沪科版七年级数学上第一单元测试题
沪科版七年级上数学《第1章有理数》单元测试(含答案)

《有理数》单元测试一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1062.﹣2的倒数是()A.2B.﹣3C.﹣ D.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣84.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.36.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣17.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.18.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和19.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.710.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.211.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为.14.计算﹣2+3×4的结果为15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.参考答案与试题解析一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106【解答】解:316 000 000用科学记数法可表示为3.16×108,故选:C.2.﹣2的倒数是()A.2B.﹣3C.﹣ D.【解答】解:﹣2的倒数是﹣.故选:C.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣8【解答】解:(﹣16)÷=(﹣16)×2=﹣32,故选:B.4.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个D.4个【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.3【解答】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选:B.6.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣1【解答】解:A、﹣(﹣3+a)=3﹣a,a≤3时,原式不是负数,故A错误;B、﹣a,当a≤0时,原式不是负数,故B错误;C、∵﹣|a+1|≤0,∴当a≠﹣1时,原式才符合负数的要求,故C错误;D、∵﹣|a|≤0,∴﹣|a|﹣1≤﹣1<0,所以原式一定是负数,故D正确.故选:D.7.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.1【解答】解:设下面中间的数为x,如图所示:p+6+8=7+6+5,解得P=4.故选:C.8.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和1【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C 错误,故选:C.9.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.7【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,a c<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述,的可能值的个数为4.故选:A.10.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.2【解答】∵x△(1△3)=2,x△(1×2﹣3)=2,x△(﹣1)=2,2x﹣(﹣1)=2,2x+1=2,∴x=.11.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选:D.12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9【解答】解:当n是偶数时,原式=1×(﹣1+1+3+6)=9,当n是奇数时,原式=﹣1×(﹣1+1﹣3﹣6)=9.故选:A.二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为﹣2.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣2=a(a+b)﹣2=0﹣2=﹣2,故答案为:﹣2.14.计算﹣2+3×4的结果为10【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为465【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故答案为:465.三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?【解答】解:(1)由题意得,b=1,c﹣5=0,a+b=0,则a=﹣1,b=1,c=5;(2)设x秒后点A与点C距离为12个点位长度,则x+5x=12﹣6,解得,x=1,答:1秒后点A与点C距离为12个点位长度.18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)【解答】解:(1)原式=﹣6+3+6=3;(2)原式=﹣×(﹣)×=1;(3)原式===2.2.21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)m∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.故答案为:(5,);不是;(5,1.5).22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【解答】解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D 的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.【解答】解:(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.。
沪科版七年级数学上册第一章测试题及答案

