铁碳合金成分组织性能之间的关系
实验一平衡态铁碳合金成分、组织、性能之间关系的分析

实验一平衡态铁碳合金成分、组织、性能之间关系的分析1.1典型铁碳合金的平衡组织观察与分析一、实验目的1.通过实验能识别铁碳合金在平衡状态下的显微组织。
2.掌握碳含量对铁碳合金平衡组织形貌及相组成比例的影响。
二、实验原理简介利用金相显微镜观察金属的内部组织和缺陷的方法称为显微分析(或金相分析)。
合金在极其缓慢的冷却条件(如退火状态)下所得到的组织称为平衡组织。
铁碳合金平衡组织的观察与分析,要依据Fe-Fe3C相图来进行。
1.室温下铁碳合金基本组织特征(1)铁素体(F)铁素体是碳溶于α-Fe中形成的间隙固溶体。
经3%~5%的硝酸酒精溶液浸蚀后,在显微镜下呈现白亮色多边形晶粒。
在亚共析钢中,铁素体呈块状分布,当合金的含碳量接近于共析成分时,铁素体则呈断续的网状分布于珠光体晶界上。
(2)渗碳体(Fe3C)渗碳体是铁与碳形成的一种化合物。
经3%~5%的硝酸酒精溶液浸蚀后,在显微镜下为白亮色;若用苦味酸钠溶液浸蚀,则渗碳体呈暗黑色,而铁素体仍为白亮色,由此可以区别铁素体和渗碳体。
由于铁碳合金的成分和形成条件不同,渗碳体可以呈现不同的形状,一次渗碳体是由液相中直接结晶出来,呈板条状游离分布;二次渗碳体是从奥氏体中析出的,呈网状分布在珠光体晶界上;三次渗碳体是从铁素体中析出,呈窄条状分布在铁素体晶界上。
(3)珠光体(P)珠光体是铁素体和渗碳体的两相复合物。
在平衡状态下,它是由铁素体和渗碳体相间排列的层片状组织。
经3%~5%的硝酸酒精溶液浸蚀后,铁素体和渗碳体皆为白亮色,而两相交界呈暗黑色线条。
在不同的放大倍数下观察时,组织特征有所区别。
如在高倍(600倍以上)下观察时,珠光体中平行相间的宽条铁素体和细条渗碳体都呈白亮色,而两相交界为暗黑色;在中倍(400倍左右)下观察时,白亮色的渗碳体被暗黑色交界所“吞食”,而呈现为细黑条,这时看到的珠光体是宽白条铁素体和暗黑细条渗碳体的相间复合物;在低倍(200倍以下)下观察时,无论是宽白条的铁素体还是暗黑细条的渗碳体都很难分辨,这时珠光体呈现暗黑色块状组织。
铁碳合金相图2

一、合金的使用性能与相图的关系 固溶体的性能与溶质元素的溶入量有关, 溶质的溶入量越多,
晶格畸变越大, 则合金的强度、硬度越高, 电阻越大。当溶质原子 含量大约为50%时, 晶格畸变最大, 而上述性能达到极大值, 所以 性能与成分的关系曲线具有透镜状。
两相组织合金的机械性能和物理性 能与成分呈直线关系变化, 两相单独的 性能已知后, 合金的某些性能可按组成 相性能依百分含量的关系叠加的办法求 出。如硬度:HB=HBα α %+HBβ β %
对组织较敏感的某些性能如强度等, 与组成相或组织组成物的形态有很大关 系。组成相或组织组成物越细密, 强度 越高。当形成化合物时,则在性能-成分
曲线上于化合物成分处出现极大值或极小值。
二、合金的工艺性能与相图的关系 合金的铸造性能与相图的关系:
纯组元和共晶成分的合金的流动性最好,缩孔集中,铸造 性能好。相图中液相线和固相线之间距离越小,液体合金结晶 的温度范围越窄,对浇注和铸造质 量越有利。合金的液、固相线温度 间隔大时,形成枝晶偏析的倾向性 大;同时先结晶出的树枝晶阻碍未 结晶液体的流动,而降低其流动性, 增多分散缩孔。所以,铸造合金常 选共晶或接近共晶的成分。
2. 在铸造工艺方面的应用 根据Fe- Fe3C相图可以确定合金的浇注温度。浇注温度一般
在液相线以上50 ℃~100 ℃。从相图上可看出, 纯铁和共晶白 口铸铁的铸造性能最好, 它们的凝固温度区间最小, 因而流动性 好, 分散缩孔少, 可以获得致密的铸件, 所以铸铁在生产上总是 选在共晶成分附近。在铸钢生产中, 碳质量分数在0.15%-0.6%之 间, 因为这个范围内钢的结晶温度区间较小, 铸造性能较好。 3. 在热锻、热轧工艺方面的应用
