预应力管道摩阻试验方法
市政桥梁预应力管道摩阻系数测试研究

测试 位置
钢束 编号
束数
规格
每束投影长度 管道总弯
L( m)
起角 / rad
F2 2#块
T2
1 15S15. 2 1 15S15. 2
28. 0 28. 0
0. 6978 0. 8722
张拉控制 应力( Mpa)
1395. 0
3 测试数据计算
3. 1 摩阻参数计算理论
根据试验原理计算公式( 1) ,在公式两边以预应力钢铰线的
件,检测时可实时显示各项检测数据和曲线,并将这些数据存储
并打印输出,通过串口通讯可将测量数据上传至上位机。可更 参考文献
加方便的编写检测速报及成孔质量检测报告,使资料的储存及 [1]陈嵘. 高速铁路车辆 - 道岔 - 桥梁耦合振动理论及应用研究[D]. 西
处理更加方便快捷,可较大幅度的提高工作效率和工作质量。 通过对检测数 据 进 行 分 析,确 定 成 孔 后 的 孔 径、垂 直 度,要
15#、17#、19#节段设计拉索。该桥主要技术标准: 道路等级为城
市主干道,设计汽车荷载等级为城为 A 级,每车道宽为 3. 5m 的
双向四车道,人行道宽 3. 0m( 单侧) ,设计时速 60Km / h。
梁体内预 应 力 筋 采 用 高 强 度 低 松 弛 钢 绞 线,强 度 标 准 为
1860MPa,锚 下 张 拉 控 制 应 力 均 为 0. 75 × 1860MPa,弹 性 模 量 1. 95 × 105 MPa。预应力钢束采用金属波纹管程成孔,波纹管直
好监控,控制孔内水头高度,不要使压力过大。
整,最快钻孔速度不超过 10m / h,松散地层控制在 3m / h; 因宝峨
7 钻机切换
BG40 钻桅倾角幅度小、性能比较稳定,钻孔施工时先采用宝峨
后张预应力孔道摩阻检测方案

后张预应力孔道摩阻检测方案x x市建设工程质量第三检测所x x一 .检测依据1. 中华人民共和国行业标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTG D62-2004。
2. 中华人民共和国行业标准《公路桥涵施工技术规范》JTJ041-2000。
二 .检测内容张拉过程中钢绞线与孔道摩阻数值的测试。
三.现场准备工作1、根据现场实际情况配备适当的张拉设备及专业操作人员。
2、钢绞线的预留:两端应考虑传感器的长度,计算伸长值必要时两端各配备两台千斤顶确保主动端一次张拉到控制力值。
3、若两端间隔距离较远则需配备两台对讲机随时进行沟通。
4、搭设牢固可靠的脚手架或操作平台以及悬挂传感器、千斤顶所需的支架,便于操作人员进行传感器以及千斤顶的安装及定位工作。
5、构件端头及钢绞线的清理。
6、在被测钢绞线所指向的延长线方向应设置防护挡板。
四 .检测方法后张预应力孔道摩阻测试系统由负荷测量仪、力传感器(两个)以及数据传输线组成。
在预应力筋的两端各安放一只力传感器和若干千斤顶,测试时用负荷测量仪读出两端力传感器的张拉力,测试为两端各张拉到控制力一次,取二次平均值计算摩阻系数。
工具锚千斤顶传感器垫板垫板固定锚板波纹管图4仪器设备安装示意图五 .抽样原则1、依据设计要求或由监理方指定,确定所需测试的孔道位置及数量。
2、若设计无要求时,建议依据设计张拉力、孔道长度以及孔道的累计转角之和的不同,对典型孔道进行抽测。
六.注意事项1.张拉测试之前工作锚、夹片、限位板正确安装,应保障传感器、千斤顶与锚垫板在一条中心线上,确保张拉时各钢绞线受力均匀。
2.在测试过程中,在场的所有人员应避开被测钢绞线所指向的延长线方向,以免防发生意外。
3.张拉区域标示明显的安全标志,禁止非操作人员进入。
张拉的两端必须设置挡板。
4.测试过程中应随时监测两端传感器以及油压表力值的变化和现场状况,发现异常应立即停止测试,找出问题原因并予以解决后方可继续测试。
铁路桥梁预应力管道摩阻试验方法及控制