沪科版七年级数学上册第一章测试题及答案第1章测试卷一、选择题(每题3分,共30分)1.冰箱保鲜室的温度为零上5 ℃,记作+5 ℃,冷冻室的温度是零下17 ℃,记作() A.17 ℃ B.-17 ℃ C.12 ℃ D.-12 ℃2.-12 022的相反数是()A.12 022B.-12 022C.2 022 D.-2 0223.在-5,-4,0,3这四个数中,最小的数是()A.-5 B.-4 C.0 D.34.如图,在数轴上点A表示的数可能是()A.-1.5 B.1.5 C.-2.4 D.2.45.《铁路“十三五”发展规划》明确提出,到2020年,全国铁路营运里程达到15万千米.15万用科学记数法表示为()A.15×104B.1.5×104C.1.5×105D.1.5×1066.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题的数量如下表:则2月10日该中学九年级七科老师在线答疑问题数量的平均数是()A.22个B.24个C.25个D.26个7.若|a|<2,且a是整数,那么a为()A.0,1,2 B.-2,-1,0,1,2 C.-1,0,1 D.-2,-1,08.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3C .(-3)2÷(-2)2=32 D .0-7-2×5=-179.下列说法正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数10.有理数a ,b 在数轴上的对应点的位置如图所示.则下列式子:①b <0<a ;②|b |<|a |;③ab >0;④a -b >a +b .其中正确的是( ) A .①②B .①④C .②③D .③④二、填空题(每题3分,共18分)11.下列各数:-0.8,-213,-(-8.2),+(-2.7),-⎝ ⎛⎭⎪⎫+17,-1 002,其中负数有________个.12.2.295精确到百分位是________.13.若x ,y 为有理数,且(5-x )4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 021的值为________.14.若|m -n |=n -m ,且|m |=4,|n |=3,则(m +n )2的值为__________.15.有5袋大米,以每袋50 kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下(单位:kg):+0.5,-0.2,0,-0.3,+0.3,则这5袋大米的总质量为________kg.16.已知一列数:1,-2,3,-4,5,-6,7,…,将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第5个数是________.三、解答题(17题12分,18,19题每题7分,21题10分,其余每题8分,共52分) 17.计算:(能简算的要简算)(1)(-0.5)-⎝ ⎛⎭⎪⎫-314+2.75-⎝ ⎛⎭⎪⎫+712; (2)4×(-2)3-6÷(-3);(3)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24); (4)(-2)2-|-7|-3÷⎝ ⎛⎭⎪⎫-14+(-3)3×⎝ ⎛⎭⎪⎫-132.18.对于有理数a ,b ,定义运算“⊗”;a ⊗b =ab -a -b -2.(1)计算(-2)⊗3的值;(2)比较4⊗(-2)与(-2)⊗4的大小.19.在1,-2,3,-4,-5中任取两个数相乘,最大的积是a ,最小的积是b .(1)求ab 的值;(2)若|x-a|+|y+b|=0,求(-x-y)·y的值.20.已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b-1)2=0.现将点A,B之间的距离记作|AB|,定义|AB|=|a-b|.(1)|AB|=________;(2)设点P在数轴上对应的数是x,当|PA|-|PB|=2时,求x的值.21.某日空军航空开放活动在大房身机场举行,某特技飞行队做特技表演时,其中一架飞机起飞0.5 km后的高度变化如下表:(1)完成上表;(2)完成上述四个表演动作后,飞机离地面的高度是多少千米?(3)如果飞机平均上升1 km需消耗5 L燃油,平均下降1 km需消耗3 L燃油,那么这架飞机在这四个动作表演过程中,一共消耗了多少升燃油?22.观察下列各式:-1×12=-1+12; -12×13=-12+13; -13×14=-13+14; …(1)你发现的规律是____________________________(用含n 的式子表示); (2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 021×12 022.答案一、1.B 2.A 3.A 4.C 5.C 6.C 7.C 8.D 9.C 10.B二、11.5 12.2.30 13.-1 14.1或49 15.250.316.-50 点拨:偶数为负数,奇数为正数.第1~9行共有45个数,则第10行从左边数第5个数是第50个数,故该数为-50.三、17.解:(1)原式=[(-0.5)-7.5]+(3.25+2.75)=-8+6=-2. (2)原式=4×(-8)+2=-32+2=-30.(3)原式=-1+⎝ ⎛⎭⎪⎫-32×(-24)+⎝ ⎛⎭⎪⎫-38×(-24)+712×(-24)=-1+36+9-14=30. (4)原式=4-7-3×(-4)+(-27)×19=4-7+12-3=6.18.解:(1)(-2)⊗3=(-2)×3-(-2)-3-2=-6+2-3-2=-9. (2)因为4⊗(-2)=4×(-2)-4-(-2)-2=-8-4+2-2=-12, (-2)⊗4=(-2)×4-(-2)-4-2= -8+2-4-2=-12, 所以4⊗(-2)=(-2)⊗4.19.解:(1)由题意知a =(-4)×(-5)=20, b =3×(-5)=-15, 所以ab =20×(-15)=-300. (2)由题意知|x -20|+|y -15|=0, 所以x =20,y =15.当x =20,y =15时,原式=(-20-15)×15=-525. 20.解:(1)5(2)当点P 在点A 左侧时,|PA |-|PB |=-(|PB |-|PA |)=-|AB |=-5≠2; 当点P 在点B 右侧时,|PA |-|PB |=|AB |=5≠2;当点P 在A ,B 之间时,|PA |=|x -(-4)|=x +4,|PB |=|x -1|=1-x . 因为|PA |-|PB |=2, 所以x +4-(1-x )=2. 解得x =-12,即x 的值为-12.21.解:(1)-1.2 km ;+1.1 km ;-1.8 km (2)0.5+2.5-1.2+1.1-1.8=1.1(km). 答:飞机离地面的高度是1.1 km. (3)2.5×5+1.2×3+1.1×5+1.8×3=27(L). 答:一共消耗了27 L 燃油. 22.解:(1)-1n ×1n +1=-1n +1n +1(2)原式=-1+12-12+13-13+14-…-12 021+12 022=-1+12 022=-2 0212 022.。
沪科版七年级数学上册单元测试题全套(含答案)

7
(1)正数:{
};
(2)自然数:{
};
(3)整数:{
};
(4)分数:{
}.
16.(8 分)画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来.
-
-41 2
,-2,0,(-1)2,|-3|,-31.
