB=OA•OB==24.故答案是:24.19.解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.20.解:原直线的k=﹣2,b=3.向下平移5个单位长度得到了新直线,那么新直线的k=﹣2,b=3﹣5=﹣2.∴新直线的解析式为y=﹣2x﹣2.故答案为:y=﹣2x﹣2.21.解:直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.故答案为y=2x+2.22.解:设直线AB的解析式为y=x+b.将(m,n)代入y=x+b,得m+b=n,则m﹣n+8=0,∴b=8,∴直线AB的解析式为y=x+8.故答案为y=x+8.23.解:(1)点A(2,4),如图所示:(2)∵函数y=mx的图象经过点A,∴4=2m,∴m=2;(3)由(2)可得经过点A的函数为y=2x,∵一次函数y=kx+b的图象由函数y=2x经过平移,且经过点B,∴,解得,∴这个一次函数的表达式为y=2x+7,依题意画出图象如图所示;24.解:(1)当x=2时,y=﹣3,∴﹣3=2k﹣4,则,∴,(2)图象向上平移6个单位长度,∴,当y=0时,x=﹣4,∴平移后的图象与x轴交点的坐标为(﹣4,0),(3)y>0时,x的取值范围为x>﹣4.25.解:(1)补充表格:x…﹣10123456…y…﹣2﹣1012222…画出函数图象如图所示:(2)由图象可知,正确的性质为②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.故答案为②③;(3)直线y=x+b与函数y=的图象只有一个交点,根据图象直线y=+b经过点(3,2),∴2=+b,∴b=.26.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,5),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=3x+2;(2)点(a﹣3,﹣a)在该一次函数y=3x+2的图象上,∴﹣a=3(a﹣3)+2,解得,a=,即a的值是;(3)把y=3x+2向下平移3个单位后可得:y=3x+2﹣3=3x﹣1,图象如图:27.解:(1)在函数y=|x+1|中,自变量x的取值范围是x为任意实数,故答案为:x为任意实数;(2)当x=﹣2时,m=|﹣2+1|=1,故答案为1;(3)画出函数的图象如图:;(4)由函数图象可知,①函数有最小值为0,正确;②当x>﹣1时,y随x的增大而增大,正确;③图象关于过点(﹣1,0)且垂直于x轴的直线对称,正确;.故答案为:①②③.28.解:(1)设正比例函数的解析式为y=kx,把A(2,3),代入得到k=,∴正比例函数的解析式为y=x.(2)将直线y=x向上平移3个单位,得直线y=x+3,如图;29.解:(1)∵一次函数y=2x+a的图象与x轴交与点(2,0),∴4+a=0,解得a=﹣4;(2)将一次函数y=2x﹣4的图象向上平移5个单位长度,得到y=2x﹣4+5,即y=2x+1,故平移后的函数解析式为y=2x+1.30.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或.31.解:(1)∵一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点,∴,解得,即该一次函数的表达式是y=2x﹣1;(2)点(a﹣3,﹣a)在该一次函数y=2x﹣1的图象上,∴﹣a=2(a﹣3)﹣1,解得,a=,即a的值是;(3)把y=2x﹣1向下平移3个单位后可得:y=2x﹣1﹣3=2x﹣4,图象如图:32.解:(1)∵直线y=﹣x+8与x、y轴分别相交于点A、B,∴A(6,0)B(0,8),∴OA=6,OB=8,∴AB===10,∴S△AOB==24,四边形ABCD的面积为18.∴S△COD=24﹣18=6,∵AB∥CD,∴△COD∽△BOA,∴=()2,即=,∴OC=4,∴C(0,4),∴直线CD的解析式为:y=﹣x+4;(2)作DM⊥AB于M,EN⊥AB于N,∵四边形ABED是等腰梯形,∴AD=BE,∠DAB=∠EBA,∵∠DMA=∠ENB=90°,∴△ADM≌△BEN(AAS),∴AM=BN,∵直线CD的解析式为:y=﹣x+4,∴D(3,0),∴OD=3,∴AD=6﹣3=3,∵∠AMD=∠AOB,∠DAM=∠BAO,∴△ADM∽△ABO,∴=,即,∴AM=,∴BN=AM=,∴MN=10﹣2×=,∴ED=MN=,∵OD=3,OC=4,∴CD==5,∴CE=DE﹣CD=﹣5=,作EH⊥x轴于H,则EH∥OC,∴,即=,∴OH=,∴E的横坐标为﹣,把x=﹣代入直线CD:y=﹣x+4得y=,∴点E的坐标为(﹣,).。