钢处于奥氏体状态时强度较低, 塑性较好, 因此锻造或轧制 选在单相奥氏体区进行。一般始锻、始轧温度控制在固相线以下 100 ℃~200 ℃范围内。一般始锻温度为1150 ℃~1250 ℃, 终 锻温度为750 ℃~850 ℃。
金属学课程-第4章 习题答案

第4章 习题4-1 分析w C =0.2%、w C =0.6%、w C =1.2%的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物和组织组成物的含量。
解:在室温下,铁碳合金的平衡相是α-Fe (碳的质量分数是0.008%)和Fe 3C (碳的质量分数是6.69%),故(1) w C =0.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为3 6.690.2%100%97.13%6.690.008%197.13% 2.87%Fe C α-=⨯=-=-= w C =0.2%的合金在室温下平衡态下的组织是α-Fe 和P ,其组织可近似看做和共析转变完时一样,在共析温度下α-Fe 碳的成分是0.0218%,P 的碳的成分为0.77%,故w C =0.2%的合金在室温时组织中P 和α的相对量分别为0.20.0218%100%23.82%0.770.0218%123.82%76.18%P α-=⨯=-=-= (2)w C =0.6%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为3 6.690.6%100%91.14%6.690.008%191.14%8.86%Fe C α-=⨯=-=-= w C =0.6%的合金在室温下平衡态下的组织是α-Fe 和P ,在室温时组织中P 和α的相对量为0.60.0218%100%77.28%0.770.0218%177.28%22.72%P α-=⨯=-=-= (3)w C =1.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为3 6.69 1.2%100%82.16%6.690.008%182.16%17.84%Fe C α-=⨯=-=-= w C =1.2%的合金在室温下平衡态下的组织是P 和Fe 3C ,在室温时组织中P 的相对量为3 6.69 1.2%100%92.74%6.690.77%192.74%7.3%P Fe C -=⨯=-=-=4-2 分析w C =3.5%、w C =4.7%的铁碳合金从液态平衡冷却至室温的平衡结晶过程,画出冷却曲线和组织变化示意图,并计算室温下的组织组成物和相组成物的含量。
铁碳合金的基本组织

由相图可知合金在固态加热和冷却过程中均有组织的变化,可以 进行热处理。并且可以正确选择加热温度。
精选完整ppt课件
7
GS:A开始析出F的转变线,加热时F全部溶入A,又称A3线。
ES:C在A中的溶解度曲线,又称Acm线。 ECF:共晶线,含C量2.11 % --6.69%的铁碳合金至此发生共
晶反应,结晶出A与Fe3C混合物---莱氏体Ld。 PSK:共析线,含C量在0.0218 % --6.69%的铁碳合金至此反
生共析反应,产生珠光体P ,又称A1线。
引言: 关于铁碳合金状态图
1、概念:表示铁碳合金在不同成分和温度下 的组织、性能以及它们之间相互关系的图形。 又称铁碳合金相图或铁碳合金平衡图。是通 过实验的方法建立起来的。 2、作用:是研制新材料,制定合金熔炼、铸 造、压力加工和热处理等工艺的重要工具。
精选完整ppt课件
2
第3章 铁碳合金
精选完整ppt课件
精选完整ppt课件
6
第3章 铁碳合金
第三节 铁碳相图的应用
1、选用材料: 由铁碳相图可知,合金中随着含碳量的不同,其组织各不相同,
从而导致其力学性能不同。因此,我们就可以根据机器零件所要求 的性能来选择不同含碳量的材料。 2、叛断切削加性能:
低碳钢中铁素体较多,塑性好,加工性不好;中碳钢中铁素体 含量比例适当,钢的硬度适当,易于加工。 3、制定热加工工艺:
3
