原子结构氢原子光谱理解玻尔理论对氢原子光谱的解释共45页

合集下载

玻尔理论的基本假设现象氢原子光谱是分立线状

玻尔理论的基本假设现象氢原子光谱是分立线状
第四节
原子的能级结构
回顾
19世纪末20世纪初,人类叩开了微观世界
的大门,物理学家根据研究提出了关于原子
结构的各种模型,卢瑟福的核式结构模型能
够很好
盾.
经典电磁理论
经典电磁理论认为:电子绕核作匀速圆周运动, 绕核运动的电子将不断向外辐射电磁波。由于原子 不断地向外辐射能量,能量 v 逐渐减小,电子绕核旋转的频 e F
Em>En 发射光子, Em<En 吸收光子
能级结构猜想
能级:原子内部不连续的能量称为原子的能级。
数值上等于原子在定态时的能量值。 跃迁:原子从一个能级变化到另一个能级的过程。 在跃迁的过程中,原子辐射(或吸收)光子的能 量为:
hv= Em- En
Em和En分别为跃迁前后的能级
(1)处于高能级的原子会自发
由 T ( m ) T ( n ) 知道,氢原子辐射光谱的波长取决 于两光谱项之差;而hv=Em-En式则揭示出氢原子 辐射光的频率取决于两能级之差。 能级与光谱项之间的关系 最先得出氢原子能级表达式的,是丹麦物理学 家玻尔,他在吸取前人思想的基础上,通过大胆假 设,推导出氢原子的能级满足:
在解决核外电子的运动时 成功引入了量子化的观念
同时又应用了“轨 道”等经典概念和 有关牛顿力学规律
除了氢原子光谱外,在解决 其他问题上遇到了很大的困难.
半经典半量子理论,存在逻辑上的缺点,即把微观粒子看成是遵 守经典力学的质点,同时,又赋予它们量子化的特征。
玻尔理论解决了原子的稳定性和 辐射的频率条件问题,把原子结构的 理论向前推进了一步 .
率也逐渐改变,原子的发射光 谱应是连续谱。由于原子总能 量减小,电子将最终逐渐接近 原子核,而使原子变得不稳定。

4.4氢原子光谱和玻尔的原子模型课件ppt—高二下学期物理人教版选择性必修第三册6

4.4氢原子光谱和玻尔的原子模型课件ppt—高二下学期物理人教版选择性必修第三册6

轨道图
能级图
量子数:按能级由低到高为1、2、3…n(n为 整数) 如:氢原子各能级可表示为
激发态
其他的状态
—— 基态 能量最低的状 态 ( 离核最近 )
跃迁假设(频率条件) 跃迁:原子由一个能量态变为另一个能量态的过程称为跃迁。 电子从低能级向高能级跃迁
电子从基态向激发态跃迁,电 子克服库仑引力做功, 增大电势能,原子的能量增加 ,要吸收能量
巴耳末公式中的n应该是电子 从量子数分别为n=3,4,5…… 的能级向量子数为2的能级跃 迁时发出的光谱线
巴 耳 末 系
氢原子能级跃迁与光谱图
玻尔理论与巴耳末公式
请同学们用这几个公式推出巴耳末公式
结果与实验值符合的很好
玻尔理论与巴耳末公式




n=2n=1 n=3 n=4
n=5
n=6
玻尔理论与巴耳末公式
波尔的原子结构假说
玻尔
轨道量子化
玻尔原子 理论的基 能量量子化 本假设
跃迁假说
轨道量子化
1、轨道量子化:针对原子核式结构模型提出
分立轨道
围绕原子核运动的电子轨道 半径只能是某些分立的数值 ,即电子的轨道是量子化的 。电子在这些轨道上绕核的转动 是稳定的,不产生电磁辐射 。
能量量子化(定态)
原子的能量:原子的能量值是核外电子绕原子核运动时的动能 与原子所具有的电势能的总和。原子的不同能量状态
由不连续的亮线组成的光谱叫线状谱。由波长连续分布的光组成的 连在一起的光带叫连续谱。 原子的发射光谱时线状光谱。不同原子的发射光谱不相同
问题与练习
根据巴耳末公式,指出氢原子光谱在可见光范围内波长最长的两条谱 线所对应的n,它们的波长各是多少?氢原子光谱有什么特点?