2021年江西省中考数学试卷及答案解析

2021年江西省中考数学试卷及答案解析

2021年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣2的相反数是( )A .2B .﹣2C .12D .−12 【分析】根据相反数的意义,只有符号不同的两个数互为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A .【点评】本题考查了相反数的意义.注意掌握只有符号不同的两个数互为相反数,0的相反数是0.2.如图,几何体的主视图是( )A .B .C .D .【分析】根据简单组合体的三视图的画法得出该组合体的主视图即可.【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形, 因此选项C 中的图形符合题意,故选:C .【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是正确判断的前提.3.计算a+1a −1a 的结果为( ) A .1 B .﹣1 C .a+2a D .a−2a【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式=a+1−1a=a a=1,故选:A .【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.4.如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是( )A .一线城市购买新能源汽车的用户最多B .二线城市购买新能源汽车用户达37%C .三四线城市购买新能源汽车用户达到11万D .四线城市以下购买新能源汽车用户最少【分析】根据扇形统计图中的数据一一分析即可判断.【解答】解:A 、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;B 、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;C 、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;D 、四线城市以下购买新能源汽车用户最少,故本选项正确,不符合题意;故选:C .【点评】本题考查了扇形统计图.关键是根据扇形统计图中的数据进行分析,解题时要细心.5.在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【分析】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a>0、b>0、c<0,由此即可得出:二次函数y=ax﹣+bx+c的图象开口向上,对称轴x=−b2a<0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a>0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向上,对称轴x=−b2a<0,与y轴的交点在y轴负半轴.故选:D.【点评】本题考查了一次函数的图象以及二次函数的图象,根据二次函数图象和一次函数图象经过的象限,找出a>0、b>0、c<0是解题的关键.6.如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为()A.2B.3C.4D.5【分析】能拼剪为等腰梯形,等腰直角三角形,矩形,由此即可判断.【解答】解:观察图象可知,能拼接成不同轴对称图形的个数为3个.故选:B.【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的性质,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)7.国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为 4.51×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:45100000=4.51×107,故答案为:4.51×107.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.因式分解:x2﹣4y2=(x+2y)(x﹣2y).【分析】直接运用平方差公式进行因式分解.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).【点评】本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).9.已知x1,x2是一元二次方程x2﹣4x+3=0的两根,则x1+x1﹣x1x2=1.【分析】直接根据根与系数的关系得出x1+x2、x1x2的值,再代入计算即可.【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两根,∴x1+x2=4,x1x2=3.则x1+x2﹣x1x2=4﹣3=1.故答案是:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1•x2=ca.10.如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是3.【分析】根据表中的数据和数据的变化特点,可以发现:每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,然后即可写出第四行空缺的数字.【解答】解:由表可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,故第四行空缺的数字是1+2=3,故答案为:3.【点评】本题考查数字的变化类,解答本题的关键是发现数字的变化特点,写出相应的数字.11.如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为4a+2b.【分析】由∠B=80°,四边形ABCD为平行四边形,折叠的性质可证明△AFC为等腰三角形.所以AF=FC=a.设∠ECD=x,则∠ACE=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得x=20°,由外角定理可证明△DFC为等腰三角形.所以DC=FC=a.故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.故答案为:4a+2b.【点评】本题考查了平行四边形的性质、三角形内角和定理、外角定理、图形的翻折变换,证明△AFC和△DFC为等腰三角形是解题关键.12.如图,在边长为6√3的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE 和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为9或10或18.【分析】连接DF,DB,BF.则△DBF是等边三角形.解直角三角形求出DF,可得结论.当点N在OC上,点M在OE上时,求出等边三角形的边长的最大值,最小值,可得结论.【解答】解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6√3,∴FJ=DJ=EF•sin60°=6√3×√32=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6√3≈10.39,最小值为9,∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.【点评】本题考查正多边形与圆,等边三角形的判定和性质,解直角三角形等知识,解题的关键是判断出△BDF是等边三角形,属于中考常考题型.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(﹣1)2﹣(π﹣2021)0+|−12|;(2)如图,在△ABC中,∠A=40°,∠ABC=80°,BE平分∠ABC交AC于点E,ED ⊥AB于点D,求证:AD=BD.【分析】(1)根据乘方的意义、零指数幂和绝对值的意义计算;(2)先证明∠A=∠ABE得到△ABE为等腰三角形,然后根据等腰三角形的性质得到结论.【解答】(1)解:原式=1﹣1+1 2=12;(2)证明:∵BE平分∠ABC交AC于点E,∴∠ABE=12∠ABC=12×80°=40°,∵∠A=40°,∴∠A=∠ABE,∴△ABE 为等腰三角形,∵ED ⊥AB ,∴AD =BD .【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了等腰三角形的判断与性质和实数的运算.14.(6分)解不等式组:{2x −3≤1x+13>−1并将解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x ﹣3≤1,得:x ≤2,解不等式x+13>−1,得:x >﹣4,则不等式组的解集为﹣4<x ≤2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(6分)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A ,B ,C ,D 四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A 志愿者被选中”是 随机 事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A ,B 两名志愿者被选中的概率.【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)列表得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.【解答】解:(1)“A 志愿者被选中”是随机事件,故答案为:随机;(2)列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中A,B两名志愿者被选中的有2种结果,所以A,B两名志愿者被选中的概率为212=16.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(6分)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.【点评】本题考查了作图﹣旋转变换,作图﹣平移变换,正方形的性质,解决本题的关键是掌握旋转的性质和平移的性质.17.(6分)如图,正比例函数y=x的图象与反比例函数y=kx(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).(1)求k的值;(2)求AB所在直线的解析式.【分析】(1)先求得A的坐标,然后根据待定系数法即可求得k的值;(2)作AD⊥x轴于D,BE⊥x轴于E,通过证得△BCE≌△CAD,求得B(﹣3,3),然后根据待定系数法即可求得直线AB的解析式.【解答】解:(1)∵正比例函数y=x的图象经过点A(1,a),∴a=1,∴A(1,1),∵点A 在反比例函数y =k x(x >0)的图象上, ∴k =1×1=1;(2)作AD ⊥x 轴于D ,BE ⊥x 轴于E , ∵A (1,1),C (﹣2,0), ∴AD =1,CD =3, ∵∠ACB =90°, ∴∠ACD +∠BCE =90°, ∵∠ACD +∠CAD =90°, ∴∠BCE =∠CAD , 在△BCE 和△CAD 中, {∠BCE =∠CAD∠BEC =∠CDA =90°CB =AC, ∴△BCE ≌△CAD (AAS ), ∴CE =AD =1,BE =CD =3, ∴B (﹣3,3),设直线AB 的解析式为y =mx +n , ∴{m +n =1−3m +n =3,解得{m =−12n =32, ∴直线AB 的解析式为y =−12x +32.【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求一次函数的解析式,全等三角形的判定和性质,求得B 的坐标是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件. (1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 48 元/件,乙两次购买这种商品的平均单价是 50 元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 金额 加油更合算(填“金额”或“油量”). 【分析】(1)设这种商品的单价为x 元/件.根据“甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件”找到相等关系,列出方程,解出方程即可得出答案; (2)先计算出第二次购买该商品时甲购买的数量和乙购买的总价,再用两次总价和除以两次的数量和即可得出两次的平均单价; (3)通过比较(2)的计算结果即可得出答案. 【解答】(1)解:设这种商品的单价为x 元/件. 由题意得:3000x−2400x=10,解得:x =60,经检验:x =60是原方程的根. 答:这种商品的单价为60元/件.(2)解:第二次购买该商品时的单价为:60﹣20=40(元/件),第二次购买该商品时甲购买的件数为:2400÷40=60(件),第二次购买该商品时乙购买的总价为:(3000÷60)×40=2000(元), ∴甲两次购买这种商品的平均单价是:2400×2÷(240060+60)=48(元/件),乙两次购买这种商品的平均单价是:(3000+2000)÷(300060×2)=50(元/件).故答案为:48;50. (3)解:∵48<50, ∴按相同金额加油更合算. 故答案为:金额.【点评】本题考查了方式方程的应用,找到题目中的相等关系是解决问题的关键,计算平均单价的关键是能够正确的得出总价和数量,再思考从特殊到一般的规律.19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表质量x(g)频数频率20.168≤x<7130.1571≤x<7410a74≤x<7750.2577≤x<80合计201分析上述数据,得到下表:平均数中位数众数方差统计量厂家甲厂7576b 6.3乙厂757577 6.6请你根据图表中的信息完成下列问题:(1)a=0.5,b=76;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?【分析】(1)根据频数、频率、总数之间的关系可求出a的值,根据众数的意义可求出b 的值;(2)求出乙厂鸡腿质量在74≤x<77的频数,即可补全频数分布直方图;(3)根据中位数、众数、平均数综合进行判断即可;(4)求出甲厂鸡腿质量在71≤x<77的鸡腿数量所占的百分比即可.【解答】解:(1)2÷0.1=20(个),a=10÷20=0.5,甲厂鸡腿质量出现次数最多的是76g,因此众数是76,即b=76,故答案为:0.5,76;(2)20﹣1﹣4﹣7=8(个),补全频数分布直方图如下:(3)两个厂的平均数相同,都是75g,而甲厂的中位数、众数都是76g,接近平均数且方差较小,数据的比较稳定,因此选择甲厂;(4)20000×0.15=3000(只),答:从甲厂采购了20000只鸡腿中,可以加工成优等品的大约有3000只.【点评】本题考查频数分布表、频数分布直方图,掌握频数、频率、总数之间的关系是解决问题的前提.20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,√2≈1.414)【分析】(1)过点B作BH⊥MP,垂足为H,根据解直角三角形cos∠BMH=MHBM=16.842=0.4,即可计算出∠BMH的度数,再根据平行线的性质即可算出∠ABC的度数;(2)根据(1)中的结论和已知条件可计算出∠NMI的度数,根据三角函数即可算出MI 的长度,再根据已知条件即可算出PK的长度,即可得出答案.【解答】解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK ⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH=MHBM=16.842=0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∴∠ABC=180°﹣∠BMH=180°﹣66.4°=113.6°.∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°=MIMN=MI28,∴MI≈19.74cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.74﹣25.3=4.96≈5.0(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.【点评】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;̂围成阴影部分的面积.②当AB=2时,求AD,AC与CD【分析】(1)先判断出∠CBE=∠D,再用等角的余角相等,即可得出结论;(2)①先判断出OC∥AB,再判断出BC∥OA,进而得出四边形ABCO是平行四边形,即可得出结论;②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE ⊥AB , ∴OC ∥AB ,∴∠DAB =∠COD =60°, 由(1)知,∠CBE +∠CAD =90°, ∴∠CBE =90°﹣∠CAD =60°=∠DAB , ∴BC ∥OA ,∴四边形ABCO 是平行四边形, ∵OA =OC , ∴▱ABCO 是菱形;②由①知,四边形ABCO 是菱形, ∴OA =OC =AB =2, ∴AD =2OA =4, 由①知,∠COD =60°, 在Rt △ACD 中,∠CAD =30°, ∴CD =2,AC =2√3,∴AD ,AC 与CD ̂围成阴影部分的面积为S △AOC +S 扇形COD =12S △ACD +S 扇形COD=12×12×2×2√3+60π×22360=√3+23π.【点评】此题是圆的综合题,主要考查了同角的余角相等,切线的性质,菱形的判定,扇形的面积公式,判断出BC ∥OA 是解本题的关键.22.(9分)二次函数y =x 2﹣2mx 的图象交x 轴于原点O 及点A . 感知特例(1)当m =1时,如图1,抛物线L :y =x 2﹣2x 上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ′,O ′,C ′,A ′,D ′,如表: … B (﹣1,3) O (0,0) C (1,﹣1) A ( 2 , 0 )D (3,3) … … B '(5,﹣3) O ′(4,0) C '(3,1)A ′(2,0)D '(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L 的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为﹣3≤x≤﹣1;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是y =ax2(填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m 的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,当x≥﹣3时,L′的函数值随着x的增大而减小,找出公共部分即可;②先观察图1和图2,可以看出随着m的变化,二次函数y=x2﹣2mx的所有“孔像抛物线”L':y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),顶点在抛物线y=19x2上,根据这条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,可知这条抛物线顶点为原点,即y=ax2;③观察图1和图2,可知直线y=m与抛物线y=x2﹣2mx及“孔像抛物线”L'有且只有三个交点,即直线y=m经过抛物线L的顶点或经过抛物线L′的顶点或经过公共点A,分别建立方程求解即可.【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,∴点A为BB′的中点,设点A(m,n),∴m=−1+52=2,n=3−32=0,故答案为:(2,0);②所画图象如图1所示,(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,故答案为:﹣3≤x≤﹣1;②通过观察图1和图2,抛物线L:y=x2﹣2mx的“孔像抛物线”L':y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),顶点在抛物线y=19x2上,∴与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点的抛物线一定满足顶点在原点,开口向上;∴这条抛物线的解析式为y=ax2,故答案为:y=ax2;③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:①直线y=m经过M(m,﹣m2),∴m=﹣m2,解得:m=﹣1或m=0(舍去),②直线y=m经过N(3m,m2),∴m=m2,解得:m=1或m=0(舍去),③直线y=m经过A(2m,0),∴m=0,但当m=0时,y=x2与y=﹣x2只有一个交点,不符合题意,舍去,综上所述,m=±1.【点评】本题是关于二次函数综合题,主要考查了二次函数图象和性质,中心对称性质及应用,二次函数与一元二次方程的关系,一元二次方程根的判别式,新定义理解及应用等,解题关键是理解题意,运用数形结合思想和分类讨论思想、方程思想思考解决问题.六、(本大题共12分)23.(12分)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是∠DCA′;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是AD2+DE2=AE2;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD ,如图4,已知AD =m ,DC =n ,AB AC =2,求BD 的长(用含m ,n 的式子表示).【分析】(1)根据图形的拼剪可得结论.(2)利用勾股定理解决问题即可.(3)①如图3中,连接OC ,作△ADC 的外接圆⊙O .利用圆周角定理以及三角形内角和定理,即可解决问题.②如图4中,在射线DC 的下方作∠CDT =∠ABC ,过点C 作CT ⊥DT 于T .利用相似三角形的性质证明BD =√5AT ,求出AT ,可得结论.【解答】(1)解:如图1中,由图形的拼剪可知,∠A =∠DCA ′,故答案为:∠DCA ′.(2)解:如图2中,∵∠ADC +∠ABC =90°,∠CDE =∠ABC ,∴∠ADE =∠ADC +∠CDE =90°,∴AD 2+DE 2=AE 2.故答案为:AD 2+DE 2=AE 2.(3)①证明:如图3中,连接OC ,作△ADC 的外接圆⊙O .∵点O 是△ACD 两边垂直平分线的交点∴点O 是△ADC 的外心,∴∠AOC =2∠ADC ,∵OA =OC ,∴∠OAC =∠OCA ,∵∠AOC +∠OAC +∠OCA =180°,∠OAC =∠ABC ,∴2∠ADC +2∠ABC =180°,∴∠ADC +∠ABC =90°.②解:如图4中,在射线DC 的下方作∠CDT =∠ABC ,过点C 作CT ⊥DT 于T .∵∠CTD =∠CAB =90°,∠CDT =∠ABC ,∴△CTD ∽△CAB ,∴∠DCT =∠ACB ,CD CB =CT CA , ∴CD CT =CB CA ,∠DCB =∠TCA∴△DCB ∽△TCA ,∴BD AT =CB CA , ∵AB AC =2,∴AC :BC :BC =CT :DT :CD =1:2:√5,∴BD =√5AT ,∵∠ADT=∠ADC+∠CDT=∠ADC+∠ABC=90°,DT=2√55n,AD=m,∴AT=√AD2+DT2=m2+(2√55n)2=√m2+45n2,∴BD=√5m2+4n2.【点评】本题属于四边形综合题,考查了三角形的外心,勾股定理,相似三角形的判定和性质,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。