第3章 铁碳合金
一、铁碳相图分析
1、相图的坐标
纵坐标:代表温度。
铁碳合金平衡组织实验报告

铁碳合金平衡组织实验报告一、实验目的1、识别和研究铁碳合金(碳钢和白口铸铁)在平衡状态下的显微组织。
2、分析含碳量对铁碳合金显微组织的影响,理解成分、组织与性能之间的相互关系。
二、实验原理碳钢合金的显微组织是研究钢铁材料性能的基础。
碳钢合金平衡状态的组织是指合金在极为缓慢的冷却条件下(如退火状态)所得到的组织,其相变过程均按相图进行,因此可以根据该相图来分析碳钢合金的平衡组织。
如图1所示,含碳量小于2.11%的合金为碳钢,含碳量大于2.11%的合金为白口铸铁。
所有碳钢和白口铸铁在室温下的组织均有铁素体(Fe)和渗碳体(Fe3C)这两个基本相所组成。
只是因含碳量不同,铁素体和渗碳体的相对数量及分布形态有所不同,因而呈不同的组织形态。
图1简化后的Fe-Fe3C状态图三、实验原理分析1、碳钢和白口的基本组织(1)铁素体(F) 是碳在铁中的固溶体。
铁素体为体心立方格。
具有磁性及良好的塑性,硬度较低。
用3%~4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮色的多边形晶粒。
(2)渗碳体(Fe3C)是铁与碳形成的一种化合物,含碳量为6.69%。
用3%~4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色,若用苦味酸钠溶液浸蚀,则渗碳体呈黑色而铁素体仍为白色。
式中:P和F分别为珠光体和铁素体所占面积的%。
四、实验报告要求(1)实验目的。
(2)在直径为50mm的圆内画出所观察样品的显微组织示意图(用箭头和代表符号表明各组织组成物,并注明样品成分、腐蚀剂,放大倍数)。
(3)根据所观察的组织,说明含碳量对铁碳合金的组织和性能的影响规律。
(4)根据杠杆定律计算未知样品的碳含量。
Fe—C合金的组织和性能

(3)Fe—Fe3C相图中的区
Fe—Fe3C相图中的区: ·4个单相区:L、δ、γ、α · 7个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、 γ+ Fe3C、γ+α、α+ Fe3C ·3个三相共存区:L+γ+ Fe3C(ECF线)、 L+δ+γ(HJB线)、γ+α+ Fe3C(PSK线)
4. Fe—C合金分类
A.三条水平恒温转变线
①包晶线: HJB 线( 1459℃), J 为包晶点, wc=0.09 ~ 0.53%的Fe、C合金缓冷到HJB线均发生包晶反应,即: L0.53+δ0.09→α0.17 (LB+δH→αJ) ② 共 晶 线 : ECF 水 平 线 ( 1148℃ ) , C 点 为 共 晶 点 , wc=2.11 ~ 6.69% 的 Fe 、 C 合金缓冷到 EFC 线均发生共晶反应, 即: L4.30→γ2.11+ Fe3C (LC→γE+ Fe3C) 转 变 产 物 为 γ 和 Fe3C 组 成 的 共 晶 混 合 物 称 为 莱 氏 体 (ledeburite),用Ld表示。 ③ 共 析 线 : PSK 水 平 线 ( 727℃ ) , S 点 为 共 析 点 。 凡 wc>0.0218% 的 Fe 、 C 合金冷却到 PSK 线均发生共析反应,即: γ0.77→α0.0218 + Fe3C (γS→αP+ Fe3C) 转变产物为α和Fe3C组成的机械混合物称为珠光体 (pearlite),用P表示。共析转变温度常用A1表示。
5.碳素结构钢的分类和编号
关于钢和铸铁的命名法则,国内和国际上都有强制性标准。 下面给大家介绍一下碳素结构钢的分类和牌号。 一.分类 1.根据钢的含碳量分类 (1)低碳钢 Wc≤0.25% (2)中碳钢 Wc=0.25~0.60% (3)高碳钢 Wc≥0.60% 2.根据钢的质量(钢中含杂质S、P的量)分类 (1) 普通碳素钢 Ws≤0.055% Wp≤0.045% (2) 优质碳素钢 Ws≤0.040% Wp≤0.040% (3) 高级优质碳素钢 Ws≤0.030% Wp≤0.030% 3.根据钢的用途分类 (1)碳素结构钢 (2)碳素工具钢