3种简化计算方法中“综合法”计算 较为合理。“综合法”计算空间包角的常 用简化计算公式以下有2种:
(1)
2 Vi
n
2 Hi
i 1
(2)
arctg
i 1
n
tg tg
2 Vi Hi
2
采用 公式(1)和(2)计算空间包角时的相对误 差很小,实际工程计算时采用公式(1)或(2)均可。
锚口+喇叭口摩阻测试方法 我国《铁路桥涵钢筋混凝土和预应力混 凝土结构设计规范》中明确规定:由于预应 力筋与锚圈口之间的摩擦及预应力筋在锚下 垫板喇叭口处因弯折产生摩擦而引起的应力 损失应根据试验确定 。
试验采用一端张拉,试验张拉控制力 为预应力钢绞线的 0.8 f pk Ap ( Ap 为钢 绞线的总面积)。
4
预应力管道成型方式
后张法施工的预应力梁管道成型方式 主要有3种:橡胶管抽芯成型、预埋金属 波纹管和预埋铁皮套管。 因梁体结构形式和生产工艺的不同, 采用的预应力管道成型方式也不同。
预制梁的预应力管道主要是采用橡胶 管抽芯成型。橡胶抽拔棒常见的定位方式 有以下3种:
(1)井字形 (2)圆环形 (3)∩形
k
0.0015 0.0015 0.0030 0.0015 0.0010
0.55 0.25 / / 0.30
k
0.0014 0.0015 / / 0.0010
橡胶管抽芯成型 的管道 金属波纹管 铁皮套管 塑料波纹管 钢 管
6
测试数据统计和分析
近5年时间内,铁科院对37条客 运专线铁路中172个梁场的622孔32m 、24m简支箱梁和34条客货共线铁路 中60个梁场的98片32m、24m简支T梁 进行了预应力管道摩阻测试,并对测 试结果进行了分类统计 。
预应力数控张拉工程锚口摩阻损失测试、摩阻损失试验、锚固回缩量测试

附录六 锚口摩阻损失测试1 试验步骤和方法(1)根据装置布置图2在已浇好的梁段上安装数控千斤顶、锚具(注:不安装工作夹片)。
固定端千斤顶的缸体应预先进油伸长50~100mm ,确保可测试出固定端压力,并在测试完成后,方便张拉和锚固系统的拆除。
(2)张拉设备开机,输入张拉力目标值,并设定分级,分两级,20%和100%并设定持荷时间t (1min~5min )。
(3)两端同时进油张拉至20%级数,固定端数控千斤顶关闭进出口油管,张拉端数控千斤顶继续进油张拉至张拉力目标值,并持荷到设定时间,采集张拉端数控千斤顶持荷结束时力值读数,同时采集固定端数控千斤顶力值读数;持荷结束后,张拉端数控千斤顶和固定端数控千斤顶同时回油至零。
(4)重复步骤(1)~(3),共进行三次张拉测试,取三次张拉试验的平均值为该锚具的锚口摩阻损失率。
(5)更换锚具,重复步骤(1)~(4),得出第二个锚具的锚口摩阻损失率;取两个锚具的平均值为试验结果。
图2 锚口摩阻损失测试装置图2 数据处理方法(1)第一个锚具三次试验主动端数控千斤顶力值数据分别为,,,固定端数控千斤顶的力值数据分别为,,。
(2)第二个锚具三次试验主动端数控千斤顶力值10s 数据平均值分别为'11P ,'12P ,'13P ,固定端数控千斤顶的力值10s 数据平均值分别为'21P ,'22P ,'23P 。
'''112111'11100%P P P δ−=⨯ '''122212'12100%P P P δ−=⨯ '''132313'13100%P P P δ−=⨯11P 12P 13P 21P 22P 23P 11211111100%P P P δ−=⨯12221212100%P P P δ−=⨯132********%P P P δ−=⨯11121313δδδδ++=''''11121313δδδδ++=则锚口摩阻损失'1112δδδ+=3 参数设定输入参数:(1)梁编号,预应力筋编号;(2)张拉目标值,张拉分级及持荷时间t (1min~5min ); 采集参数:(1)第一个锚具三次试验主动端数控千斤顶力值数据分别为,,,固定端数控千斤顶的力值数据分别为,,;(2)第二个锚具三次试验主动端数控千斤顶力值数据分别为'11P ,'12P ,'13P ,固定端数控千斤顶的力值数据分别为'21P ,'22P ,'23P 。
32m箱梁预应力孔道管道摩阻及张拉力的调整试验