2021年江西省九年级中考数学一轮复习课时训练:一元二次方程

2021年江西省九年级中考数学一轮复习课时训练:一元二次方程

一元二次方程 (答题时间:45分钟) 【基础训练】1.(2020·聊城中考)用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( ) A .⎝⎛⎭⎫x -34 2 =1716 B .⎝⎛⎭⎫x -34 2=12 C.⎝⎛⎭⎫x -32 2 =134 D .⎝⎛⎭⎫x -32 2=1142.(2020·黔东南中考)已知关于x 的一元二次方程x 2+5x -m =0的一个根是2,则另一个根是( ) A.-7 B .7 C .3 D .-33.(2019·内江中考)一个等腰三角形的底边长是6,腰长是一元二次方程x 2-8x +15=0的一根,则此三角形的周长是( )A.16 B .12 C.14 D .12或164.(2020·河南中考)定义运算:m ☆n =mn 2-mn -1.例如:4☆2=4×22-4×2-1=7.则方程1☆x =0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根5.(2020·自贡中考)关于x 的一元二次方程ax 2-2x +2=0有两个相等实数根,则a 的值为( ) A.12 B .-12C .1D .-1 6.关于x 的一元二次方程2x n -3+m =4的一个解为x =1,则mn 的值为( ) A.9 B .8 C .10 D .67.(2020·黔西南中考)已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A.m <2 B .m ≤2C.m <2且m ≠1 D .m ≤2且m ≠18.(2019·广东中考)已知x 1,x 2是一元二次方程x 2-2x =0的两个实数根,下列结论错误的是( ) A.x 1≠x 2 B .x 21 -2x 1=0 C.x 1+x 2=2 D .x 1x 2=29.(2020·遵义中考)已知x 1,x 2是方程x 2-3x -2=0的两根,则x 21 +x 22 的值为( )A.5 B .10 C .11 D .1310.(2019·贵港中考)若α,β是关于x 的一元二次方程x 2-2x +m =0的两实根,且1α +1β =-23 ,则m 等于( )A.-2 B .-3 C .2 D .311.(2020·衢州中考)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )2020年1~5月份某厂家的口罩产量统计图A.180(1-x)2=461 B.180(1+x)2=461C.368(1-x)2=442 D.368(1+x)2=44212.(2020·青海中考)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=4.请你写出正确的一元二次方程____.13.(2020·上海中考)如果关于x的方程x2-4x+m=0有两个相等的实数根,那么m的值是____.14.(2019·南昌模拟)设α,β是方程x2-x-2 019=0的两个实数根,则α3-2 021α-β的值为____.15.(2020·黔西南中考)有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了____个人.16.(2020·无锡中考)解方程:x2+x-1=0.17.(2020·南京中考)用配方法解方程:x2-2x-3=0.18.(2020·玉林中考)已知关于x的一元二次方程x2+2x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求aa+1-1b+1的值.19.(2020·上海中考)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.解答下列问题:(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.【能力提升】20.(2020·铜仁中考)已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程x2-6x+k+2=0的两个根,则k的值等于()A.7 B.7或6 C.6或-7 D.621.(2020·遵义中考)如图,把一块长为40 cm,宽为30 cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600 cm2,设剪去小正方形的边长为x cm,则可列方程为()A.(30-2x)(40-x)=600B.(30-x)(40-x)=600C.(30-x)(40-2x)=600D.(30-2x)(40-2x)=60022.(2019·呼和浩特中考)若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x32-4x21+17的值为() A.-2 B.6 C.-4 D.423.(2019·十堰中考)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=____.24.(2019·荆门中考)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1-1)(x2-1)=8k2,则k的值为____.25.(2019·东营中考)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?26.(2020·南充中考)已知x1,x2是一元二次方程x2-2x+k+2=0的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式1x1+1x2=k-2成立?如果存在,请求出k的值;如果不存在,请说明理由.答案一元二次方程 (答题时间:45分钟) 【基础训练】1.(2020·聊城中考)用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( A )A .⎝⎛⎭⎫x -34 2 =1716B .⎝⎛⎭⎫x -34 2=12 C.⎝⎛⎭⎫x -32 2 =134 D .⎝⎛⎭⎫x -32 2=1142.(2020·黔东南中考)已知关于x 的一元二次方程x 2+5x -m =0的一个根是2,则另一个根是( A ) A.-7 B .7 C .3 D .-33.(2019·内江中考)一个等腰三角形的底边长是6,腰长是一元二次方程x 2-8x +15=0的一根,则此三角形的周长是( A )A.16 B .12 C.14 D .12或164.(2020·河南中考)定义运算:m ☆n =mn 2-mn -1.例如:4☆2=4×22-4×2-1=7.则方程1☆x =0的根的情况为( A )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根5.(2020·自贡中考)关于x 的一元二次方程ax 2-2x +2=0有两个相等实数根,则a 的值为( A ) A.12 B .-12C .1D .-1 6.关于x 的一元二次方程2x n -3+m =4的一个解为x =1,则mn 的值为( C ) A.9 B .8 C .10 D .67.(2020·黔西南中考)已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( D ) A.m <2 B .m ≤2C.m <2且m ≠1 D .m ≤2且m ≠18.(2019·广东中考)已知x 1,x 2是一元二次方程x 2-2x =0的两个实数根,下列结论错误的是( D ) A.x 1≠x 2 B .x 21 -2x 1=0 C.x 1+x 2=2 D .x 1x 2=29.(2020·遵义中考)已知x 1,x 2是方程x 2-3x -2=0的两根,则x 21 +x 22 的值为( D )A.5 B .10 C .11 D .1310.(2019·贵港中考)若α,β是关于x 的一元二次方程x 2-2x +m =0的两实根,且1α +1β =-23 ,则m 等于( B )A.-2 B .-3 C .2 D .311.(2020·衢州中考)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( B )2020年1~5月份某厂家的口罩产量统计图A.180(1-x )2=461 B .180(1+x )2=461 C.368(1-x )2=442 D .368(1+x )2=44212.(2020·青海中考)在解一元二次方程x 2+bx +c =0时,小明看错了一次项系数b ,得到的解为x 1=2,x 2=3;小刚看错了常数项c ,得到的解为x 1=1,x 2=4.请你写出正确的一元二次方程__x 2-5x +6=0__.13.(2020·上海中考)如果关于x 的方程x 2-4x +m =0有两个相等的实数根,那么m 的值是__4__. 14.(2019·南昌模拟)设α,β是方程x 2-x -2 019=0的两个实数根,则α3-2 021α-β的值为__2__018__. 15.(2020·黔西南中考)有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了__10__个人.16.(2020·无锡中考)解方程:x 2+x -1=0. 解:∵a =1,b =1,c =-1,∴Δ=12-4×1×(-1)=5,x =-1±52×1 .∴x 1=-1+52 ,x 2=-1-52 .17.(2020·南京中考)用配方法解方程: x 2-2x -3=0. 解:x 2-2x =3. x 2-2x +1=3+1. (x -1)2=4. x -1=±2. ∴x 1=3,x 2=-1.18.(2020·玉林中考)已知关于x 的一元二次方程x 2+2x -k =0有两个不相等的实数根. (1)求k 的取值范围;(2)若方程的两个不相等的实数根是a ,b ,求a a +1 -1b +1 的值.解:(1)∵方程x 2+2x -k =0有两个不相等的实数根,∴Δ=4+4k >0. 解得k >-1;(2)由根与系数的关系,得a +b =-2,ab =-k . ∴a a +1 -1b +1 =ab -1ab +a +b +1 =-k -1-k -2+1=1. 19.(2020·上海中考)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.解答下列问题:(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.解:(1)该商店去年“十一黄金周”这七天的总营业额为450+450×12%=504(万元);(2)设该商店去年8,9月份营业额的月增长率为x.根据题意,得350(1+x)2=504.解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该商店去年8,9月份营业额的月增长率为20%.【能力提升】20.(2020·铜仁中考)已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程x2-6x+k+2=0的两个根,则k的值等于(B)A.7 B.7或6 C.6或-7 D.621.(2020·遵义中考)如图,把一块长为40 cm,宽为30 cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600 cm2,设剪去小正方形的边长为x cm,则可列方程为(D)A.(30-2x)(40-x)=600B.(30-x)(40-x)=600C.(30-x)(40-2x)=600D.(30-2x)(40-2x)=60022.(2019·呼和浩特中考)若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x32-4x21+17的值为(A)A.-2 B.6 C.-4 D.423.(2019·十堰中考)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=__-3或4__.24.(2019·荆门中考)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1-1)(x2-1)=8k2,则k的值为__1__.25.(2019·东营中考)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个.根据题意,得(x-100)[300+5(200-x)]=32 000.整理,得x2-360x+32 400=0.解得x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32 000元.26.(2020·南充中考)已知x1,x2是一元二次方程x2-2x+k+2=0的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式1x1+1x2=k-2成立?如果存在,请求出k的值;如果不存在,请说明理由.解:(1)∵一元二次方程x2-2x+k+2=0有两个实数根,∴Δ=(-2)2-4×1×(k+2)≥0.解得k≤-1;(2)由一元二次方程根与系数的关系,得x1+x2=2,x1x2=k+2.∴1x1+1x2=x1+x2x1x2=2k+2.又1x1+1x2=k-2,∴2k+2=k-2,即(k+2)(k-2)=2.∴k2-6=0.解得k=±6. 又∵k≤-1,∴k=-6.。