铁碳合金的基本组织

铁碳合金的基本组织1、铁素体(F或α)铁素体是碳溶于α-Fe中所形成的间隙固溶体,体心立方晶格。
碳在α-Fe中的溶解度专门小,727℃时0.0218%;室温时为0.0008%,几乎为零。
其强度和硬度专门低,塑性、韧性好。
显微组织是明亮的多边形晶粒。
2、奥氏体(A或γ)奥氏体是碳溶于γ-Fe中所形成的间隙固溶体,面心立方晶格。
碳在γ-Fe中的溶碳量较高,1148℃时2.11%;1148℃时为0.77%。
其强度和硬度比铁素体高,塑性、韧性也好。
其晶粒呈多边形,晶界较铁素体平直。
3、碳体(Fe3C)渗碳体是铁与碳形成的金属化合物,碳含量是6.69%,具有复杂的晶体结构。
其硬度专门高,塑性和韧性专门差,δ、A k接近于零,脆性专门大。
4、珠光体(P)奥珠光体是由铁素体和渗碳体组成的机械混合物。
是奥氏体冷却时,在727℃恒温下发生共析转变的产物。
显微组织是铁素体与渗碳体片层状交替排列。
性能介于铁素体和渗碳体之间,强度较高,硬度适中,有一定的塑性5、莱氏体(Ld或Ld')莱氏体是由奥氏体和渗碳体组成的机械混合物。
是在1148℃恒温下发生共晶转变的产物,平均碳含量4.3%。
铁碳合金状态图分析目前应用的铁碳合金状态图是含碳量为0~6.69%的铁碳合金部分(即Fe-Fe3C部分),因为含碳量大于6.69%的铁碳合金在工业上无使用价值。
右图为简化后的Fe-Fe3C状态图。
铁碳合金状态图分析1、要紧特性点1)A点纯铁的熔点,温度1538℃,Wc=02)G点纯铁的同素异晶转变点,冷却到912℃时,发生γ-F→α-Fe3)Q点600℃时,碳在α-Fe中的溶解度,Wc=0.0057%4)D点渗碳体熔点,温度1227℃,Wc=6.69%5)C点共晶点,温度1148℃,Wc=4.3%成分为C的液相,冷却到此温度时,发生共晶反应:Lc→Ld(AE+Fe3C)6)E点碳在γ-Fe中的最大溶解度,温度1148℃,Wc=2.11%7)S点共析点,温度727℃,Wc=0.77%成分为S点的奥氏体,冷却到此温度时,发生共析反应:As→P (Fp+Fe3C)8)P点碳在α-Fe中的最大溶解度,温度727℃,Wc=0.0218% 2、特性线1)ACD线液相线,由各成分合金开始结晶温度点所组成的线,铁碳合金在此线以上处于液相。
铁 碳 合 金

铁碳合金
铁碳合金是以铁和碳为基本组元的合金,它是现代机械工业中应 用最广泛的金属材料。要合理地选择铁碳合金,就必须熟悉铁碳合 金的成分、组织和性能之间的关系。
1.1 铁碳合金的基本组织
铁碳合金中含有质量分数为0.10%~0.20%的杂质,称之为 工业纯铁。工业纯铁虽然塑性、导磁性良好,但强度较低,不适 宜制作机械零件。为了提高纯铁的强度、硬度,常在纯铁中加入 少量碳元素,可形成等五种基本组织。
谢谢观看!
K
727
P
727
6.69 0.0218
Fe3C的成分点 碳在α-Fe中的最大溶解度
S
727
0.77
共析点
Q 600(室温) 0.0057(0.0008) 600℃(或室温)时碳在α-Fe中的溶解度
铁碳合金分类
通常根据铁碳合金含碳量和室温组织的特点,由Fe—Fe3C相图中的P 点和E点将铁碳合金分为工业纯铁、钢及白口铸铁三类。
铁素体、奥氏体、渗碳体、珠光体、莱氏体
1.2 铁碳合金相图
表2-1 Fe—Fe3C相图中的特性点
符号 温度(℃) 含碳量(%)
说明
A
1538
0
纯铁的熔点
C
1148
4ห้องสมุดไป่ตู้30
共晶点
D
1227
6.69
渗碳体的熔点
E
1148
2.11
碳在γ-Fe中的最大溶解度
F
1148
6.69
渗碳体的成分点
G
912
0
Α-Fe与γ-Fe同素异构转变点
