15.3 第1课时 分式方程及其解法.ppt

合集下载

2013-12-10 15.3分式方程的解法

2013-12-10 15.3分式方程的解法
2x 1 3x 1 ⑧ x
1 ( 5)x 2 ⑦ x
【解分式方程】
90 60 如何求分式方程 30 v 30 v 的解呢?
求一元一次 方程的解时, 我们先去分 母。
解这个分式 方 程也应该 去分母.
【解分式方程】
90 60 如何求分式方程 30 v 30 v 的解呢?
解分式方程的一般步骤: 一化二解三检验
去分母 等式两边乘 最简公分母
分式方程
整式方程
解整式方程
目标
x =a
检验
a是分式方程的解
最简公分 母不为0
最简公分 母 为0
a不是分式方程的解
练习P152
(1)
解方程
:
x 2 (2) 1 x 1 3x 3
1 2 2x x 3
2 4 (3) 2 x 1 x 1
将整式方程的解代入最简公分母, 若最简公分母≠0,则是原分式方程的解, 若最简公分母=0,则不是原分式方程的解, 须舍去。
例1:
2 3 (1) x 3 x
x 3 ( 2) 1 x 1 ( x 1)( x 2)
例1:
2 3 (1) x 3 x
x 3 ( 2) 1 x 1 ( x 1)( x 2)
5 1 (4) 2 0 2 x x x x
小结:
1、如何解分式方程 2、检验步骤 3、解分式方程的步骤
下一站
分式方程的应用:有增根与无解
1.提问:解分式方程的基本思想是什么?
答:解分式方程的基本思想是将分式方程转化 为整式方程,方法是方程两边同乘最简公分母.
2.问:为什么解分式方程必须验根,如何验根?
回顾与预习

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
3x23x23 无m x解x,
二、利用分式方程解的情况确定所含字母的取值 范围
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
方法总结: 1.化整式方程求解. 2.根据题意列不等式组.(特别注意分式方程中分母 能为0)。
2019/7/8
最新中小学教学课件
thank
you!2019/7/8最新小学教学课件学习重点:
利用分式方程解的情况确定所含字母的取值。
练习:解方程:
x 1
3
x1
(x1)(x2)
.
一、分式方程增根的应用
例1、分式方程 有增根,求m的值。
1 m x 2 x 1
方法总结: 1.化为整式方程。(方程可以不整理) 2.确定增根。 3.把增根代入整式方程求出字母的值。
练习:已知关于x的方程 求实数K的值。
1 4x2
2 有 增x k根2
练习:解方程:
x 2 1 x 1 3x 3
.
例2、若关于x的分式方程 无解,求m的值.
xm 3 1 x1 x
方法总结: 1.化为整式方程(整式方程需要整理). 2. 分两种情况讨论 (1)整式方程无解 (2)分式方程有增根.

分式方程及其解法公开课PPT课件

分式方程及其解法公开课PPT课件
1、当分式方程含有若干个分式时,通常 可用各个分式的最简公分母同乘方程两边 进行去分母。 2、解方程时一定要验根。
2021/7/24
12
【分式方程的解】
上面两个分式方程中,为什么
120 20+x
=
80 20-x
x1-去5 分= 母x1后20-2得5 到去的分整母式后方得程到的的解整就式是方它程的的解解,却而不
18
【例题】
解分式方程
x x-1
-1 =
3 (x-1)(x+2)
解 :方程两边同乘以最简公分母(x-1) (x+2),得
X(x+2)-(x-1)(x+2)=3
解整式方程,得 x = 1
检验:当x = 1 时,(x-1) (x+2)=0,x=1不
是原分式方程的解,原分式方程无解.
解分式方程
(1)
2 x-1
如何去掉分母,化 为整式方程还保持
等式成立?
16
解方程 100 30 x x7
解 方程两边同乘以x(x-7),约去分母,得 100(x-7)=30x
解这个整式方程, 得 X=10
检验:把x=10代入x(x-7), 得
10×(10-7)≠0
所以, 2021/7/24 x=10是原方程的解.
17
(2) xx22x2164xx22
x+5=10
分式两边同乘了等于0的式子,所得整式方程的解使
分母为0,这个整式方程的解就不是原分式方程的解
2021/7/24
13
【分式方程解的检验】
= 120
20+x
2800-x当两x边=4同时乘,((2200++xx))((2200--xx))≠1020(20-x)=80(20+x)

分式方程ppt课件

分式方程ppt课件
36
36
根据题意,得 x =
+2,
(1+50%)x
解得 x=6.
经检验,x=6 是方程的解.
答:该施工队原计划每天改造 6 m.
知3-练
例 5 [情境题 校园文化]为了进一步丰富校园文体活动,
某中学准备一次性购买若干个足球和排球,用480 元
购买足球的数量和用390 元购买排球的数量相同,已
知足球的单价比排球的单价多15 元.