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S△ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。

【2021中考数学专题复习】一元二次方程实际应用含答案

【2021中考数学专题复习】一元二次方程实际应用含答案

2021年九年级数学中考复习一元二次方程实际应用一.解答题(共10小题)1.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m,则这块矩形场地的长和宽各是多少米?2.如图,某农场准备围建一块矩形菜地.其中一边靠墙(墙的长度不超过50m),另外三边用长为100m的篱笆围成.(1)怎样围才能使矩形菜地的面积为1200m2?(2)能否使所围矩形菜地的面积为1300m2?为什么?3.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少件?4.某商场一种商品的进价为每件30元,售价为每件40元.为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)若按此百分率再降价一次,是否会亏本,请说明理由.5.为了推进全民阅读,某社区增加了阅览室的开放时间,据统计:该社区阅览室在2018年图书借阅总量是7500册,2020年图书借阅总量是10800册.(1)求该社区图书借阅总量从2018年至2020年的年平均增长率;(2)如果2020年该社区居民借阅图书人数有1320人,预计2021年达到1440人,并且2020年至2021年图书借阅总量的增长率不低于2018年至2020年的年平均增长率,那么2021年的人均借阅量比2020年增长m%,求m的值至少是多少?6.某电商品牌旗舰店销售A、B两款玩具,其中A款玩具定价为60元/件,B款玩具定价为50元/件.(1)若该旗舰店按定价在10月份售出A、B两款玩具共300件,销售总额不低于17000元,则至少销售A款玩具多少件?(2)11月份,商家为回馈新老客户,共庆“双十一”,决定与网红直播合作,在“双十一”当晚通过直播促销A、B两款玩具.“双十一”当晚直播时,A款玩具的售价比定价降低了元,实际销量在(1)问的最低销量的基础上增加了a%;B款玩具以定价的8折销售,销量比A款玩具“双十一”当晚实际销量少a%.“双十一”当晚两款玩具的直播销售总额比(1)问中的两款玩具最低销售总额增加了2250元,求a的值.7.湖北省预计将于今年年底实现全省贫困人口全部脱贫.2018年,湖北省精准脱贫专项资金合计约30亿元,据扶贫办报告,2020年湖北省政府将合计拨款43.2亿元用于脱贫攻坚最后一战.根据以上信息,请你计算在2018~2020年期间,湖北省脱贫专项资金年平均增长率为多少?8.返校复学之际,育才学校为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,免洗抑菌洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元,设学校共买了x瓶免洗抑菌洗手液.(1)当x=80时,每瓶洗手液的价格是元;当x=150时,每瓶洗手液的价格是元;当x=时,每瓶洗手液的价格恰好降为5元.(2)若学校购买洗手液共花费1200元,问一共购买了多少瓶洗手瓶?9.如图,一农户要建一个矩形鸡舍,为了节省材料鸡舍的一边利用长为12米的墙,另外三边用长为25米的建筑材料围成,为方便进出,在垂直墙的一边留下一个宽1米的门,所围成矩形鸡舍的长、宽分别是多少时,鸡舍面积为80平方米?10.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案与试题解析一.解答题(共10小题)1.【解答】解:设这块矩形场地的宽是x米,则长是(2x+3)米,依题意,得:x(2x+3)=170,整理,得:2x2+3x﹣170=0,解得:x1=﹣10(不合题意,舍去),x2=8.5,∴2x+3=20.答:这块矩形场地的长是20米,宽是8.5米.2.【解答】解:(1)设AD=xm,则AB=(100﹣2x)m,依题意,得:x(100﹣2x)=1200,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30,当x=20时,100﹣2x=60>50,不合题意,舍去;当x=30时,100﹣2x=40<50,符合题意.答:围成的长为40m,宽为30m.(2)设AD=ym,则AB=(100﹣2y)m,依题意,得:y(100﹣2y)=1300,整理,得:y2﹣50y+650=0.∵△=(﹣50)2﹣4×1×650=﹣100<0,∴原方程无实数根,∴不能使所围矩形菜地的面积为1300m2.3.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:(x﹣30)(﹣2x+160)=800,解得:x1=40,x2=70,∵销售单价不低于成本价,且不高于60元,∴x=40,∴y=﹣2x+160=﹣2×40+160=80(件).答:每天的销售量应为80件.4.【解答】解:(1)设两次下降的百分率为x,依题意,得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:两次下降的百分率为10%.(2)32.4×(1﹣10%)=29.16(元),∵29.16<30,∴若按此百分率再降价一次,会亏本.5.【解答】解:(1)设该社区图书借阅总量从2018年至2020年的年平均增长率为x,依题意,得:7500(1+x)2=10800,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该社区图书借阅总量从2018年至2020年的年平均增长率为20%.(2)依题意,得:(1+m%)≥,解得:m%≥0.1,∴m≥10.答:m的值至少是10.6.【解答】解:(1)设销售A款玩具x件,则销售B款玩具(300﹣x)件,依题意,得:60x+50(300﹣x)≥17000,解得:x≥200.答:至少销售A款玩具200件.(2)依题意,得:(60﹣)×200(1+a%)+50×0.8×200(1+a%)(1﹣a%)=17000+2250,整理,得:a2+100a﹣7500=0,解得:a1=50,a2=﹣150(不合题意,舍去).答:a的值为50.7.【解答】解:设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,依题意,得:30(1+x)2=43.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:在2018~2020年期间,湖北省脱贫专项资金年平均增长率为20%.8.【解答】解:(1)∵x=80<100,∴每瓶洗手液的价格是8元;∵x=150>100,∴每瓶洗手液的价格是8﹣0.2×=7(元);当x=100+×10=250(瓶)时,每瓶洗手液的价格恰好降为5元.故答案为:8;7;250.(2)∵100×8=800(元),800<1200,1200÷5=240(瓶),240<250,∴100<x<240.依题意,得:x(8﹣×0.2)=1200,整理,得:x2﹣500x+60000=0,解得:x1=200,x2=300(不合题意,舍去).答:一共购买了200瓶洗手瓶.9.【解答】解:设BC的长为xm,则AB的长为(25+1﹣x)m.依题意得:(25+1﹣x)x=80,化简,得x2﹣26x+160=0,解得:x1=10,x2=16(舍去),(25+1﹣x)=8米,答:若矩形猪舍的面积为80平方米,长和宽分别为10米和8米;10.【解答】解:(1)当天盈利:(50﹣3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50﹣x)元。

