哈工大模式识别课程期末总结

合集下载

模式识别学习心得体会

模式识别学习心得体会

模式识别学习心得体会篇一:最新模式识别与智能系统专业毕业自我总结最模式识别与智能系统专业大学生毕业自我总结优秀范文个人原创欢迎下载模式识别与智能系统专业毕业论文答辩完成之际,四年大学生活也即将划上一个句号,而我的人生却仅仅是个逗号,我即将开始人生的又一次征程。

作为×××大学(改成自己模式识别与智能系统专业所在的大学)毕业生的我即将告别大学生活,告别亲爱的模式识别与智能系统专业的同学和敬爱的老师,告别我的母校——×××大学。

回顾在×××大学模式识别与智能系统专业的求学生涯,感慨颇多,有酸甜苦辣,有欢笑和泪水,有成功和挫折!大学——是我由幼稚走向成熟的地方,在此,我们认真学习模式识别与智能系统专业知识,拓展自己的知识面,培养自己的模式识别与智能系统实践活动能力。

在思想道德上,×××大学(改成自己就读模式识别与智能系统专业所在的大学)学习期间我系统全面地学习了思政课程的重要思想,不断用先进的理论武装自己的头脑,热爱祖国,热爱人民,坚持四项基本原则,树立了正确的人生观、价值观、世界观,使自己成为思想上过硬的模式识别与智能系统专业合格毕业生。

在模式识别与智能系统专业学习上,我严格要求自己,刻苦钻研篇二:最新模式识别与智能系统专业毕业自我个人小结优秀范文原创最模式识别与智能系统专业大学生毕业个人总结优秀范文个人原创欢迎下载在×××(改成自己模式识别与智能系统就读的大学)模式识别与智能系统专业就读四年青春年华时光,匆匆而过。

四年的时间足以证明了,我爱上了×××(改成自己模式识别与智能系统就读的大学)的一草一木,一人一事。

回想四年里有过多少酸甜苦辣、曾经模式识别与智能系统班级里的欢声笑语,曾经期末考试备战中的辛勤汗水……所有的一切都历历在目。

哈工大模式识别课程期末总结分解

哈工大模式识别课程期末总结分解
一元参数
【最大似然估计】
多元参数
【最大似然估计】
例子(梯度法不适合):
1 p( x | ) 2 1 0
,1 x 2 其它
1 p ( x , x ,..., x | , ) N 1 2 N 1 2 l ( ) 2 1 0
p( | x)
p( x | ) p( )
p( x | ) p( )d
p( , x) p( | x) p( x) p( x | ) p( )
R
E
d


ˆ, ) p ( | x) p ( x)d dx (

ˆ, ) p( | x)d dx d p( x) (
h( x) ln l ( x) ln p( x | 1 ) ln p( x | 2 ) ln P(1 ) P(2 )
x 1
x 2
【基于最小错误率的贝叶斯决策】
【基于最小错误率的贝叶斯决策】
【基于最小风险的贝叶斯决策】
概念
决策 决策空间 前面所讲的错误率达到最小。在某些实际应用中,最小错 误率的贝叶斯准则并不适合。以癌细胞识别为例,诊断中如 果把正常细胞判为癌症细胞,固然会给病人精神造成伤害, 但伤害有限;相反地,若把癌症细胞误判为正常细胞,将会 使早期的癌症患者失去治疗的最佳时机,造成验证的后果。
【基于最小风险的贝叶斯决策】
数学描述
【基于最小风险的贝叶斯决策】
条件期望损失:
R(i | x) EP( j | x), i 1, 2,..., a
j 1 c
期望风险:
R R ( ( x) | x) p ( x)dx
目的:期望风险最小化

模式识别考试总结

模式识别考试总结

1.对一个染色体分别用一下两种方法描述:(1)计算其面积、周长、面积/周长、面积与其外接矩形面积之比可以得到一些特征描述,如何利用这四个值?属于特征向量法,还是结构表示法?(2)按其轮廓线的形状分成几种类型,表示成a、b、c等如图表示,如何利用这些量?属哪种描述方法?(3)设想其他的描述方法。