15-2康普顿效应,氢原子光谱和玻尔理论

15-2康普顿效应,氢原子光谱和玻尔理论

--
-
--
很快被卢瑟福的粒子散射实验否定!
粒子散射实验:
粒子
原子核 2. 卢瑟福的原子核式模型(1911年)
原子由原子核和核外电子构成,原子核带正电荷,占据整 个原子的极小一部分空间,而电子带负电,绕着原子核转 动,如同行星绕太阳转动一样。 原子核直径的数量级:10-14m,质量占99.95% 原子直径的数量级:10-10m
1 12
1 32
0.975 107
1 1.025107 m
1 2
1.097 107
1 12
1 22
0.975 107
2 1.216107 m
1 3
1.097 107
1 22
1 32
0.152 107
3 6.579107 m
主要内容
康普顿效应的量子解释
康普顿散射公式:
0
h m0c
h
cc
m0c (1 cos ) ( v v0 ) 0
康普顿散射公式:
0
h m0c
1
cos
康普顿波长:
c
h m0c
2.426
310
241012 m
结论: • 波长的改变量 与散射体无关,
• 波长的改变量 与散射角θ有关,散 射角θ 越大,
也越大。
3. 波长的改变量与入射光的波长无关。
vn
-
+ rn
电子轨道半径:rn
0h2 me2
n2
r1n2
n 1,2,3,
玻尔半径:
r1
0h2 me2
5.291011m
rn r1n2 4r1 , 9r1 ,16r1 , n 1, 2, 3,

氢原子光谱玻尔氢原子理论

氢原子光谱玻尔氢原子理论

根据电子绕核作圆周运动的模型及角动量 量子化条件可以计算出氢原子处于各定态时的 电子轨道半径。
玻尔的氢原子理论
rn n2 (m0he22 ),n 1,2,3,
r1 0.5291010m 玻尔 半径
电子处在半径为 rn的轨道上运动时,可以计
算出氢原子系统的能量 En为
En
1 n2
பைடு நூலகம்
(8m0e2h4 2 ), n
● 量子化条件的引进没有适当的理论解释。 ● 对谱线的强度、宽度、偏振等无法处理。
氢原子光谱
例题18-6 在气体放电管中,用能量为12.5eV的电子通 过碰撞使氢原子激发,问受激发的原子向低能级 跃迁时,能发射那些波长的光谱线?
解: 设氢原子全部吸收电子的能量后最高能激发到第n
个能级,此能级的能量为
态跃迁到另一能量为 Ek的定态时,就要发射
或吸收一个频率为 kn 的光子。
kn
En
Ek h
玻尔频率公式
玻尔的氢原子理论
(3)量子化条件 在电子绕核作圆周运动中,
其稳定状态必须满足电子的角动量 L等于 h
的整数倍的条件。
2
L n h , n 1,2,3,
2
n为量子数
角动量量子化条件
3. 氢原子轨道半径和能量的计算
§18-4 氢原子光谱 玻尔的氢原子理论
1. 氢原子光谱的规律性
原子发光是重要的原子现象之一, 光谱学 的数据对物质结构的研究具有重要意义。
氢原子谱线的波长可以用下列经验公式表示:
~
R(
1 k2
1 n2
)
~ 1
k 1,2,3, n k 1, k 2, k 3,
波数
R 1.096776 107 m-1 里德伯常量

氢原子的能级与光谱.

氢原子的能级与光谱.

氢原子的能级与光谱·爱因斯坦1905年提出光量子的概念后,不受名人重视,甚至到1913年德国最著名的四位物理学家(包括普朗克)还把爱因斯坦的光量子概念说成是“迷失了方向”。