32m箱梁预应力孔道管道摩阻及张拉力的调整试验摘要:兰新第二双线32m铁路简支箱梁采用后张法预应力体系,根据在实梁上进行5种预应力筋束的孔道摩阻试验,测试孔道摩阻系数μ和偏差系数k,以检查预应力孔道的成孔情况,并根据测量数据对张拉力进行调整,保证实梁的有效预应力。
关键字:预应力摩阻系数偏差系数1.引言:预应力张拉是后张法预应力混凝土梁的一道极为重要的工序,如何准确将设计张拉力施加于梁体直接影响梁的耐久性、安全性、刚度及矢拱高度。
后张梁管道摩阻是引起预应力损失的五个主要因素(混凝土收缩徐变、钢筋松弛、锚头变形及钢筋回缩、摩阻、混凝土弹性压缩)之一。
由于施工过程中诸多不确定因素及施工水平的差异,张拉前应对管道摩阻现场测试,并根据测试结果对张拉力及管道进行调整,将设计张拉力准确施加至梁体。
兰新第二双线32m箱粱为后张法预应力混凝土结构,预应力束沿梁长通长布置,有腹板束和底板束两种。
共有孔道27孔,其中5孔采用9—7φ15.2钢绞线,22孔采用10—7φ15.2钢绞线。
钢绞线强度等级为1970 mpa。
预应力管道采用橡胶抽拔棒抽拔成型,设计管道局部偏差影响系数k=0.0015、摩擦系数μ=O.55。
2 .摩阻测试的基本原理张拉时,预应力钢绞线与孔道壁接触面间产生摩擦力引起预应力损失,称为摩阻损失。
摩阻损失主要由于孔道的弯曲和孔道的偏差两部分影响所产生,从理论上说直线孔道无摩擦损失,但由于施工中孔道位置的偏差及孔道不光滑等原因,在钢绞线张拉时实际上仍会与孔道壁接触而引起摩阻损失,称此项为孔道偏差影响(长度影响)摩擦损失,其值较小,反映在系数k上;对于弯道部分除了孔道偏差影响之外,还有因孔道转弯,预应力钢绞线对弯道内壁的径向压力所引起的摩擦损失,一般称这部分影响为弯道影响摩擦损失,其值较大,并随钢筋弯曲角度的增加而增加,反应在系数μ上。
本次管道摩阻试验选取编号为N11、N9、N7、N3、N1b五个孔道。
试验孔道的位置及管道相关参数见表1。
预应力连续梁桥管道摩阻试验研究

预应力连续梁桥管道摩阻试验研究文章编号:1009 6825(2010)18 0336 03预应力连续梁桥管道摩阻试验研究收稿日期:2010 02 21作者简介:王贺庆(1959 ),男,工程师,安徽省公路工程监理有限责任公司,安徽合肥 230009金晶(1986 ),女,合肥工业大学土木与水利工程学院硕士研究生,安徽合肥 230009刘勇志(1984 ),男,合肥工业大学土木与水利工程学院硕士研究生,安徽合肥 230009王贺庆金晶刘勇志摘要:在研究预应力构件应力损失机理的基础上,结合试验依据,对某预应力连续梁桥管道摩阻试验作了探讨,并对试验结果进行了分析,以期为管道预应力损失的计算提供正确的依据。
关键词:连续梁桥,预应力损失,摩阻试验,误差分析中图分类号:U 442.39 文献标识码:A0 引言预应力结构中预应力筋的拉应力是一个不断变化的值。
在预应力结构的施工及使用过程中,由于张拉工艺、材料特性以及环境条件的影响等原因,预应力筋中的拉应力是不断降低的。
这种预应力筋应力的降低,即为预应力损失。
满足设计需要的预应力筋中的拉应力,应是张拉控制应力扣除预应力损失后的有效预应力。
因此,一方面需要预先确定预应力筋张拉时的初始应力(一般称为张拉控制应力con ),另一方面需要准确估算预应力损失值[1]。
规范[2]规定,后张法预应力混凝土构件预应力损失包括5项,其中预应力钢筋与管道之间的摩阻损失 l 1所占比例较大[3]。
1 原理依据1.1 应力损失机理预应力钢筋与管道之间的摩阻损失 l 1出现在后张法预应力混凝土构件中。
在张拉预应力筋时,由于预留管道的位置可能不顺直、管道壁粗糙等原因,使预应力筋与管道壁之间产生摩擦,故通过千斤顶对预应力筋在控制应力下进行张拉而产生的每个截面应力逐渐减小,离张拉端越远,应力减小的越快。
而任何两个截面之间的应力差,在短时间内,主要就是由 l 1所造成的,可以近似的看成这两个截面之间的预应力管道摩阻损失值[4]。
某桥预应力孔道摩阻试验方案研究