3
17.(8 分)计算下列各题: -1
(1)-9+12-2+25; (2)(-5)×(-7)-5÷ 6 .
A.精确到十分位 B.精确到个位
C.精确到百位 D.精确到千位
8.如果|a-1|+(b+2)2=0,则 a-b 的值是( )
A.-1 B.1 C.-3 D.3
9.点 A,B 在数轴上的位置如图所示,其对应的数分别是 a 和 b,对于以下结论:甲:b-a<0;乙: a+b>0;丙:|a|<|b|;丁:b>0.其中正确的是( )
(3)若电子蚂蚁 P 从 B 点出发,以每秒 6 个单位长度的速度向左运动,同时另一只电子蚂蚁 Q 从 A 点 出发,以每秒 4 个单位长度的速度也向左运动,设两只电子蚂蚁在数轴上的 D 点相遇,你知道 D 点对应 的数是多少吗?
23.(14 分)下面是按规律排列的一列式子:
1+-1 第 1 个式子:1- 2 ;
| |-2
3.下列有理数中:-5,-(-3)3, 7 ,0,-22,非负数有(
)
A.1 个 B.2 个 C.3 个 D.4 个
4.如图所示是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )
A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.01
5.下列各对数中,互为相反数的是( )
a A.甲与乙 B.丙与丁 C.甲与丙 D.乙与丁
沪科版七年级数学上册 第1章 有理数 单元测试题

第1章 有理数单元测试题一.选择题(每小题3分,共12小题,满分36分)1.下列各数是正数的是( )A.-23B.-4C.0D.10%2.据数据统计,今年“十·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.5亿元,用科学记数法可以表示为( )A.8.5×106B.8.5×107C.8.5×108D.0.85×109 3.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,数值最大的为( ) A .|﹣2| B .﹣(﹣2)2 C .﹣(﹣2) D .(﹣2)3 4.如图,点A 、B 在数轴上表示的数的绝对值相等,且AB=4,那么点A 表示的数是( )A .﹣3B .﹣2C .﹣1D .35.下列说法正确的是( )A.气温为0℃就是没有温度B.收入+300元说明收入增加了300元C.向东骑行-500米说明向北骑行500米D.增长率为-10%等同于增长率为10%6.在0,14,-3,+10.2,15中,整数的个数是( ) A.1个 B.2个 C.3个 D.4个7.对于-0.125的说法正确的是( )A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数8.已知a ,b ,c 为非零的实数,则的可能值的个数为( )A .4B .5C .6D .79.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 10.计算-3×2×27的结果是( ) A .127 B .-127 C .27 D .-2711.下列运算错误的是( )A .13÷(-3)=3×(-3) B .-5÷⎝⎛⎭⎫-12=-5×(-2) C .8÷(-2)=-8×12D .0÷3=0 12.当a=﹣1时,n 为整数,则﹣a n+1(a 2n+3﹣a 2n+1﹣3a n+1+6a n )的值是( )A .9B .3C .﹣3D .﹣9二.填空题(每小题4分,共4小题,满分16分)13.当a ,b 互为相反数,则代数式a 2+ab ﹣2的值为 .14.0.2529精确到百分位为:15.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,低于标准的千克数记为负数,则图中第3袋大米的实际质量是 kg.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为三.解答题(共7小题,满分48分)17.(6分)已知:a 、b 满足(a ﹣5)2+|a+b|=0,试求:2a+3b 的值18.(6分)如图,已知A ,B 两点在数轴上,点A 表示的数为﹣10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发)(1)数轴上点B 对应的数是 .(2)经过几秒,点M 、点N 分别到原点O 的距离相等?19.计算题(8分,每题2分)(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713; (3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718. 20.(7分)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x ﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x ﹣2|=5,求x 的值是多少?21.(7分)观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下: 我们称使等式a+b=ab ﹣1成立的一对有理数c ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求a 的值;22.(7分)先观察下列各式:根据以上观察,计算:2008200511071741411⨯+⋅⋅⋅+⨯+⨯+⨯。
