光学设计实验指导书
光学设计实验指导书1

光学设计实验指导书第一节ZEMAX软件简介1、简介ZEMAX Optical Design Program(ZEMAX)是由美国ZeMaX Development Corporation 公司开发的专用光学设计软件包,软件逐步升级,我们使用的版本是2008。
ZEMAX是Windows平台上的视窗式的用户界面,操作习惯和快捷键风格如同Windows。
2、用户界面ZEMAX的视窗类型,和Windows的基本一致,打开不同的视窗可以执行操作不同的任务,可分为:◆主视窗(Main Window)ZEMAX启动以后,进入主视窗(图1.1)。
主视窗顶端有标题栏(title bar)、菜单栏(menu bar)和工具栏(tools bar)。
◆编辑视窗(Editor Window)ZEMAX中有6种不同的编辑器(Editors):即镜头数据编辑器(Lens Data Editor),评价函数编辑器(Merit Function Editor)、多重组态编辑器(Multi-configuration Editor)、公差数据编辑器(Tolerance Data Editor)、用于补充光学面的附加数据编辑器(Extra Data Editor)、以及非序列元件编辑器(Non-sequential Components Editor)。
图1.1 ZEMAX主视窗界面◆图形视窗(Graphic Window)最常用的有草图(Layout)、扇形图(Ray fans)、调制传递函数(MTF Plots)图等。
◆文本视窗(Text Windows)设计的文字资料,如详细数据(Prescription Data)、像差数据等显示在文本视窗中。
◆对话框(Dialogs)固定大小,在过程中跳出来的视窗(鼠标拖曳不能改变大小)。
用于定义或更新视场(Fields)、波长(Wavelengths)、孔径(Apertures)、面型(Surface types)等。
工程光学实验1—6指导书

实验一 放大率法测量焦距和截距 Measurement Of Focus And Intercept一、实验目的:1.通过对透镜的焦距和截距测量熟悉焦距仪的测量原理及测量方法,掌握基本的实验技能。
2.了解焦距仪的结构及平行光臂的使用,学会螺旋丝杠式测微目镜读数方法。
3.掌握校正显微镜放大率的方法。
二、实验要求:基本理论:理想光学系统的共线成像理论。
基本知识:了解焦距仪的结构,平行光管的使用,理想光学系统焦点、焦平面、主平面、焦 距和截距的概念。
基本技能:学会在焦距仪上进行同轴等高调节。
学会使用螺旋丝杠式测微目镜及读数方法。
三、实验内容及测量原理:焦距和截距是光学系统重要的特性参数,就几何光学来说,焦距是光学系统的特征值。
只要知道焦距和焦点的位置,就能完全确定任何位置上的物体经过该光学系统所成像的位置、大小、正倒和虚实。
1.焦距的测量原理:光学系统的主点到焦点的距离称为焦距。
物方焦距、像方焦距分别用f 、'f 表示。
放大率法测量焦距是利用平行光管物镜焦面上分化板的一对刻线在被测透镜焦面上成像的比例关系,求出被测透镜焦距的大小。
如平行光管分化板上一对刻线间距为y ,经被测透镜成的像为'y ,平行光管物镜和被测透镜焦距分别为'0f 和'f ,由图一可看出它们的关系如下: 0f y tg -=ω '''f y tg -=ω∵'ωω= ∴''0f y f y -=- 即yy f f ''0'∙-= 式中f0'、y 为已知,f'与y'成正比。
这样只要测出y',即可求出被测透镜焦距。
图一2.焦距的测量:光学系统的最后一个表面顶点到像方焦点的距离为后焦距,用lp'表示。
很显然,对于一个光学系统知道了焦距和截距的大小,就可确定焦点和主点的位置。
图二在测量截距的同时,可以进行透镜截距'F l的测量。
(整理)光学设计实验指导书.