③ =x;④
+3=




其中是分式方程的是________(填序号).
③④
知识点 2 分式方程的解法
知2-讲
1. 解分式方程的基本思路:去分母,把分式方程转化为整
式方程.
2. 解分式方程的一般步骤
知2-讲
3. 检验分式方程解的方法
(1)直接检验法:将整式方程的解代入原分式方程,这
车的速度.
知3-练
思路引导:
知3-练
解:设大型客车的速度为x km/h,


则小型客车的速度为1.2x km/h,12 min= h.


根据题意,得 -


= ,解得x
.
经检验,x = 6 0 是方程的解.
答:大型客车的速度是60 km/h.
= 6 0.
知3-练
3-1.[中考·广州] 随着城际交通的快速发展, 某次动车平

;(3) =1;
- +





(4)

;(5) -2=x(a为非零常数).

+ -
解题秘方:利用判别分式方程的依据——分母中含有

15.3.1分式方程及其解法

15.3.1分式方程及其解法

求a的取值范围. 【思路点拨】解关于 x 的分式方程→根据解是正数 (即大于零)列出关于字母a的不等式→解不等式,确定 a的(x-2),得2x+a=2-x,
2a . 解得 x= 3 2a 2a >0,且 2. 由题意,得 3 3 2a 2a >0, 由 解得a<2;由 得a≠-4. 2, 3 3
解得:x=50经检验x=50是原方程的解
则甲工程队每天能完成绿化的面积是
50×2=100(m2) 答:甲,乙两工程队每天能完成绿化的面积分别是 100m2,50m2.
过程展示
解:(2)设至少应安排甲队工作x天,根据题意得:
1800 100x 0.4x+ ∙0.25≤8, 50
解得:x≥10 答:至少应安排甲队工作10天.
× √
√) (×)
知识运用
一.分式方程的定义及解法 例1.(2013·资阳中考)解方程: 【教你解题】
x 2 1 + = . 2 x -4 x 2 x-2
解:
去分母
方程两边都乘以(x+2)(x-2), 得:x+2(x-2)=x+2. 解这个方程,得:x=3. 经检验,x=3是原方程的解
解整式方程
方法提示
分式方程无解的“两种情况”: 分式方程无解时分式方程化为整式方程后有 以下两种情况: (1)整式方程有解但这个解不是原分式方程的解; (2)分式方程化为整式方程后整式方程无解.
中考链接
(2014年∙广东汕尾)某校为美化校园,计划对面积为 1800m2的区域进行绿化,安排甲,乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿 化的面积的2倍,并且在独立完成面积为400m2区域的 绿化时,甲队比乙队少用4天. (1)求甲,乙两工程队每天能完成绿化的面积分别是多 少 m2 ? (2)若学校每天需付给甲队的绿化费用为0.4万元,乙队 为0.25万元,要使这次的绿化总费用不超过8万元,至少 应安排甲队工作多少天?

分式方程的ppt课件

分式方程的ppt课件
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.

人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3

人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3

8
8
x 2 2x 15 x 2 16x 48
x2
x2x159
x2
16x
48
2
经检验, x 9 是原方程的根
2
11 1 1 x 3 x 4 x 5 x 12
1 1 11 x 3 x 12 x 5 x 4
2x 9 0
x
2x
3x
9 12
x
2x 9
5x
4
x 9 2
x2 9x 36 x2 9x 9
经检验, x 9 是 2
原方程的根
例3 :解方程 y 4 y 5 y 7 y 8 y5 y6 y8 y9
点拨: 此方程的特点是:各分式的分子与分母的次数相
同, 这样一般可将各分式拆成: 整式+分式 的形式。
解:1 1 1 1 1 1 1 1
y 5
y6
y 8
y9
1
1
1
y 1 y 2y01yy12y1,y2102yyy1121y,y220 20
下面的过程请同学们自己完成 相信你们能行
以下各方程能利用换元法进行换元吗?
x x2 1
x2 1 x
5 2
能 y 1 5 y2
( x )2 5( x ) 3 能 y2 5y 3
x 1
x 1
x2 x2
1 1
3(x2 1) x2 1
2x
0
不能
小结
有些分式方程用常规方法-----------去分母,是很复 杂 ,甚至无法求解,有时要采取其他的方法
①采取局部通分法,会使解法很简单.这种解 法称为 ——通 分 法
②各分式的分子、分母的次数相同,且相差 一定的数,可将各分式拆成几项的和。这种 解法称为 —— 拆 项 法

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)
0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档