可是,当时年仅28岁的玻尔,却创造性地把量子概念用到了当时人们持怀疑的卢瑟福原子结构模型,解释了近30年的光谱之谜。

§1 氢原子的能级与光谱一、玻尔的氢原子理论(一)玻尔的基本假设1.定态假设:原子只可能处于一系列不连续的能量状态E1, E2, E3,…。

处于这些状态的原子是稳定的,电子虽作加速运动,但不辐射电磁波。

2.频率条件:原子从某一定态跃迁至另一定态时,则发射(或吸收)光子,其频率满足玻尔在此把普朗克常数引入了原子领域。

(二)玻尔的氢原子理论 1.电子在原子核电场中的运动(1)基本情况:核不动;圆轨道;非相对论。

(2) 用经典力学规律计算电子绕核的运动·电子受力:·能量:得f f = - 14πε0 ( )Ze 2r 21 ε0 ( ) Ze2 r = m ( )υ2r1 2E = m υ2 - 1 4πε0 ( ) Ze2 r E = -Ze 28πε0r2.轨道角动量量子化条件玻尔假定:在所有圆轨道中,只有电子的角动量满足下式的轨道才是可能的。

玻尔引进了角动量的量子化。

3.轨道和速度 ·r n = n 2r 1 ,(玻尔半径) r 1= 0.529 Å· υn= υ1/n ,4πε0h 2 r 1 = ( me 2 )( ) 1 Z 4πε0hυ1 = Ze 2)可见, 随n↑⇒r n↑,υn↓4.能级---能量量子化将r n代入前面E式中,有n = 1,2,3,…)R:里德伯常数(见后)基态能量:E1= -13.6 eV可见,随n↑⇒E n↑,∆E n↓*玻尔的理论是半经典的量子论:对于电子绕核的运动,用经典理论处理;对于电子轨道半径,则用量子条件处理。

氢原子光谱和波尔的原子结构模型

氢原子光谱和波尔的原子结构模型
3d54s2 3s23p4 5s25p5
我们知道了核外电子排布,那核外电子 是如何运动的呢?


原子中心有一个带正电荷的核,它的质量几 乎等于原子的全部质量,电子在它的周围沿着不同 的轨道运转,就象行星环绕太阳运转一样。
卢瑟福的原子结构理论遇到的问题
根据已经知道的电磁运动的规律,电子在运动的时候会放出电 磁波(能量)。因此,绕着原子核旋转的电子,因为能量逐渐减小 ,应当沿着一条螺旋形的轨道转动,离中心的原子核越来越近,最 后碰在原子核上。这样一来,原子就被破坏了。
100年后:汤姆逊用发现了电子,并且在各种元素的 原子中都有电子。这样看来,原子就不是不可再分的 了!也就是说,原子不是最最基本的物质粒子了!
1903
汤 姆 逊( 原 子年 模) 型
原子是一个平均分布着正电荷的粒子,其中镶嵌 着许多电子,中和了正电荷,从而形成了中性原子。
1911


福(


年 )
3、洪特规则
在能量相同的轨道上排布时,电子尽可能分占不 同的轨道,且自旋状态相同
练习:写出:碳、硫、钛(22Ti)的轨道表示式
练习:请写出下列元素原子的电子排布图。
钪21Sc, 铬24Cr, 铁26Fe, 铜29Cu, 砷33As
洪特规则的特例:
对于能量相同的轨道(同一电子亚层),当电子排布处 于全满(s2、p6、d10、f14)、半满(s1、p3、d5、f7)、全 空(s0、p0、d0、f0)时比较稳定,整个体系的能量最低。
【现学现用】焰火、霓虹灯探密
用镁粉、碱金属盐及碱土金属盐等可以做成焰火。燃放 时,焰火发出五颜六色的光,请用原子结构的知识解释 发光的原因: __燃__烧__时__,__电__子__获__得__能__量__,__从__能__量__较__低__的__轨__道__向__能__量__较__ _高__的__轨__道__跃__迁__,__跃__迁__到__能__量__较__高__的__轨__道__的__电__子__处__于__一___ _种__不__稳__定__的__状__态__,__它__随__即__就__会__跃__达__到__能__量__较__低__的__轨__道___ _,__并__向__外__界__以__光__能__的__形__式__释__放__能__量_。