沪科版七年级数学上第一章单元测试题

沪科版七年级数学上第一章单元测试题上海科技版七年级数学上册单元测试题班级:________ 姓名:________ 得分:________一、选择题(每题2分,共20分)1、下列有理数中,最小的数是()A.-3 B.3 C.0 D.-12.下列说法正确的个数①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 43、如图,数轴上点A表示的数的相反数为()A.2.5 B.5 C.-2.5 D.-54.下列说法正确的是()①是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④5、下列运算正确的个数为().A.1 B.2 C.3 D.46、|2|的绝对值是().A.2 B.-2 C.0 D.17、某商店出售三种品牌的面粉,袋上分别标有质量为2.5kg、3kg、3.3kg的字样,任意取出两袋,它们的质量最多相差()A.0.8 kg B.0.4 kg C.0.5 kg D.0.6 kg8.若a+b<0,ab<0,则()A a>0,b>0B a<0,b>0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值9、若|x+2|+(y-3)=0,则xy的值为()A.-8 B.-6 C.5 D.610.若ab≠0,则a/b的取值不可能是()A B1 C 2 D -2二、填空题(每题3分,共24分)11.如果把收入20元记作+20元,那么支出12元记作( -12 )。
12.比大而比小的所有整数的和为( 0 )。
13.若0<a<1,则a<a2<()。
14.多伦多与北京的时间差为–12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是()。
15、如果|x+8|=5,那么x=( -13 或 -3 )。
第1章 有理数数学七年级上册-单元测试卷-沪科版(含答案)

第1章有理数数学七年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、有理数a、b在数轴上对应位置如图所示,则a+b的值()A.大于 0B.小于0C.等于0D.大于a2、计算(﹣1)100×5的结果是()A.﹣5B.﹣500C.5D.5003、下列各数:﹣(+3),|﹣4|,+6,﹣(﹣1.5)中,负数的个数是()A.1B.2C.3D.44、下列表示数a、b的点在数轴上的位置如图所示,若a>b>0,则其中正确的是()A. B. C. D.5、若|a|+|b|=0,则a与b的大小关系是()A.a=b=0B.a与b互为相反数C.a与b异号D.a与b不相等6、2013的相反数的倒数是()A. B. C.-2013 D.20137、中国政府在3月7日,向世界卫生组织捐款2000万美元,支持世卫组织开展抗击新冠肺炎疫情国际合作.2000万用科学记数法表示为的值为()A.5B.6C.7D.88、下列说法,其中正确的个数是()①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数,;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数,A.5个B.4个C.3个D.2个9、若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数 D.这三个数是互为相反数10、如图所示为我市1月11日的天气预报图,则这天的温差是()A. B. C. D.11、下列计算错误的是( ).A.7.2-(-4.8)=2.4B.(-4.7)+3.9=-0.8C.(-6)×(-2)=12D.12、中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示()A. B.4.4×10 8 C. D.4.4×10 1013、下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④万精确到十分位;⑤的算术平方根为.A.①②③B.④⑤C.②④D.③⑤14、青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为()A. B. C. D.15、下列几组数中,不相等的是()A. 和B. 和C. 和D. 和二、填空题(共10题,共计30分)16、设,,为非零有理数,则算式可能的取值是________17、如图是计算机某计算程序,若开始输入x=-2,则最后输出的结果是________ .18、比较大小: ________2;________ ;________ (填“>”或“<”)19、下列说法:①如果两个数的和为0,则这两个数互为倒数;②绝对值是它本身的有理数是正数;③几个有理数相乘,积为负数时,负因数个数为奇数;④若a+b<0,则a<0,b<0;⑤若|a|=|b|,则a2=b2.正确的有________(填序号).20、若,则化简的结果为________.21、绝对值小于100的所有整数的和是________。