(1)这是一种特征描述方法,其中面积周长可以体现染色体大小,面积周长比值越小,说明染色体越粗,面积占外接矩形的比例也体现了染色体的粗细。

把这四个值组成特征向量可以描述染色体的一些重要特征,可以按照特征向量匹配方法计算样本间的相似度。

可以区分染色体和其它圆形、椭圆细胞结构。

(2)a形曲线表示水平方向的凹陷,b形表示竖直方向的凹陷,c形指两个凹陷之间的突起,把这些值从左上角开始,按顺时针方向绕一圈,可以得到一个序列描述染色体的边界。

它可以很好的体现染色体的形状,用于区分X和Y染色体很合适。

这是结构表示法。

(3)可以先提取待识别形状的骨架,在图中用蓝色表示,然后,用树形表示骨架图像。

2. 设在一维特征空间中两类样本服从正态分布,,两类先验概率之比,试求按基于最小错误率贝叶斯决策原则的决策分界面的x值。

答:由于按基于最小错误率的贝叶斯决策,则分界面上的点服从3、设两类样本的类内离散矩阵分别为,试用fisher准则求其决策面方程,并与第二章习题二的结构相比较。

答:由于两类样本分布形状是相同的(只是方向不同),因此应为两类均值的中点。

4,设在一个二维空间,A类有三个训练样本,图中用红点表示,B类四个样本,图中用蓝点表示。

试问:(1)按近邻法分类,这两类最多有多少个分界面(2)画出实际用到的分界面(3) A1与B4之间的分界面没有用到下图中的绿线为最佳线性分界面。

答:(1)按近邻法,对任意两个由不同类别的训练样本构成的样本对,如果它们有可能成为测试样本的近邻,则它们构成一组最小距离分类器,它们之间的中垂面就是分界面,因此由三个A类与四个B类训练样本可能构成的分界面最大数量为3×4=12。

模式识别与机器学习期末总结

模式识别与机器学习期末总结
1.1.样本(sample, object):一类事物的一个具体体现,对具体的个别事物进行观测所得到的某 种形式的信号。模式(pattern):表示一类事物,如印刷体 A 与手写体 A 属同一模式。B 与 A 则属于不同模式。样本是具体的事物,而模式是对同一类事物概念性的概括。模式类与模式 联合使用时,模式表示具体的事物,而模式类则是对这一类事物的概念性描述。模式识别是 从样本到类别的映射。样本模式识别类别。 1.2.数据获取 .测量采样-预处理.去噪复原-特征提取与选择.寻找有利于分类的本质特征-分类 器设计-分类决策.做出关于样本类别的判断。 1.3.先验概率 :根据大量统计确定某类事物出现的比例,类条件概率密度函数 :同一类事物的各 个属性都有一定的变化范围,在其变化范围内的分布概率用一种函数形式表示 ,后验概率:一 个具体事物属于某种类别的概率。 1 exp( 1 (x μ)T 1 (x μ)) 2.1.最小错误率准则即最大后验准则, , p ( x) 1/ 2 2 (2 )n / 2 计 算 两 类 后 验 。 最 小 风 险 准 则 , x ( x1 , x2 ,..., xn )T , 通过保证每个观测之下的条件风险最小,使得它的期望 μ E (x) ( 1 , 2 ,..., n )T , i E ( xi ) 风险最小。 E (x μ)(x μ)T ( ij2 )n*n 2.2.多元正态分布的 pdf、均值、协方差矩阵如下。等概 率密度轨迹为超椭球面,主轴方向由协方差矩阵的特征 ij2 E ( xi i )( x j j ) 向量决定,轴长度由其特征值决定。 1 T T 2.3.最小距离分类器,线性分类器 g i ( x) (2μT i x μ i μ i ) w i x wi 0 2 2 2.4.医生判断病人是否有病:先验,似然,后验。Bayes 决 1 1 T w i 2 μi , wi 0 2 μi μi 策的三个前提: 类别数确定,各类的先验概率 P(ωi)已知,各类 2 的条件概率密度函数 p(x|ωi)已知.问题的转换 :基于样本估 p(x) c (x μ)T 1 (x μ) 2 计概率密度,基于样本直接确定判别函数. 3.1.一元正态分布的最大似然估计:假设样本 x 服从正态分布 N(μ,σ2);已获得一组样本 x1 , x2 , … , xN 。解:似然函数:l(θ) = p(K|θ) = p(x1 , x2 , … , xN |θ) = ∏N k=1 p(xk |θ),其对数似然 函数:H(θ) = ∑N 。样本服从正 k=1 ln⁡p(xk |θ).最大似然估计 N 态 分 布 N(μ,σ2) , 则 n 2 p(xk ; μ, σ2 ) = 1/√2πσ2 exp⁡ *−(xk − μ)2 /2σ2 + , ⁡H(μ, σ2 ) = ∑N k=1 ln p(xk ; μ, σ ) = − ln(2π) −