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)一.选择题1.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.42.如图,△MBC中,∠B=90°,∠C=60°,MB=,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.B.C.2 D.33.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CD B.AB=CE>CD C.AB>CD>CE D.AB=CD=CE4.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C,且在上的动点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°5.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC、CD、DA相切,若BC=2,DA=3,则AB的长()A.等于4 B.等于5 C.等于6 D.不能确定6.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()A.4 B.8 C.4D.87.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()A.PA=PB B.∠APO=20°C.∠OBP=70°D.∠AOP=70°8.如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.169.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长()A.4 B.5 C.6 D.710.已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:①S四边形ABCD=AB•CD;②AD=AB;③AD=ON;④AB为过O、C、D三点的圆的切线.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题11.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=108°,则∠COD的度数是.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.13.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=.14.如图,已知:PA、PB、EF分别切⊙O于A、B、D,若PA=10cm,那么△PEF周长是cm.若∠P=35°,那么∠AOB=,∠EOF=.15.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E,若△PDE的周长是10,则PA=.三.解答题16.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.17.如图,AC是⊙O的直径,∠ACB=60°,连接AB,分别过A、B作圆O的切线,两切线交于点P,若已知⊙O的半径为1,求△PAB的周长.18.如图,点B在⊙O外,以B点为圆心,OB长为半径画弧与⊙O相交于两点C,D,与直线OB相交A点.当AC=5时,求AD的长.19.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.20.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.(1)若PA=4,求△PED的周长;(2)若∠P=40°,求∠AFB的度数.参考答案一.选择题1.解:∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.故选:B.2.解:在直角△BCM中,tan60°==,得到BC==2,∵AB为圆O的直径,且AB⊥BC,∴BC为圆O的切线,又CD也为圆O的切线,∴CD=BC=2.故选:C.3.解:∵∠1=60°,∠2=65°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,∴∠2>∠1>∠ABC,∴AB>BC>AC,∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,∴AC=CD,BC=CE,∴AB>CE>CD.故选:A.4.解:如图,连接OB、OC,∵AB、AC是⊙O的切线,∴∠OBA=∠OCA=90°,∵∠A=50°,∴∠BOC=130°,∵∠BOC=2∠P,∴∠BPC=65°;故选:C.5.解:如图,连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD边上的高和AO边上的高都为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC=2+3=5.故选:B.6.解:∵PA,PB分别切⊙O于点A、B,∴PA=PB,又∠P=60°,∴△APB是等边三角形,∴AB=PA=8.故选:B.7.解:∵PA,PB是⊙O的切线,且∠APB=40°,∴PA=PB,∠APO=∠BPO,∠A=∠B=90°,∴∠OBP=∠OAP,∴C是错误的.故选:C.8.解:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC)=25﹣2×9=7.故选:A.9.解:连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD和AO的高为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC,又知AB=10,BC=4,故知AD=6,故选:C.10.解:连接OD、AP,∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,∴AD+BC=DP+CP=CD,∴S四边形ABCD=(AD+BC)•AB=AB•CD,∴①正确;∵AD=DP<OD,∵四边形ODPN是平行四边形,得到OD=NP<BP<AB,则AD<AB,∴②错误;∵AB是圆的直径,∴∠APB=90°,∵DP=AD,AO=OP,∴D、O在AP的垂直平分线上,∴OD⊥AP,∵∠DPO=∠APB=90°,∴∠OPB=∠DPA=∠DOP,∵OM∥CD,∴∠POM=∠DPO=90°,在△DPO和△NOP中∠PON=∠DPO,OP=OP,∠DOP=∠OPN,∴△DPO≌△NOP,∴ON=DP=AD,∴③正确;∵AP⊥OD,OA=OP,∴∠AOD=∠POD,同理∠BOC=∠POC,∴∠DOC=×180°=90°,∴△CDO的外接圆的直径是CD,∵∠A=∠B=90°,取CD的中点Q,连接OQ,∵OA=OB,∴AD∥OQ∥BC,∴∠AOQ=90°,∴④正确.故选:C.二.填空题(共5小题)11.解:如图所示:连接圆心与各切点,在Rt△DEO和Rt△DFO中,∴Rt△DEO≌Rt△DFO(HL),∴∠1=∠2,同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,Rt△CEO≌Rt△CNO,∴∠3=∠4,∠5=∠7,∠6=∠8,∴∠5+∠6=∠7+∠8=108°,∴2∠2+2∠3=360°﹣2×108°,∴∠2+∠3=∠DOC=72°.故答案为:72°.12.解:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.故答案为:.13.解:∵PA=6,⊙O的半径为2,∴PB=PA﹣AB=6﹣4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC==,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.14.解:∵PA、PB、EF分别切⊙O于A、B、D.∴AE=ED,DF=FR∴△PEF周长是PE+PF+EF=PE+EA+PF+FR=PA+PR=2PA=20cm;∵PA、PB、EF分别切⊙O于A、B∴∠PAO=∠PRO=90°∴∠AOB=360°=90°﹣90°﹣35°=145°;∴∠EOF=∠AOB=72.5°故答案是:20,145°,72.5°.15.解:∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,PA=PB,∴△PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=10,∴PA=5;故答案为5.三.解答题(共5小题)16.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.17.解:∵PA,PB是圆O的切线.∴PA=PB,∠PAB=60°∴△PAB是等边三角形.在直角△ABC中,AB=AC•sin60°=2×=∴△PAB的周长为PA+PB+AB=3.18.解:连接OC、OD.∵OA是⊙B的直径,∴∠OCA=∠ODA=90°,∴AC、AD都是⊙O的切线.∴AD=AC=5.19.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,∴DC2=62+82=100,即DC=10.(1分)设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.(4分)方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.(2分)即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8.(4分)(2)存在符合条件的P点.设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,∴y=;(6分)②△ADP∽△BPC时,∴y=4.(7分)故存在符合条件的点P,此时AP=或4.(8分)20.解:(1)∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,∵P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B∴PA=PB,∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,即三角形PDE的周长是8;(2)连接AB,∵PA=PB,∴∠PAB=∠PBA,∵∠P=40°,∴∠PAB=∠PBA=(180﹣40)=70°,∵BF⊥PB,BF为圆直径∴∠ABF=∠PBF=90°﹣70°=20°∴∠AFB=90°﹣20°=70°.答:(1)若PA=4,△PED的周长为8;(2)若∠P=40°,∠AFB的度数为70°.。

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S △ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。

江西省中考数学一轮复习(湘教版)专题21 一元二次方程的应用

江西省中考数学一轮复习(湘教版)专题21 一元二次方程的应用姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A . 3000x2=5000B . 3000(1+x)2=5000C . 3000(1+x%)2=5000D . 3000(1+x)+3000(1+x)2=50002. (2分) (2019九上·台州期中) 由于受非洲猪瘟的影响,今年4月份鸡的价格两次大幅下降.由原来每斤12元连续两次降价a%后售价下调到每斤7元,下列所列方程中正确的是()A . 12(1+a%)2=7B . 12(1+a %)=7C . 12(1+2a%) =7D . 12(1−a%) =73. (2分) (2020八下·甘井子期末) 国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区年底有贫困人口万人,通过社会各界的努力,年底贫困人口减少至万人.设年底至年底该地区贫困人口的年平均下降率为,根据题意列方程得()A .B .C .D .4. (2分) (2021八下·瑶海期末) 元旦来临前,某商场将一件原价为a元的衬衫以一个给定的百分比提升价格,元旦那天商场又按照新的价格以相同的百分比降低了这件衬衫的价格,最终,衬衫的价格比原价降低了0.16a 元,则这个给定的百分比为()A . 16%B . 36%C . 40%D . 50%5. (2分) (2018九上·海口月考) 某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为,则可列方程为()A .B .C .D .6. (2分) (2018九上·临渭期末) 某市决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加,这两年平均每年绿地面积的增长率是()A .B .C .D .7. (2分)(2021·祥符模拟) 小明看到关于四川大凉山留守儿童的相关报道后,想为这些孩子献一份爱心,六一儿童节当天他将三、四、五三个月挣得的800元零花钱成功捐出.已知三月份小明做家务挣得零花钱200元,设从三月份到五月份挣得零花钱的月平均增长率为x,则根据题意列出方程为()A . 200(1+2x)=800B . 200×2(1+x)=800C . 200(1+x)2=800D . 200+200(1+x)+200(1+x)2=800二、填空题 (共10题;共11分)8. (2分) (2020九下·扎鲁特旗月考) 汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,则这两年的年平均增长率是.9. (1分) (2019八下·温州月考) 我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形的边长是x步,则列出的方程是.10. (1分) (2019九上·赵县期中) 今年猪肉受非洲猪瘟疫情的影响,一个月内猪肉价格两次大幅上涨.由原来每斤9元上涨到每斤16元,求平均每次上涨的百分率是多少?设平均每次上涨的百分率为x,则根据题意可列方程为.11. (1分) (2017九上·顺德月考) 公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2 ,求原正方形空地的边长.设原正方形的空地的边长xm,则可列方程.12. (1分) (2017九上·重庆期中) 某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是.13. (1分) (2020九上·通河期末) 用长为14的铁丝围成一个面积是12的矩形,这个矩形相邻的两边长分别是.14. (1分) (2017九上·河源月考) 某果园2014年水果产量为100吨,2016年水果产量为144吨,设该果园水果产量的年平均增长率为x,那么,要求年均增长率可列方程为。