的试验方案。主要过程为:首先标定千斤顶及配套电动油泵仪 表,提高读数精度。试验时在预应力束张拉端及锚固端安装千 斤顶。然后启动张拉端千斤顶,根据试验工况分级加载,记录 试验数据,再进行卸载,调换张拉端及锚固端位置,重新进行 分级张拉,记录试验数据。试验设备布置,详见图1。先进行顶 板束(3T41)孔道摩阻力测试,按θ=θ1时求得k值;再进行与 顶板束(3T41)孔道同样工艺及施工条件带有曲线的有竖弯束 (3T14)孔道的摩阻力试验[3]。
4 实施方案、试验方法、数据分析 4.1 试验对象选取及测点布置 直线形预应力索选取为下游侧3T41(3T41 钢束规格:
21φj15.24,单束长13350.4cm,张拉伸长量:开始端451.1mm, 结束端476.8mm,张拉力:4101.3KN)。竖弯形预应力选取为 下游侧3T14(3T14 钢束规格:21φj15.24,单束长13364.8cm, 张拉伸长量:开始端639.9mm,结束端222.8mm,张拉力: 4101.3KN)。被测预应力束长度按设计下料长度选取。
图1 管道摩阻试验方法 4.2 试验方法 预应力束的两端,以下简述为A端和B端。 此试验拟做以下工况测试: (1)锚固B端,张拉A端; (2)锚固A端,张拉B端; 为保证测试数据的可靠性,以上每个工况至少重复一次。 每个测试工况,按以下步骤进行: (1)预应力束初张拉至10%δk,持荷3~5min,读取、 记录电动油泵仪表数据,测试、记录钢绞线伸长量; (2)张拉至30%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量; (3)张拉至50%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量; (4)张拉至70%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量; (5)张拉至80%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量。 要求:张拉设备完好并经过检校,能稳定保持张拉力。 4.3 试验结果及数据分析 后张法预应力混凝土结构中管道摩擦阻力估算的准确程 度直接影响结构的使用安全,而施工质量的优劣往往会影响 管道摩阻的大小。为确保桥梁质量,于2月20日至22日对3号墩 3T41、3T14两束平弯束和竖弯束分别进行了管道摩阻测试,预 应力钢绞线束由21φj15.24预应力钢绞线组成。 试验时采用的张拉设备与实际施工时相同,试验前张拉设 备须经过校正。由于管道长度达132m左右,应该采用两端张拉
预应力束管道摩阻试验研究及实例分析

动端的荷载后 , 通过线性回归确定管道被动端和主 动端荷载的比值 ,然后利用二元线性回归的方法确 定预应力管道的 k . ,具体计算方法如下: 、t t 值 l f 1 - b ]…………… … ・() =f [ 一e ( ) c o 1
夹角之和 ( d ; 1) a 管道每米局部偏差对摩擦 的影响系数 ;
松弛、锚头变形及预应力筋 回缩 、摩阻、混凝土弹 性压缩)之一。由于施工过程中诸多不确定的因素
器 、设备可见该 图。试验时采用一端张拉 ,也就是 说 ,仅主动端用千斤顶进行张拉 ,被动端不张拉 , 并在主动端和被动端各设一台压力传感器 ,以精确 测出张拉过程中两端的应力。在此基础上,可计算 出预应力损失大小 ,进而再反算 出孔道摩 阻系数。 主动端 、被动端各设有一台千斤顶。试验具体实施 时,需要注意 以下几点 :① 张拉 前应标定好试验 用的千斤顶和高压油泵 , 并在试验中配套使用 ,以 校核传感器读数 ;②分 5 级加载预应力 , 试验时根 据千斤顶油表读数控制张拉荷载级 ,并校核数据 , 以确保试验数据 的可靠性 ;③ 安装传感器与千斤 顶时 , 应确保两者中线位置与锚垫板保持一致 ,使 之张拉时与钢绞线脱离接触。图 2 为现场试验仪器 安装 照片 图。
收稿 日期 :20 —0 —0 05 9 3
作者简介:范厚彬 (9 3 。男 ,1 i 隆昌人 ,高级工程师 ,工学博士 . 17 一) 3l tl
维普资讯
2
浙江交通职业技术学院学报
由于测试存在误差 ,上式右边不会为零 ,假设
则利 用 最 小 二 乘 法 原 理 ,同 时 令 口=