工业纯铁 是指P点以左的铁碳合金(含碳量小于0.0218%),室温组织为铁素 体+少量三次渗碳体。工业纯铁的性能特点是塑性韧性好,硬度和强度较 低。 钢 是指高温固态组织为单相固溶体的一类铁碳合金,相图中P点成分与E 点成分之间的铁碳合金(含碳量0.0218%~2.11%),具有良好的塑性, 适于锻造、轧制等压力加工,根据室温组织的不同又分为亚共析钢、共 析钢和过共析钢三种。 白口铸铁 是指E点成分以右(含碳量2.11%~6.69%)的铁碳合金。白口铸铁有 较低的熔点,流动性好,便于铸造,脆性大。根据室温组织的不同,白 口铸铁又分为亚共晶白口铸铁、共晶白口铸铁和过共晶白口铸铁三类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相图分析——典型合金结晶——铁碳合金成分与性能关系、应用
三、铁碳合金成分、组织、性能之间的关系
从对Fe-Fe3C相图的分析可知,在一定的温度下,合金的成分决定了组织,而组织又决定了合金的性能。
任何铁碳合金室温组织都是由铁素体和渗碳体两相组成,但成分(含碳量)不同,组织中两个相的相对数量,相对分布及形态也不同,因而不同成分的铁碳合金具有不同的组织和性能。
1、碳的质量分数对组织的影响
铁碳合金的室温组织随碳的质量分数的增加,组织的变化规律如下:
F+P→P→P+Fe3CⅡ→P+Fe3CⅡ+Ldˊ→Ldˊ+Fe3CⅠ
从以上变化可以看出,铁碳合金室温组织随碳的质量分数的增加,铁素体的相对量减少,而渗碳体的相对量增加。
具体来说,对钢部分而言,随着含碳量的增加,亚共析钢中的铁素体量随着减少,过共析钢中的二次渗碳体量随着增加;对铸铁部分而言,随着碳的质量分数的增加,亚共晶白口铸铁中的珠光体和二次渗碳体量减少;过共晶白口铸铁中一次渗碳体和共晶渗碳体量随着增加。
铁碳合金室温组织的相组成相对量、组织组成物相对量如图所示。
2、碳的质量分数对力学性能的影响
铁碳合金的力学性能决定于铁素体与渗碳体的相对量及它们的相对分布状况。
当碳的质量分数Wc<%时,随碳的质量分数的增加,钢的强度,硬度呈直线上升,而塑性、韧性随之降低。
原因是钢组织中渗碳体的相对量增多,铁素体的相对量减少;当碳的质量分数Wc>%时,随碳的质量分数的继续增加,硬度仍然增加,而强度开始明显下降,塑性、韧性继续降低。
原因是钢中的二次渗碳体沿晶界析出并形成完整的网络。
导致了钢脆性的增加。
为保证钢有足够的强度和一定的塑性及韧性,机械工程中使用的钢其碳质量分数一般不大于%。
Wc>%的白口铸铁,由于组织中渗碳体量太多,性能硬而脆,难以切削加工,在机械工程中很少直接应用。
五、Fe-Fe3C相图的应用
1、在钢铁材料选材方面的应用
Fe-Fe3C相图揭示了铁碳合金的组织随成分变化的规律,由此可以判断出钢铁材料的力学性能,以便合理地选择钢铁材料。
例如:用于建筑结构的各种型钢需要塑性、韧性好的材料,应选用Wc<%的钢材。
机械工程中的各种零部件需要兼有较好强度、塑性和韧性的材料,应选用Wc=%~%范围内的钢材。
而各种工具却需要硬度高,耐磨性好的材料,则多选用Wc=%~%范围内的高碳钢。
2、在制订热加工工艺方面的应用
(1)在铸造方面的应用从Fe-Fe3C相图可以看出,共晶成分的铁碳合金熔点最低,结晶温度范围最小,具有良好的铸造性能。
因此,铸造生产中多选用接近共晶成分的铸铁。
根据Fe-Fe3C相图可以确定铸造的浇注温度,一般在液相线以上50~100℃,铸钢(Wc=%~%)的熔化温度和浇注温度要高得多,其铸造性能较差,铸造工艺比铸铁的铸造工艺复杂。
(2)在锻压加工方面的应用由Fe-Fe3C相图可知钢在高温时处于奥氏体状态,而奥氏体的强度较低,塑性好,有利于进行塑性变形。
因此,钢材的锻造、轧制(热轧)等均选择在单相奥氏体的适当温度范围内进行。
(3)在热处理方面的应用 Fe-Fe3C相图对于制订热处理工艺有着特别重要的意义。
热处理常用工艺如退火、正火、淬火的加热温度都是根据Fe-Fe3C相图确定的。
这将在下一章中详细阐述。
上一页(典型合金结晶)。