2022-2023学年沪科版七年级上册数学第1章 有理数 单元测试卷含答案

2022-2023学年沪科新版七年级上册数学《第1章有理数》单元测试卷一.选择题(共10小题,满分30分)1.在1至10,这10个正整数中,素数共有()A.2个B.3个C.4个D.5个2.互为相反数的两个数的和为()A.0B.正数C.负数D.无法确定3.2022的倒数的绝对值是()A.2022B.﹣C.﹣2022D.4.下列说法错误的是()A.0既不是正数也不是负数B.负数都比正数小C.圆锥的体积一定等于圆柱体积的三分之一D.在比例里,两个内项的积等于两个外项的积5.一种食品包装袋上标着:净含量200g(±3g),表示这种食品的标准质量是200g,这种食品净含量最少()g为合格.A.200B.198C.197D.1966.下列各数中最小的数是()A.﹣5B.﹣1C.0D.17.﹣42的相反数是()A.﹣16B.16C.8D.﹣88.如图,有一个直径为1个单位长度的圆片,把圆片上的点放在数轴上﹣1处,然后将圆片沿数轴向右滚动一周,点A到达点A'位置,则点A'表示的数是()A.﹣π+1B.C.π+1D.π﹣19.规定:把四个有理数1,2,3,﹣5分成两组,每组两个,假设1,3分为一组,2,﹣5分为另一组,则A=|1+3|+|2﹣5|.在数轴上原点右侧从左到右取两个有理数m、n,再取这两个数的相反数,对于这样的四个数,其所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n10.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±2二.填空题(共12小题,满分36分)11.﹣x 的相反数是.12.在+3.5,0,11,﹣2,﹣,﹣0.7中,负分数有个.13.用科学记数法表示﹣0.0000136,其结果是.14.“天文单位”是天文学中用来计量距离的一种单位.1天文单位用科学记数法表示为1.496×108千米,这个数也可以写成亿千米.15.五一假期,班主任孙老师带着班级17名同学,去玉渊潭公园划船,项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150若每条船划的时间均为1小时,则租船的总费用最低为元.16.若(a+3)2+|b﹣2|=0,则(a+b)2022=.17.8月24日,我市在中心城区组织实施核酸筛查,截至24日24时,共核酸采样检测10320000人,将10320000用科学记数法表示为.18.计算(﹣2)×4的结果为.19.计算:﹣3﹣(﹣8)=.20.用“>”“<”填空.(1)﹣0.02 1;(2)﹣()﹣|﹣|.21.|x﹣2|+9有最小值为.22.如果实数x,y满足方程组,那么(2x﹣y)2022=.三.解答题(共7小题,满分84分)23.在数轴上表示下列各数:3.5,﹣3.5,0,,﹣1.6,﹣,﹣4,2.5,并用“<”把这些数连接起来.24.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(3)1×﹣(﹣)×2+(﹣)÷1;(4)(﹣﹣+)×(﹣24);(5)﹣22÷﹣[22﹣(1﹣×)]×12;(6)﹣81÷2×|﹣|﹣(﹣3)3÷27.25.一只昆虫从原点出发在一条直线上左右来回爬行,假定向右爬行的路程记作正,向左爬行的路程记作负,爬过的各段路程依次为(单位:cm):+2,﹣4,+5,﹣2.5,﹣5,+4.5,这只昆虫最后是否回到了原来的出发点?26.神舟十三号飞船在太空中绕地球飞行,飞行时离地面高度约400千米,每秒钟约飞行7.9千米,求飞船绕地球飞行一周大约需要多少小时.(地球半径约为6400千米,π取3.14,结果保留两位小数)27.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,﹣2,+3,+10,﹣6,+5,﹣15,﹣8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?28.琪琪和佳佳计算算式“4+6﹣11﹣2”.(1)琪琪不小心把运算符号“+”错看成了“﹣”,求此时的运算结果;(2)佳佳只将数字“11”抄错了,所得结果不超过7,求佳佳所抄数字的最小值.29.学校买来37支水笔和56本笔记本,平均奖给六年级三好学生,结果水笔多一支,笔记本多2本.六年级最多有多少名三好学生?他们各得到几支水笔、几本笔记本?参考答案与试题解析一.选择题(共10小题,满分30分)1.解:在1至10这10个正整数中,素数有2,3,5,7,共4个.故选:C.2.解:互为相反数的两个数的和为0.故选:A.3.解:∵2022的倒数是,的绝对值是.∴2022的倒数的绝对值是.故选:D.4.解:A、0既不是正数也不是负数,是正负数的分界,所以说法正确,不符合题意;B、负数小于一切正数,所以说法正确,不符合题意;C、圆锥的体积等于与它等底等高的圆柱体积的三分之一,所以说法错误,符合题意;D、在比例里,两个内项的积等于两个外项的积,这是比例的基本性质,所以说法正确,不符合题意.故选:C.5.解:∵200﹣3=197(g),∴这种食品净含量最少197g为合格,故选:C.6.解:∵﹣5<﹣1<0<1,∴最小的数是﹣5,故选:A.7.解:∵﹣42=﹣16,∴﹣42的相反数是16.故选:B.8.解:由题意得,圆片的周长为π.