《现代光学CAD技术》实验指导书指导老师:汪胜辉湖南文理物电学院单透镜的设计(A Singlet)一、实验目的:(1)熟悉光学设计软件Zemax操作界面;(2)将知道如何键入光学系统的波长(wavelength)、镜头数据(Lens Data)、光线像差(Ray Aberration)、fan,光程差(OPD),点列图(spot diagrams )等等。
(3)确定厚度求解方法(thickness solve)和变量(variables),执行简单光学设计优化。
二、实验环境:(1)、硬件环境:普通PC机(2)、软件环境:ZEMAX软件平台三、实验内容:设计一个相对孔径F/4单镜片,在光轴上可见光谱范围内使用,其焦距(focal length)为100mm,全视场2ω为8º用冕牌BK7来作镜片。
四、实验步骤:首先,运行ZEMAX。
ZEMAX主屏幕会显示镜片数据编辑(LDE),可以对LDE窗口进行移动或重新调整尺寸,以适应你自己的喜好。
LDE有多行和多列组成,类似于电子表格,曲率半径(radius)、厚度(thickness)、玻璃(class)和半径口径(Aperture)等列使用最多,其他的则在特定类型的光学系统中才会用到。
LDE中的小格会以“反白”方式高亮显示,即以与其它格子不同的背景颜色将字母显示在屏幕上。
这个反白条表示的是光标,可以用鼠标在格子上点击来操作。
然后,系统参数设置。
开始,输入系统波长,这个不一定先完成,只不过现在我们选定了这一步。
在主屏幕菜单条上,选择“系统(system)”菜单下的“波长(Wavelength)”。
屏幕中间会弹出一个“波长(Wavelength Data)”对话框。
ZEMAX中有许多这样的对话框,用来输入数据和提供选择。
用鼠标在第二和第三行的“使用(Use)”上单击一下,将会增加两个输入波长使总数成为三。
现在,第一个“波长”行中输入486,这是氢F谱线的波长,单位为微米。
工程光学实验指导书

工程光学实验指导书目录实验一光学实验主要仪器、光路调整与技巧实验二物镜焦距截距的测量实验三光的干涉实验实验四光学物镜参数测试设计性实验实验一光学实验主要仪器、光路调整与技巧一. 引言不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成,因此掌握一些常用的光学元器件的结构和性能,特点和使用方法,对安排试验光路系统时正确的选择光学元器件,正确的使用光学元器件有重要的作用二.实验目的掌握光学专业基本元件的功能;调整光路,主要包括共轴调节、调平行光和针孔滤波。
三.基本原理(一)、光学实验仪器概述:主要含:激光光源,光学元件,观察屏或信息记录介质1. 激光光源;激光器即Laser(L ight Amplification by stimulated emission of radiation),原意是利用受激辐射实现光的放大.然而实际上的激光器,一般不是放大器,而是振荡器,即利用受激辐射实现光的振荡,或产生相干光。
.960年,梅曼制成了世界上第一台红宝石激光器.现在被广泛用于各个行业激光的特性:(1)高度的相干性(2)光束按高斯分布激光器的分类:(1)气体激光器——He-Ne激光器,Ar离子激光器(2)液体激光器——染料激光器(3)固体激光器———半导体激光器,红宝石激光器本套实验方案的选择的激光器是气体型He-Ne内腔式激光器,波长为632.8nm的红光,功率2mW。
个别实验中还会用到白光点光源。
2、用于光学实验的元件一般包括:防震平台、分束镜、扩束镜、准直镜、反射镜、成像透镜、傅立叶变换透镜、多自由度微调器、可变光栏、观察屏等部件。
如果是全息实验还需要快门、干版架、自动曝光和显定影定时器、记录干版等。
(本实验方案中,扩束镜采用针孔空间滤波器,准直镜、成像透镜、傅立叶变换透镜均采用双凸透镜)⑴防震平台光学实验需要一个稳定的工作平台。
特别是对于全息图制作实验,由于是参考波和物光波干涉条纹的记录,如果在曝光过程中因为振动导致两光波有变化,就要影响干涉条纹的调制度。
光学实验指导书