哈工大 模式识别总结

哈工大 模式识别总结
(5)典型的聚类方法,动态聚类方法的基本原理。 重点分析C-均值聚类方法;说明基本原理以及实现方法。 (6)分级聚类方法分析,以及使用不同相似度计算方法的影 响。
非监督学习方法
与监督学习 方法的区别
主要任务:数据分析 数据分析的典型类型:聚类分析 直接方法:按概率密度划分 投影法 基 于 对 称性 质 的 单 峰 子集 分 离方法 间接方法:按数据相似度划分 动态聚类 方法 C-均值 算法 ISODATA 算法 分级聚类 算法
第三章 判别函数及分类器的设计




(1)非参数分类决策方法的定义;与贝叶斯决策方法进行比 较,分析非参数分类方法的基本特点。 (2)线性分类器。说明这种分类器的定义及其数学表达式, 进一步分析数学表达式的各种表示方法,从而导出典型的线 性分类器设计原理:Fisher准则函数、感知准则函数。 (3)非线性判别函数。从样本的线性不可分例子说明线性判 别函数的局限性,从而引入分段线性判别函数概念及相应计 算方法。 (4)近邻法的定义及性能分析。从近邻法的优缺点导入改进 的近邻法;
非参数判别分类方法原理----有监督学习方法
线性分类器
近邻法: 最近邻法,K近邻法
Fisher 准则
扩展:分段 线性分类器 方法实现非 线性分类器
感知准则 函数
多层感知器 (神经网络)
支持向量机
SVM
改进的近邻法: --剪辑近邻法 --压缩近邻法
特征映射方法实 现非线性分类器
错误修正算法 可实现最小分段数的局部训练算法
特征空间优化:概念、目的及意义
两种优化方法:特征选择、特征提取 评判标准:判据 ------基于距离的可分性判据 -----基于概率的可分性判据 特征提取 特征选择 KL变换 产生矩阵 包含在类平 均信息中判 别信息的最 优压缩 最优方法 分支 定界 算法 次优方法 顺序前 进法, 广义顺 序前进 法 顺序后 退法, 广义顺 序后退 法

模式识别总结

模式识别总结
13
模式识别压轴总结
另外,使用欧氏距离度量时,还要注意模式样本测量值的选取,应该是有效 反映类别属性特征(各类属性的代表应均衡) 。但马氏距离可解决不均衡(一个 多,一个少)的问题。例如,取 5 个样本,其中有 4 个反映对分类有意义的特征 A,只有 1 个对分类有意义的特征 B,欧氏距离的计算结果,则主要体现特征 A。
信息获取 预处理 特征提取与选择 聚类 结果解释
1.4 模式识别系统的构成 基于统计方法的模式识别系统是由数据获取, 预处理, 特征提取和选择, 分类决策构成
2
模式识别压轴总结
1.5 特征提取和特征选择 特征提取 (extraction):用映射(或变换)的方法把原始特征变换为较少 的新特征。 特征选择(selection) :从原始特征中挑选出一些最有代表性,分类性能最 好的特征 特征提取/选择的目的,就是要压缩模式的维数,使之便于处理。 特征提取往往以在分类中使用的某种判决规则为准则,所提取的特征使在 某种准则下的分类错误最小。为此,必须考虑特征之间的统计关系,选用 适当的变换,才能提取最有效的特征。 特征提取的分类准则:在该准则下,选择对分类贡献较大的特征,删除贡 献甚微的特征。 特征选择:从原始特征中挑选出一些最有代表性、分类性能最好的特征进 行分类。 从 D 个特征中选取 d 个,共 CdD 种组合。 - 典型的组合优化问题 特征选择的方法大体可分两大类: Filter 方法:根据独立于分类器的指标 J 来评价所选择的特征子集 S,然后 在所有可能的特征子集中搜索出使得 J 最大的特征子集作为最优特征子 集。不考虑所使用的学习算法。 Wrapper 方法:将特征选择和分类器结合在一起,即特征子集的好坏标准 是由分类器决定的,在学习过程中表现优异的的特征子集会被选中。

模式识别学习心得体会

模式识别学习心得体会

模式识别学习心得体会篇一:最新模式识别与智能系统专业毕业自我总结最模式识别与智能系统专业大学生毕业自我总结优秀范文个人原创欢迎下载模式识别与智能系统专业毕业论文答辩完成之际,四年大学生活也即将划上一个句号,而我的人生却仅仅是个逗号,我即将开始人生的又一次征程。

作为×××大学(改成自己模式识别与智能系统专业所在的大学)毕业生的我即将告别大学生活,告别亲爱的模式识别与智能系统专业的同学和敬爱的老师,告别我的母校——×××大学。

回顾在×××大学模式识别与智能系统专业的求学生涯,感慨颇多,有酸甜苦辣,有欢笑和泪水,有成功和挫折!大学——是我由幼稚走向成熟的地方,在此,我们认真学习模式识别与智能系统专业知识,拓展自己的知识面,培养自己的模式识别与智能系统实践活动能力。