∴点A'表示的数是﹣1+π.故选:D.9.解:根据题意,得m<n,m,n的相反数为﹣m,﹣n,则有如下三种情况:①m,n为一组,﹣m,﹣n为另一组,此时有A=|m+n|+|(﹣m)+(﹣n)|=2m+2n;②m,﹣m为一组,n,﹣n为另一组,此时有A=|m+(﹣m)|+|n+(﹣n)|=0;③m,﹣n为一组,n,﹣m为另一组,此时有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m.∴所有A的和为2m+2n+0+2n﹣2m=4n.故选:C.10.解:∵abc≠0,且a+b+c=0,∴a、b与c中可能有1个字母小于0,也可能有2个字母小于0.当a、b与c中有1个字母小于0,如a<0,则b>0,c>0,∴+++=﹣1+1+1﹣1=0.当a、b与c中有2个字母小于0,如a<0,b<0,则c>0,∴+++=﹣1﹣1+1+1=0.综上:+++=0.故选:A.二.填空题(共12小题,满分36分)11.解:﹣x的相反数是x.故答案为:x.12.解:+3.5是正分数,0不是负分数,11是正整数,﹣2是负整数,不是负分数,是负分数,﹣0.7是负分数.∴负分数有和﹣0.7.故答案为:2.13.解:﹣0.0000136=﹣1.36×10﹣6.故答案为:﹣1.36×10﹣6.14.解:∵1亿=108,∴1.496×108千米=1.496亿,故答案为:1.496.15.解:由表格可得,八人船的人均费用最低,孙老师和学生们一共有1+17=18(人),当租用一条八人船,一条六人船和一条四人船时的花费为:150+130+100=380(元),当租用两条八人船,一条两人船时的花费为:150×2+90=390(元),故最低费用为380元,故答案为:380.16.解:∵(a+3)2+|b﹣2|=0,而(a+3)2≥0,|b﹣2|≥0,∴a+3=0,b﹣2=0,解得a=﹣3,b=2,∴(a+b)2022=(﹣1)2022=1.故答案为:1.17.解:10320000=1.032×107.故答案为:1.032×107.18.解:原式=﹣(2×4)=﹣8.故答案为:﹣8.19.解:﹣3﹣(﹣8)=﹣3+8=5.故答案为:5.20.解:(1)﹣0.02<1;故答案为:<.(2)﹣(+)=﹣=﹣,﹣|﹣|=﹣=﹣,∴﹣>﹣,∴﹣(+)>﹣|﹣|.故答案为:>.21.解:∵|x﹣2|≥0,∴|x﹣2|+9≥9,∴|x﹣2|+9有最小值为9.故答案为:9.22.解:将x﹣2y=﹣7记作①,x+y=6记作②.②+①,得2x﹣y=﹣1.∴(2x﹣y)2022=(﹣1)2022=1.故答案为:1.三.解答题(共7小题,满分84分)23.解:如图所示,故.24.解:(1)原式=﹣20﹣14+18﹣13=﹣29;(2)原式=﹣0.5+3.25+2.75﹣7.5=﹣2;(3)原式=1×+×2+(﹣)×=×(1+2﹣)=×=;(4)原式=﹣×(﹣24)﹣×(﹣24)+×(﹣24)=9+4﹣18=﹣5;(5)原式=﹣4×﹣(4﹣1+)×12=﹣3﹣×12=﹣3﹣38=﹣41;(6)原式=﹣81××﹣(﹣27)÷27=﹣16+1=﹣15.25.解:∵+2﹣4+5﹣2.5﹣5+4.5=0,∴这只昆虫最后回到了原来的出发点.26.解:2×π×(6400+400)÷7.9×≈1.50(小时),所以飞船绕地球飞行一周大约需要1.50小时.27.解:(1)250×8+(+6﹣2+3+10﹣6+5﹣15﹣8)=2000﹣7=1993(毫升).答:这8瓶样品试剂的总剂量1993毫升.(2)|+6|+|﹣2|+|+3|+|+10|+|﹣6|+|+5|+|﹣15|+|﹣8|=6+2+3+10+6+5+15+8=55(毫升)55×10=550(元)答:8瓶样品试剂再加工制作成标准剂量需要550元人工费.28.解:(1)4﹣6﹣11﹣2=﹣2﹣11﹣2=﹣13﹣2=﹣15;(2)设佳佳所抄数字为x,根据题意可得:4+6﹣x﹣2≤7,解得x≥1.∴佳佳所抄数字的最小值为1.29.解:∵37﹣1=36,56﹣2=54.∴三好学生人数是36和54的公约数.∵36和54的最大公约数是18.∴最多有18名三好学生.。
沪科版七年级数学上册第一章测试题(含答案)

沪科版七年级数学上册第一章测试题(含答案)(考试时间:120分钟满分:150分) 分数:____________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.2020的倒数是(C)A.-2 020 B.2 020C.12 020D.-12 0202.如果水位下降6 m记作-6 m,那么水位上升6 m记作(A)A.+6 m B.+12 mC.-6 m D.0 m3.2019年六安市农业示范区建设成效明显,一季度完成总投资152亿元,用科学记数法可记作(D)A.1.52×1011元B.152×108元C.15.2×109元D.1.52×1010元4.不改变原式的值,将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号和括号的形式是(C)A.-6-3+7-2 B.6-3-7-2C.6-3+7-2 D.6-3-7-25.已知上周五(周末不开市)股市指数以1 700点报收,本周内股市的涨跌情况如下表(正)A.120C.1 720点D.1 820点6.