氢原子光谱、玻尔理论、德布罗意波

氢原子光谱、玻尔理论、德布罗意波
n = 3, 4 , L
~ = R( 1 − 1 ) ν 赖曼系 12 n2 ~ = R( 1 − 1 ) 帕邢系 ν 32 n2 ~ = R( 1 − 1 ) 布喇开系 ν 42 n2 ~ 普芳德系 ν = R( 1 − 1 ) 52 n2
巴尔末系
~ = 1 = R( 1 − 1 ) , v λ 22 n2
态能量 态能量 ( n > 1)
E n = E1 n
2
基态 n =1
−13.6
(47)氢原子光谱、玻尔理论、德布罗意波 47)氢原子光谱、玻尔理论、
玻尔理论对氢原子光谱的解释
hν = Ei − E f
4
E1 En = 2 n
~ = 1 = ν = E1 ( 1 − 1 ) v c hc n 2 n i2 λ f 其中 ni > n f
在可见光范围内的谱线即为所求。 在可见光范围内的谱线即为所求。 可见光的谱线为巴耳末线系。 可见光的谱线为巴耳末线系。 在此为m=4和m=3跃迁到 在此为 和 跃迁到 n=2的两条,波长为: 的两条, 的两条 波长为:
n =4 n =3 n =2 n =1
λ42 = 486.1nm
m λ32 = 656.3n
E m e 1 = 2 3 = .097×107 m−1 ≈ R 里德伯常量) (里德伯常量) 1 hc 8 0 h c ε 氢 n=∞ E∞ = 0 原 n=4 子 与光 布 n=3 能 谱 n=2 级
跃 迁 系
n =1
E
(47)氢原子光谱、玻尔理论、德布罗意波 47)氢原子光谱、玻尔理论、
(1)将一个氢原子从基态激发到 )将一个氢原子从基态激发到n=4的激发态需要 的激发态需要 多少能量? 多少能量?(2)处于 )处于n=4的激发态的氢原子可发出 的激发态的氢原子可发出 多少条谱线? )其中多少条为可见光谱线, 多少条谱线? (3)其中多少条为可见光谱线,其 光波波长各多少? 光波波长各多少? 解: 1)使一个氢原子从基态激发到 ( ) n=4 激发态需提供能量为 E1 ∆E = E4 − E1 = 2 − E1 4 −13.6 = − ( −13.6 ) 2 4 = 12.75eV ≈ 2×10−18 J

氢原子光谱和玻尔的原子结构模型

氢原子光谱和玻尔的原子结构模型
互补性原理还指出电子在原子中的运动状态是不可观测的因为观测会干扰电子的运动状态。
Hale Waihona Puke 内容:无法同时精确测量粒子的位置和动量 提出者:海森堡 意义:否定了经典物理学的确定性和因果关系 对玻尔原子结构模型的影响:解释了原子光谱的离散性
光的波粒二象性:光既具有波动特性又具有粒子特性 德布罗意波长公式:λ=h/p其中λ是波长h是普朗克常数p是动量 光的粒子性:光子是光的基本单位具有能量和动量 光的波动性:光在空间中传播形成电磁波具有频率和波长
受普朗克、爱因斯坦等物理学家的量子理论启发玻尔提出了自己的原子结构模型。
PRT FIVE
对应原理是玻尔原子结构模型的理论基础它认为电子只能在特定的轨道上运动每个轨道对应 一定的能量。 玻尔引入了量子化的概念认为电子只能存在于具有确定能量的稳定状态中这些状态称为定态。
对应原理还指出当电子从一个定态跃迁到另一个定态时会释放或吸收一定频率的光子。
,
汇报人:
CONTENTS
PRT ONE
PRT TWO
发现者:罗伯特·米立根 时间:19世纪末 实验装置:真空管和棱镜 意义:揭示了氢原子光谱的存在和特征
稳定性:氢原子光谱具有高度的稳定性是研究原子结构的重要手段。 连续性:氢原子光谱线覆盖了从长波到短波的连续范围为研究原子能级提供了重要信息。
PRT SIX
1913年玻尔提出了原子结 构模型
模型基于经典力学和量子 化假设
模型成功解释了氢原子光 谱线
模型为后续原子结构研究 奠定了基础
提出假设:玻尔在1913年提出了氢原子光谱的假设奠定了玻尔原子结构模型的基础。
解释实验现象:玻尔的原子结构模型能够解释氢原子光谱的实验现象如巴尔末公式和里德伯公式等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档