在思想道德上,×××大学(改成自己就读模式识别与智能系统专业所在的大学)学习期间我系统全面地学习了思政课程的重要思想,不断用先进的理论武装自己的头脑,热爱祖国,热爱人民,坚持四项基本原则,树立了正确的人生观、价值观、世界观,使自己成为思想上过硬的模式识别与智能系统专业合格毕业生。

在模式识别与智能系统专业学习上,我严格要求自己,刻苦钻研篇二:最新模式识别与智能系统专业毕业自我个人小结优秀范文原创最模式识别与智能系统专业大学生毕业个人总结优秀范文个人原创欢迎下载在×××(改成自己模式识别与智能系统就读的大学)模式识别与智能系统专业就读四年青春年华时光,匆匆而过。

四年的时间足以证明了,我爱上了×××(改成自己模式识别与智能系统就读的大学)的一草一木,一人一事。

回想四年里有过多少酸甜苦辣、曾经模式识别与智能系统班级里的欢声笑语,曾经期末考试备战中的辛勤汗水……所有的一切都历历在目。

模式识别与数据挖掘期末总结

模式识别与数据挖掘期末总结

模式识别与数据挖掘期末总结第一章概述1.数据分析是指采用适当的统计分析方法对收集到的数据进行分析、概括和总结,对数据进行恰当地描述,提取出有用的信息的过程。

2.数据挖掘(Data Mining,DM) 是指从海量的数据中通过相关的算法来发现隐藏在数据中的规律和知识的过程。

3.数据挖掘技术的基本任务主要体现在:分类与回归、聚类、关联规则发现、时序模式、异常检测4.数据挖掘的方法:数据泛化、关联与相关分析、分类与回归、聚类分析、异常检测、离群点分析、5.数据挖掘流程:(1)明确问题:数据挖掘的首要工作是研究发现何种知识。

(2)数据准备(数据收集和数据预处理):数据选取、确定操作对象,即目标数据,一般是从原始数据库中抽取的组数据;数据预处理一般包括:消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换。

(3)数据挖掘:确定数据挖掘的任务,例如:分类、聚类、关联规则发现或序列模式发现等。

确定了挖掘任务后,就要决定使用什么样的算法。

(4)结果解释和评估:对于数据挖掘出来的模式,要进行评估,删除冗余或无关的模式。

如果模式不满足要求,需要重复先前的过程。

6.分类(Classification)是构造一个分类函数(分类模型),把具有某些特征的数据项映射到某个给定的类别上。

7.分类过程由两步构成:模型创建和模型使用。

8.分类典型方法:决策树,朴素贝叶斯分类,支持向量机,神经网络,规则分类器,基于模式的分类,逻辑回归9.聚类就是将数据划分或分割成相交或者不相交的群组的过程,通过确定数据之间在预先指定的属性上的相似性就可以完成聚类任务。

划分的原则是保持最大的组内相似性和最小的组间相似性10.机器学习主要包括监督学习、无监督学习、半监督学习等1.(1)标称属性(nominal attribute):类别,状态或事物的名字(2):布尔属性(3)序数属性(ordinal attribute):尺寸={小,中,大},军衔,职称【前面三种都是定性的】(4)数值属性(numeric attribute): 定量度量,用整数或实数值表示●区间标度(interval-scaled)属性:温度●比率标度(ratio-scaled)属性:度量重量、高度、速度和货币量●离散属性●连续属性2.数据的基本统计描述三个主要方面:中心趋势度量、数据分散度量、基本统计图●中心趋势度量:均值、加权算数平均数、中位数、众数、中列数(最大和最小值的平均值)●数据分散度量:极差(最大值与最小值之间的差距)、分位数(小于x的数据值最多为k/q,而大于x的数据值最多为(q-k)/q)、说明(特征化,区分,关联,分类,聚类,趋势/跑偏,异常值分析等)、四分位数、五数概括、离群点、盒图、方差、标准差●基本统计图:五数概括、箱图、直方图、饼图、散点图3.数据的相似性与相异性相异性:●标称属性:d(i,j)=1−m【p为涉及属性个数,m:若两个对象匹配为1否则p为0】●二元属性:d(i,j)=p+nm+n+p+q●数值属性:欧几里得距离:曼哈顿距离:闵可夫斯基距离:切比雪夫距离:●序数属性:【r是排名的值,M是排序的最大值】●余弦相似性:第三章数据预处理1.噪声数据:数据中存在着错误或异常(偏离期望值),如:血压和身高为0就是明显的错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档