点M为数轴上表示-2的点,将点M沿数轴向右平移5个单位长度到点N,则点N 表示的数是(A)A.3 B.5C.-7 D.3或-77.若|a|=4,|b|=2,且|a+b|=a+b,那么a-b的值只能是(D)A.2 B.-2C.6 D.2或68.在体检的过程中,测得某同学的身高约为161 cm,则该同学的实际身高h(cm)的取值范围(C)A.160.5<h<161.5 B.160.5<h≤161.5C.160.5≤h<161.5 D.160.5≤h≤161.59.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2 019+2 020b+c2 021的值为(D)A.2 019 B.2 020C.2 021 D.010.★(埇桥区期末)下列说法:①0是绝对值最小的有理数;②a2=(-a)2;③若|a|>b,则a2>b2;④当n为正整数时,(-1)2n+1与(-1)2n互为相反数;⑤若a<b,则a3<b3.其中正确的个数有(D)A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.比较大小:-37 < -38.12.如果|a +1|+(b -3)2=0,那么a -b 的值是 -4 .13.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于2,则m -2(a +b)2+(cd)3 的值是 -1或3 .14.★已知有理数a ,b 在数轴上的位置如图所示,有下列结论:①a +b >0;②ab >0;③|a|>|b|;④a -b <0.其中正确的结论是 ③④ (填序号).选择、填空题答题卡一、选择题(每小题4分,共40分)题号 1 2 3 4 5 得分 答案 C A D C D 题号 6 7 8 9 10答案ADCDD二、填空题(每小题5分,共20分)得分:______ 11. < 12. -4 13. -1或3 14. ③④三、(本大题共2小题,每小题8分,满分16分) 15.(埇桥区期末)计算: (1)(3-9)2×⎪⎪⎪⎪13-12 -(-2); 解:原式=36×16 +2=6+2 =8.(2)-23-4÷⎝⎛⎭⎫-13 +2×(-3)2. 解:原式=-8+12+18=22.16.把下列各数填入相应的集合里: 2,-3.12,0,23%,3,-1,-25,-12 .(1)正有理数集合:{ 2,23%,3 };(2)负有理数集合:{ -3.12,-1,-25,-12 };(3)分数集合:{ -3.12,23%,-12};(4)非负整数集合:{ 2,0,3 }.四、(本大题共2小题,每小题8分,满分16分)17.在如图数轴上表示下列各数:+5,-3.5,12 ,-112 ,0,2.5,并用“<”把这些数连接起来.解:-3.5<-112 <0<12<2.5<+5.18.已知|a|=3,|b|=2,且ab >0,求a -b 的值. 解:∵|a|=3,|b|=2, ∴a =±3,b =±2, ∵ab >0,∴a =3时,b =2; a =-3时,b =-2,故a -b =3-2=1或a -b =-3-(-2)=-1. 综上可得a -b =1或-1.五、(本大题共2小题,每小题10分,满分20分) 19.定义一种新运算“⊗”,即m ⊗n =(m +2)×3-n ,例如2⊗3=(2+2)×3-3=9.根据规定解答下列问题:(1)求6⊗(-3)的值;(2)通过计算说明6⊗(-3)与(-3)⊗6的值相等吗? 解:(1)6⊗(-3)=(6+2)×3-(-3) =24+3 =27.(2)(-3)⊗6=(-3+2)×3-6 =-3-6 =-9,所以6⊗(-3)与(-3)⊗6的值不相等.20.五张写着不同数字的卡片:-3,-1,0,+2,+4,请按要求抽出卡片,并完成下列各题:(1)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,如何抽取,最小值是多少? (2)从中抽出3张卡片,使这3张卡片上的数字乘积最大,如何抽取?最大值是多少? (3)从中抽出4张卡片,用这4张卡片上的数字进行加、减、乘、除、乘方运算(可以使用括号,但每张卡片不能重复使用)使运算结果为24.如何抽取?写出运算式子(一种即可).解:(1)+4÷(-1)=-4.故选+4和-1,最小值是-4.(2)(-3)×(-1)×(+4)=12.故选-3,-1和+4,最大值是12.(3)答案不唯一,如选-3,-1,+2,+4;+2×(-1)×(-3)×(+4).六、(本题满分12分)21.出租车驾驶员从公司出发,在南北向的人民路上连续接送五批客人,行驶路程记录如下表(规定向南为正,向北为负,单位:km):批次第1批第2批第3批第4批第5批路程 5 km 2 km -4 km -3 km 10 km(1)接送完第五批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这个过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km的部分按每千米加1.8元收费,在这个过程中该驾驶员共收到车费多少元?解:(1)5+2+(-4)+(-3)+10=10(km).答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升).