2021届中考数学总复习:图形的认识初步-精练精析(1)及答案解析

图形的性质——图形认识初步1一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或69.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是_________ cm2(结果保留π).11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是_________ .12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= _________ °.13.计算:50°﹣15°30′=_________ .14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=_________ °.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是_________ .16.已知∠A=43°,则∠A的补角等于_________ 度.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.19.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=_________ ;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.图形的性质——图形认识初步1参考答案与试题解析一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.点评:只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.考点:几何体的展开图;截一个几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.点评:考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.考点:展开图折叠成几何体.分析:根据展开图折叠成几何体,可得正方体,A,B是同一棱的两个顶点,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,正确将展开图折叠成几何体是解题关键,难度不大.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功 C 考D.祝考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A. 3 B.2 C.3或5 D.2或6考点:两点间的距离;数轴.专题:压轴题.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C 在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60πcm2(结果保留π).考点:几何体的表面积.分析:直接利用圆柱体侧面积公式求出即可.解答:解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.点评:此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是 3 .考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.专题:规律型.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= 45 °.考点:角的计算;翻折变换(折叠问题).分析:根据四边形ABCD是矩形,得出∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,再根据∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,得出∠EBD+∠DBF=45°,从而求出答案.解答:解:∵四边形ABCD是矩形,根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,∴∠EBD+∠DBF=45°,即∠EBF=45°,故答案为:45°.点评:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道基础题.13.计算:50°﹣15°30′=34°30′.考点:度分秒的换算.专题:计算题.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解答:解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65°,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是∠BOC.考点:余角和补角.分析:因为是一幅三角尺,所以∠AOB=∠COD=90°,再利用∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,同角的余角相等,可知与∠AOD 始终相等的角是∠BOC.解答:解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∴∠AOD=∠BOC.故答案为:∠BOC.点评:本题主要考查了余角和补角.用到同角的余角相等.16.已知∠A=43°,则∠A的补角等于137 度.考点:余角和补角.分析:根据补角的和等于180°计算即可.解答:解:∵∠A=43°,∴它的补角=180°﹣43°=137°.故答案为:137.点评:本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.考点:几何体的表面积;由三视图判断几何体.专题:几何综合题.分析:由已知三视图可以确定为四棱柱,首先得到棱柱底面菱形的对角线长,则求出菱形的边长,从而求出它的侧面积和体积.解答:解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm.∴菱形的边长为cm,棱柱的侧面积=×4×8=80(cm2).棱柱的体积=×3×4×8=48(cm3).点评:此题考查的是几何体的表面积及由三视图判断几何体,关键是先判断几何体的形状,然后求其侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.考点:比较线段的长短.分析:点M的线段AB中点,AM=MB,点P是线段MB的中点,所以MP=PB,由此可得:AM=2MP,所以AP=3MP.解答:解:∵P是MB中点∴MB=2MP=6cm又AM=MB=6cm∴AP=AM+MP=6+3=9cm.点评:本题考点:线段中点的性质,线段的中点将线段分成两个相等的线段,根据题意和图形得出各线段之间的关系,AP=AM+MP得出,然后结合已知条件求出AM和MP的长度,从而求出线段AP的长度.19如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.考点:专题:正方体相对两个面上的文字;二元一次方程的解.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.3与a是相对,5﹣x与y+1相对,y与2x﹣5相对.解答:解:根据题意,得(4分)解方程组,得x=3,y=1.(6分)点评:注意运用空间想象能力,找出正方体的每个面相对的面20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.考点:两点间的距离.分析:先根据D为AC的中点,DC=14cm求出AC的长,再根据BC=AB得出AB=AC,由此可得出结论.解答:解:∵D为AC的中点,DC=14cm,∴AC=2CD=28cm.∵BC=AB,∴AB=AC=×28=cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.考点:两点间的距离.分析:根据BC=2AB,AC=6cm,得出AB,BC的长,再由AD=DB,BE:EF:FC=1:1:3,得出BD,DE,EF的长,即可得出答案.解答:解:∵BC=2AB,AC=6cm,∴AB=2cm,BC=4cm,∵AD=DB,∴AD=BD=1cm,∵BE:EF:FC=1:1:3,∴BE=EF=BC=×4=cm,∴DE=BD+BE=1+=cm,DF=BD+BE+EF=1++=cm.点评:本题考查了两点之间的距离,注意各线段之间的联系是解题的关键.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.考点:角平分线的定义.专题:证明题.分析:利用∠AOB+∠BOC=180°,由OE、OF分别是∠AOB和∠BOC的平分线,求出∠EOB+∠BOF=90°,即可得出结论.解答:解:∵∠AOB+∠BOC=180°,∵OE、OF分别是∠AOB和∠BOC的平分线,∴∠AOE=∠EOB,∠BOF=∠FOC,∵∠AOE+∠EOB+∠BOF+∠FOC=180°,∴∠EOB+∠BOF=90°,∴OE⊥OE.点评:本题主要考查了角平分线及垂线,解题的关键是利用角平分线求解.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.考点:角平分线的定义.分析:根据角平分线的性质,可得∠BOE的大小,根据角的和差,可得∠BOD的大小,根据角平分线的性质,可得答案.解答:解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.点评:本题考查了角平分线的定义,利用了角平分线的性质,角的和差.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=40°;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.考点:角平分线的定义.分析:(1)设∠CON=∠BON=x°,∠MOC=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,由∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°=80,可得∠MON=∠MOB+∠NOB,即可求解.(2)由∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON 可得结论.解答:解:(1)∵ON平分∠BOC,∴∠CON=∠BON,设∠CON=∠BON=x°,∠MOB=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,又∵OM平分∠AOC∴∠AOM=∠COM=2x°+y°,∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°∵∠AOB=80°∴2(x+y)°=80°,∴x°+y°=40°∴∠MON=∠MOB+∠NOB=x°+y°=40°故答案为:40°.(2)2∠MON=∠AOB.理由如下:∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON.点评:本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.。

2021年九年级中考数学复习专题:【三角形综合】培优训练(一)