答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元).答:在这个过程中该驾驶员共收到车费68元.七、(本题满分12分)22.已知,数轴上三个点A,O,B,点O是原点,固定不动,点A和B可以移动,点A表示的数为a,点B表示的数为b.(1)若A,B移动到如图所示位置,计算a+b的值;(2)在(1)的情况下,B点不动,点A向左移动3个单位长度,写出A点对应的数a,并计算b-|a|;(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长度,此时b比a大多少?请列式计算.解:(1)由图可知a=-10,b=2,∴a+b=-8.(2)由B点不动,点A向左移动3个单位长度,可得a=-13,b=2,∴b-|a|=b+a=2-13=-11.(3)∵点A不动,点B向右移动15.3个单位长度,∴a=-10,b=17.3,∴b-a=17.3-(-10)=27.3.∴此时b比a大27.3.八、(本题满分14分)23.先阅读并填空,再解答问题:我们知道11×2 =1-12 ,12×3 =12 -13 ,13×4 =13 -14 ……(1)根据上述规律可得14×5 =________,12 019×2 020 =________;(2)计算:11×2 +12×3 +13×4 +…+12 019×2 020; (3)认真理解上述式子的含义,计算:12×4 +14×6 +16×8 +…+12 020×2 022 . 解:(1)14×5 =14 -15 ,12 019×2 020 =12 019 -12 020 ;故答案为14 -15 ,12 019 -12 020.(2)原式=1-12 +12 -13 +13 -14 +…+12 019 -12 020=1-12 020=2 0192 020. (3)原式=12 ×⎝⎛⎭⎫12-14+…+12 020-12 022 =12 ×⎝⎛⎭⎫12-12 022 =5052 022.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级数学上册第一单元测试题
一、选择题。
1.下列说法正确的个数是 ( )
①一个有理数不是整数就是分数②一个有理数不是正数就是负数
③一个整数不是正的,就是负的④一个分数不是正的,就是负的
A 1
B 2
C 3
D 4
2.a,b是有理数,它们在数轴上的对应点的位置如下图所示:
把a,-a,b,-b按照从小到大的顺序排列 ( )
A -b<-a<a<b
B -a<-b<a<b
C -b<a<-a<b
D -b<b<-a<a
3.下列说法正确的是 ( )
①0是绝对值最小的有理数②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小
A ①②
B ①③
C ①②③
D ①②③④
4.下列运算正确的是 ( )
A B -7-2×5=-9×5=-45
C 3÷
D -(-3)2=-9
5.若a+b<0,ab<0,则( )
A a>0,b>0
B a<0,b<0
C a,b两数一正一负,且正数的绝对值大于负数的绝对值
D a,b两数一正一负,且负数的绝对值大于正数的绝对值
6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()
A 0.8kg
B 0.6kg
C 0.5kg
D 0.4kg
7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()
A ()5m
B [1-()5]m
C ()5m
D [1-()5]m
8.若ab≠0,则的取值不可能是()
A 0
B 1
C 2
D -2
二、填空题。
9.比大而比小的所有整数的和为。
10.若那么2a一定是。
11.若0<a<1,则a,a2,的大小关系是。
12.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是。
13上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用
科学记数法表示约为 m/min。
14.规定a﹡b=5a+2b-1,则(-4)﹡6的值为。
15.已知=3,=2,且ab<0,则a-b= 。
16.已知a=25,b= -3,则a99+b100的末位数字是。
三、计算题。
17. 8-2×32-(-2×3)2
18.
19.
20.[-38-(-1)7+(-3)8]×[-53]
21. –16-(0.5-)÷×[-2-(-3)3]-∣-0.52∣
22.–12 × (-3)2-(-)2003×(-2)2002÷
四、解答题。
23.已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是
多少?请列出算式解答。
25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行
驶为负,一天中七次行驶纪录如下。
(单位:km)
第一次第二次第三次第四次第五次第六次第七次
-4+7-9+8+6-5-2
(1)求收工时距A地多远?
(2)在第次纪录时距A地最远。
(3)若每km耗油0.3升,问共耗油多少升?
26.如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求
+…+的值。