2021年九年级中考数学复习专题:【三角形综合】培优训练(一)一.选择题1.下列四组线段中,能构成直角三角形的是()A.2cm、4cm、5cm B.15cm、20cm、25cmC.0.2cm、0.3cm、0.4cm D.1cm、2cm、2.5cm2.下列条件不能判定两个直角三角形全等的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个锐角对应相等3.如图,OA=OB,OC=OD,∠C=30°,则∠D的度数是()A.30°B.35°C.40°D.45°4.已知在含有30°角的直角三角形中,斜边长为8cm,则这个三角形的最短边长为()A.2cm B.4cm C.6cm D.8cm5.如图,公园里有一座假山,要测假山两端A,B的距离,先在平地上取一个可直接到达A 和B的点C,分别延长AC,BC到D,E,使CD=CA,CE=CB,连接DE.这样就可利用三角形全等,通过量出DE的长得到假山两端A,B的距离.其中说明两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC =3,则BD的长度为()A.B.2 C.D.37.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.48.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3 B.4 C.5 D.69.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A .1个B .2个C .3个D .4个10.如图,已知AD 为△ABC 的高线,AD =BC ,以AB 为底边作等腰Rt △ABE ,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①∠DAE =∠CBE ;②CE ⊥DE ;③BD =AF ;④△AED 为等腰三角形;⑤S △BDE =S △ACE ,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤二.填空题 11.在△ABC 中,AC =5,BC =12,AB =13,则△ABC 的面积为= .12.如图,在△ABC 中,∠C =90°,AB =26cm ,BC 的垂直平分线交AB 于点D ,则点C 与点D 的距离是 cm .13.如图,线段AB ,BC 的垂直平分线l 1,l 2交于点O .若∠B =35°,则∠AOC = °.14.如图,在Rt △ABC 中,∠ABC =90°.AB =5,AC =13,BC =12,∠BAC 与∠ACB 的角平分线相交于点D ,点M 、N 分别在边AB 、BC 上,且∠MDN =45°,连接MN ,则△BMN 的周长为 .15.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是.16.如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一点,连接AP,作∠APD=∠B,交AC于点D,且∠PDC=∠BAP,作AE⊥BC于点E.(1)∠EAP的大小=(度);(2)已知AP=6,①△APC的面积=;②AB•PE的值=.三.解答题17.已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB 的延长线于点E,延长AD到点F,使AF=AE,连结CF.(1)求证:BE=CF;(2)若∠ACF=100°,求∠BAD的度数.18.如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM的平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.19.如图1,△ABC中,CD⊥AB于点D,且BD:AD:CD=2:3:4.(1)试说明△ABC是等腰三角形;(2)已知S=90cm2,如图2,动点P从点B出发以每秒1cm的速度沿线段BA向点A △ABC运动,同时动点Q从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点P运动的时间为t(秒),①若△DPQ的边与BC平行,求t的值;②若点E是边AC的中点,问在点P运动的过程中,△PDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.20.在Rt△ABC中,∠ACB=90°,AC=8,AB=10.(1)如图1,求点C到边AB距离;(2)点M是AB上一动点.①如图2,过点M作MN⊥AB交AC于点N,当MN=CN时,求AM的长;②如图3,连接CM,当AM为何值时,△BCM为等腰三角形?21.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=100米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE 绕点A逆时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点M是线段BD的中点,连接MC,ME.①如图2,当△ADE在起始位置时,猜想:MC与ME的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断MC与ME的数量关系和位置关系,并证明你的结论.22.在平面直角坐标系中,点C的坐标为(3,3).(1)如图1,若点B在x轴正半轴上,点A(1,﹣1),AB=BC,AB⊥BC,则点B坐标为.(2)如图2,若点B在x轴负半轴上,CE⊥x轴于点E,CF⊥y轴于点F,∠BFN=45°,NF交直线CE于点N,若点B(﹣1,0),BN=5,求点N坐标.(3)如图3,若点B,F分别在x,y轴的正半轴上,CF=BF,连接CB,点P、Q是BC上的两点,设∠PFQ=θ(0°<θ<45°),∠BFC=2∠PFQ,则以线段CP、PQ、BQ长度为边长的三角形的形状为(①钝角三角形②直角三角形③锐角三角形④随线段的长度而定),请选择,并给出证明.参考答案一.选择题1.解:A、∵22+42≠52,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;B、∵152+202=252,∴此组数据能作为直角三角形的三边长,故本选项符合题意;C、∵0.22+0.32≠0.42,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;D、∵12+22≠2.52,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;故选:B.2.解:A、根据SAS定理可知,两条直角边对应相等的两个三角形全等,本选项不符合题意;B、根据AAS定理可知,斜边和一锐角对应相等的两个三角形全等,本选项不符合题意;C、根据HL定理可知,斜边和一直角边对应相等的两个三角形全等,本选项不符合题意;D、两个锐角对应相等的两个三角形不一定全等,本选项符合题意;故选:D.3.解:在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠D=∠C,∵∠C=30°,∴∠D=30°,故选:A.4.解:在含有30°角的直角三角形中,斜边长为8cm,∴这个三角形的最短边长为×8=4(cm).故选:B.5.解:根据题意可得:在△ABC和△DEC中,,∴△ABC≌△DCE(SAS),∴AB=DE,∴依据是SAS,故选:D.6.解:设CD=x,∵在△ACB中,∠C=90°,∠B=30°,∴∠BAC=180°﹣90°﹣30°=60°,∵∠B=30°,∠ADC=60°,∴∠BAD=∠ADC﹣∠B=30°,∴∠B=∠BAD,∴AD=BD,∵在△ACD中,∠C=90°,∠CAD=30°,∴AD=2CD=2x,即BD=AD=2x,∵BC=3=BD+CD=2x+x,解得:x=1,即BD=2x=2,故选:B.7.解:过E作EM⊥BC,交FD于点N,∵DF∥BC,∴EN⊥DF,∴EN∥HG,∴∠DEN=∠DHG,∠END=∠HGD,∴△END∽△HGD,∴=,∵E为HD中点,∴=,∴=,即HG=2EN,∴∠DNM=∠NMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM﹣MN=3﹣2=1,则HG=2EN=2.故选:B.8.解:作DE⊥OB于E,如图,∵OC是∠AOB的角平分线,DP⊥OA,DE⊥OB,∴DE=DP=4,∴S=×3×4=6.△ODQ故选:D.9.解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∴∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠EAF=∠BAF,∵∠AFE=∠AFB,∴∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.解:①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确②在△DAE和△CBE中,,∴△ADE≌△BCE(SAS);∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,,∴△AEF≌△BED(AAS),∴BD=AF;故③正确;④∵AE≠DE,∴△ADE不是等腰三角形,⑤∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF =S△ACE,∵△AEF≌△BED,∴S△AEF =S△BED,∴S△BDE =S△ACE.故⑤正确;故选:D.二.填空题(共6小题)11.解:在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=,故答案为:30.12.解:连接CD,∵BC的垂直平分线交AB于点D,∴DC=DB,∴∠DCB=∠B,∵∠B+∠A=90°,∠DCA+∠DCB=90°,∴∠A=∠DCA,∴DC=DA,∴CD=AB=13(cm),故答案为:13.13.解:连接BO并延长,点D在BO的延长线上∵线段AB,BC的垂直平分线l1,l2交于点O,∴OA=OB,OC=OB,∴∠OAB=∠OBA,∠OCB=∠OBC,∴∠AOD=2∠ABO,∠COD=2∠CBO,∴∠AOC=∠AOD+∠COD=2(∠ABO+∠CBO)=70°,故答案为:70.14.解:过D点作DE⊥AB于E,DF⊥BC于F,DH⊥AC于H,如图,∵DA平分∠BAC,∴DE=DH,同理可得DF=DH,∴DE=DF,∵∠DEB=∠B=∠DFB=90°,∴四边形BEDF为正方形,∴BE=BF=DE=DF,在Rt△ADE和Rt△ADH中,∴Rt△ADE≌Rt△ADH(HL),∴AE=AH,同理可得Rt△CDF≌Rt△CDH(HL),∴CF=CH,设正方形BEDF的边长为x,则AE=AH=5﹣x,CF=CH=12﹣x,∵AH+CH=AC,∴5﹣x+12﹣x=13,解得x=2,即BE=2,在FC上截取FP=EM,如图,∵DE=DF,∠DEM=∠DFP,EM=FP,∴△DEM≌△DFP(SAS),∴DM=DP,∠EDM=∠FDP,∴∠MDP=∠EDF=90°,∵∠MDN=45°,∴∠PDN=45°,在△DMN和△DPN中,,∴△DMN≌△DPN(SAS),∴MN=NP=NF+FP=NF+EM,∴△BMN的周长=MN+BM+BN=EM+BM+BN+NF=BE+BF=2+2=4.故答案为4.15.解:∵OA=8,OB=6,C点与A点关于直线OB对称,∴BC=AB==5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,,∴△APQ≌△CBP(AAS),∴PA=BC,此时OP=5﹣4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=8﹣x在Rt△OBP中,PB2=OP2+OB2,∴(4﹣x)2=x2+32,解得:x=;∵点P在AC上,∴点P在点O左边,此时OP=.∴当△PQB为等腰三角形时,OP的长度是1或.故答案为:1或.16.解:(1)∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∴∠B=∠C=45°,∵∠B+∠BAP+∠APB=180°,∠APD+∠DPC+∠APB=180°,∠B=∠APD,∴∠BAP=∠DPC,∵∠BAP=∠PDC,∴∠DPC=∠PDC,∵∠C=45°,∴∠DPC=∠PDC=67.5°,∵∠B=∠APD=45°,∠PDC=∠APD+∠PAC,∴∠PAC=67.5°﹣45°=22.5°,∵AB=AC,AE⊥BC,∴∠BAE=∠EAC=∠BAC=×90°=45°,∴∠EAP=∠EAC﹣∠PAC=45°﹣22.5°=22.5°;故答案为:22.5;(2)①过点C作CG⊥AP交AP延长线于G,过点B作BH⊥AP于H,过点P作PF⊥AC于F,如图所示:∴∠BHA=∠AGC=90°,∵∠BAH+∠GAC=90°,∠ACG+∠GAC=90°,∴∠BAH=∠ACG,在△ABH和△CAG中,,∴△ABH≌△CAG(AAS),∴AH=CG,∵∠BAP=67.5°,∠APB=180°﹣∠APD﹣∠DPC=180°﹣45°﹣67.5°=67.5°,∴∠BAP=∠APB,∴AB=BP,∵BH⊥AP,∴AH=PH=AP=×6=3,∴CG=AH=3,=AP•CG=×6×3=9,∴S△APC故答案为:9;=AC•PF,②∵S△APC∴AC•PF=18,∵∠EAP=∠CAP=22.5°,PF⊥AC,PE⊥AE,∴PE=PF,∵AB=AC,∴AB•PE=AC•PF=18.故答案为:18.三.解答题(共6小题)17.(1)证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.又∵∠EAB=∠BAD,∴∠CAD=∠EAB.在△ACF和△ABE中,,∴△ACF≌△ABE(SAS).∴BE=CF.(2)解:∵△ACF≌△ABE.∴∠ABE=∠ACF=100°,∴∠ABC=80°,∵AB=AC,∴∠ABC=∠ACB=80°,∴∠BAC=20°,∵∠CAD=∠BAD,∴∠BAD=10°.18.(1)证明:连接BD,∵DE垂直平分BC,∴BD=CD,∵AD平分∠CAM,DF⊥AC,DG⊥AM,∴DG=DF,在Rt△BDG和Rt△CDF中,,∴Rt△BDG≌Rt△CDF(HL),∴BG=CF;(2)解:在Rt△ADG和Rt△ADF中,,∴Rt△ADG≌Rt△ADF(HL),∴AG=AF,∵AC=AF+CF,BG=AB+AG,BG=CF,∴AC=AF+AB+AG,∴AC=2AG+AB,∵AB=10cm,AC=14cm,∴AG==2cm.19.解:(1)设BD=2x,则AD=3x,CD=4x,∴AB=BD+AD=5x,由勾股定理得,AC==5x,∴AB=AC,即△ABC是等腰三角形;=90cm2,(2)∵S△ABC∴×5x×4x=90,解得,x=3,∴BD=6m,AD=9m,CD=12m,由题意得,BP=t,AQ=t,则AP=15﹣t,当DQ∥BC时,∠ADQ=∠ABC,∠AQD=∠ACB,∴∠ADQ=∠AQD,∴AQ=AD=9,即t=9,当PQ∥BC时,∠APQ=∠ABC,∠AQP=∠ACB,∴∠APQ=∠AQP,∴AP=AQ,即15﹣t=t,解得,t=7.5,综上所述,当△DPQ的边与BC平行,t的值为9或7.5;(3)在Rt△CDA中,点E是AC的中点,∴DE=AC=AE=7.5,∴当点P与点A重合时,△PDE为等腰三角形,此时t=15,如图3,当DP=DE=7.5时,BP=BD+DP=13.5,此时t=13.5,如图4,当PD=PE时,△PDE为等腰三角形,作EH⊥AB于H,∵ED=EA,∴DH=DA=4.5,设DP=EP=x,由勾股定理得,EH==6,∴PH=x﹣6,在Rt△EHP中,EP2=EH2+PH2,即x2=62+(x﹣4.5)2,解得,x=,则BP=6+=,综上所述,当△PDE为等腰三角形时,t的值为15或13.5或.20.解:(1)如图1,过点C作CD⊥AB于点D,在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,即82+BC2=102,解得,BC=6,∵,∴10CD=6×8,∴CD=,∴点C到边AB的距离为;(2)①连接BN,如图2所示:∵MN⊥AB,∴∠BMN=90°,∴∠BMN=∠ACB=90°,在Rt△BCN与Rt△BMN中,∴Rt△BCN≌Rt△BMN(HL),∴BC=BM,∴AM=AB﹣BM=10﹣6=4,∴AM的长为4cm;②当AM为5、4或时,△BCM为等腰三角形.当BM=CM时,△BCM为等腰三角形,如图3所示:∵BM=CM,∴∠BCM=∠B,∵∠ACB=90°,∴∠A+∠B=90°,∠BCM+∠ACM=90°,∴∠A=∠ACM,∴AM=CM,∴AM=BM=AB,∴AM=5;当BM=BC=6时,△BCM为等腰三角形,如图4所示:AM=AB﹣BM=4;当BC=CM=6时,△BCM为等腰三角形,如图5所示,过点C作CD⊥AB于点D,在Rt△BDC中,由勾股定理得:BD2+CD2=BC2,∴BD 2+()2=62,∴BD=,∵BC=CM,CD⊥AB,∴DM=BD=,∴AM=AB﹣BD﹣DM=.21.解:(1)∵CD∥AB,∴∠C=∠B,在△CPD和△BPA中,,∴△CPD≌△BPA(ASA),∴AB=CD=100(米),故答案为:100;(2)如图2,延长EM交BC于F,∵∠ACB=∠AED=90°,∴∠ACB=∠CED=90°,∴DE∥BC,∴∠MDE=∠MBF,在△MED和△MFB中,,∴△MED≌△MFB(ASA)∴EM=FM,DE=BF,∵DE=AE,∴EA=FB,∵CA=CB,∴CA﹣EA=CB﹣FB,即CE=CF,∵EM=FM,∴MC=ME,MC⊥ME,故答案为:MC=ME,MC⊥ME;(3)MC=ME,MC⊥ME,理由如下:如图3,延长EM至H,使MH=EM,连接BH、CE、CH,在△MDE和△MBH中,,∴△MDE≌△MBH(SAS),∴BH=DE=AE,∠MDE=∠MBH,∵∠MDE=135°,∠ABC=45°,∴∠CBH=90°,在△CAE和△CBH中,,∴△CAE≌△CBH(SAS),∴CE=CH,∵ME=MH,∴MC=ME,MC⊥ME.22.解:(1)如图1,过点C作CD⊥OB于D,过点A作AH⊥OB于H,∵点C的坐标为(3,3),点A(1,﹣1),∴CD=OD=3,OH=AH=1,∵AB⊥BC,CD⊥OB,AH⊥OB,∴∠ABC=∠AHB=∠CDB=90°,∴∠ABH+∠CBD=∠ABH+∠HAB=90°,∴∠CBD=∠HAB,又∵AB=BC,∴△ABH≌△BCD(AAS),∴BD=AH=1,∴BO=4,∴点B(4,0),故答案为:(4,0);(2)∵点C的坐标为(3,3),点B(﹣1,0),∴CE=CF=OE=3,BO=1,∴BE=4,∴EN===3,∴点N(3,﹣3);(3)如图3,将△CPF绕点F顺时针旋转2θ,得到△BGF,∴△CPF≌△BGF,∴FG=FP,BG=CP,∠CFP=∠BFG,∠C=∠FBG,∵∠BFC=2∠PFQ,∴∠CPF+∠BFQ=∠PFQ,∴∠BFG+∠BFQ=∠PFQ,又∵FG=PF,FQ=FQ,∴△PFQ≌△GFQ(SAS),∴GQ=PQ,∴以线段CP、PQ、BQ长度为边长的三角形就是以线段BQ,GQ,GB长度为边长的△BGQ,∵∠PFQ=θ(0°<θ<45°),∴∠BFC=2∠PFQ<90°,∴∠C+∠FBC>90°,∴∠GBF+∠FBC>90°,∴△BGQ是钝角三角形,∴以线段CP、PQ、BQ长度为边长的三角形是钝角三角形,故答案为①.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学复习题
11.(4分)已知x﹣3y=3,则6﹣x+3y的值是3.
解:∵x﹣3y=3,
∴原式=6﹣(x﹣3y)=6﹣3=3,
故答案为:3
12.(4分)上午8点30分,时钟的时针和分针所构成的锐角度数为75°.
解:8点30分,时钟的时针和分针相距2+1
2
=52份,
8点30分,时钟的时针和分针所构成的锐角度数为30°×5
2
=75°,
故答案为:75°.
13.(4分)若|x−1
2|+(y﹣2)
2=0,则(xy)2017的值为1.
解:∵|x−1
2|+(y﹣2)
2=0,
∴x−1
2
=0,y﹣2=0,
解得:x=1
2,y=2,
则(xy)2017=1.
故答案为:1.
14.(4分)从一个多边形的某个顶点出发,连接这个顶点与其余的顶点,将这个多边形分成了10个三角形,则这个多边形的边数为12.
解:设这个多边形的边数为n,
由题意得,n﹣2=10,
解得:n=12.
故答案为:12
15.(4分)方程1−3−5x
3
=2x−5
2去分母后为6﹣2(3﹣5x)=3(2x﹣5).
解:方程去分母得:6﹣2(3﹣5x)=3(2x﹣5),
故答案为:6﹣2(3﹣5x)=3(2x﹣5)
16.(4分)观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n 个单项式为(﹣1)n+1•2n•x n.
解:∵2x=(﹣1)1+1•21•x1;
﹣4x2=(﹣1)2+1•22•x2;
8x3=(﹣1)3+1•23•x3;
﹣16x4=(﹣1)4+1•24•x4;
第n个单项式为(﹣1)n+1•2n•x n,故答案为:(﹣1)n+1•2n•x n.。

相关文档
最新文档