实验一 迈克耳逊干涉仪实验【目的与要求】1、了解迈克耳逊干涉仪的结构和工作原理,掌握其调整方法;调出非定域干涉等倾干涉、等厚干涉和白光干涉条纹。
2、 明确几种条纹的形成条件、花纹特点、变化规律及相互间的区别,加深对干涉理论的理解。
3、用迈克耳逊干涉仪测量气体折射率。
【仪器用具】迈克耳逊干涉仪,He-Ne 激光器及其电源,扩束透镜,小孔光栅、白帜灯,毛玻璃,小气室,打气皮囊,气压表。
【实验原理】一、M-干涉仪的光路M -干涉仪是一种分振幅双光束的干涉仪,它的光路如图1-1。
光源S 发出的一束照射到分光板G 1上,G 1板的后面镀有半反射膜,一般镀银,这个半反半透分成相互垂直的反射光束1和透射光束2,两者强度接近相等,此板称为分束板。
当激光束以45o 角射向G 1时,它被分为相互垂直两束光,这两束光分别垂直射到平面镜M 1和M 2上,再经M 1和M 2所反射各自沿原路返回到G 1的半反射膜上,又重新会集成一束光。
由于反射光1和透过光2为2两相干涉光束,因此我们可以在E 方向观测到干涉条纹。
G2为一补偿板,其物理性能与几何形状皆与G1全同的补偿作用(但是不镀膜),G1与G2平行,G2的作用是保证1、2两束光在玻璃中的光程完全相等。
反射镜M 2是固定不动的,M 1可在精密导轨上前后移动,从而改变1、2两束光之间的光程差。
精密导轨与G1成45o角。
为了使光束1与导轨平行,激光应垂直导轨方向射向M -干涉仪。
二、干涉花纹的图样图1-1中'2M 是2M 被1G 反射所成的虚像,从观察者看来,两相干光束是从1M 和'2M 反射而来,因此,我们把干涉仪产生的干涉等效为1M 、'2M 间的空气膜所产生的干涉来进行研究。
1、点光源照明----非定域干涉条纹激光通过短焦距透镜会聚后是一个强度很高的点光源S ,它发出的球面光波照射M-干涉仪,经G1分束及M 1,M 2反射后射向屏E 的光(参看图1-2)可以看成是由虚光源S 1、'2S 发出的。
物理光学实验指导书

器的使用方法之前,切勿乱拧螺丝,碰动仪器或随意接通电源。 (2)大部分光学元件用玻璃制成,光学面经过精细抛光。使用时要经轻拿轻放,勿使元件相互 碰撞、挤压、更要避免摔坏;暂时不用的元件,要放回原处,不要随意乱放,以免无意中将其扫 落地面导致损坏。 (3)人的手指带有汗渍油脂类分泌物,用手触摸光学面会使其污染,影响其透光性和其它光学 性质,因此只能拿元件的磨砂面(毛面) 。正确的姿势如图:
²3²
一般当作均匀面光源使用;点状灯丝线度小,亮度高,适宜作点光源用。当要求光源有高亮度时, 可选用卤钨灯。 (2)气体放电灯 光学实验室中当作单色光源使用的放电光谱灯。能在可用光谱区发射出各自较强的主特征光 谱线。 低压钠光灯:钠黄光的平均波长为 589.3nm,是 589.0nm 和 589.6nm 两条主特征光谱线的平 均值,称这两条主特征谱线为钠黄双线或钠 D 线。钠灯通电后必须经过一段时间的预热后钠蒸气 才能达到正常的工作气压而稳定发光,使用时应注意。 低压汞灯:低压汞灯的发光效率较高,光谱分布在紫外、可见和红外区。在可见光范围内的 主特征谱线是 579.0nm、577.0nm、546.1nm、434.8nm 和 404.7nm。 (3)氦氖激光器:这种激光器可连续发射波长为 632.8nm、发散角小于 2mrad 的激光来,它 的单色性、相干性好,亮度高,是光学实验中最常用的一种光源。实验室常用的氦氖激光器有以 下三种: 腔长 200~250mm 腔式氦氖激光器, 这种激光器触发电压约 6000V, 工作电压 1700~2000V, 最佳工作电流为 5mA。多横模输出,输出功率为 2~3mW;基横模输出,输出功率为 1.5~2mW。 腔长 500mm 半外腔式氦氖激光器,这种激光器触发电压约 8000V,工作电压 2500~3000V, 最佳工作电流为 10mA。基横模输出时,功率 7~10mW。 毛细管长 1000mm 外腔氦氖激光器。 这种激光器通常有布鲁斯特窗, 基横模, 线偏振光输出, 触发电压 1000~12000V,工作电压为 4000~5000V,最佳工作电流 15~20mA。输出功率 30~ 50mW。 激光器的触发电压和工作电压很高,使用时应注意这一点,另外,激光光强很强,在任何情 况下都不能迎着激光来进行观察,以免损伤眼睛。 2.常用光电探测器 实验中常用光电池作为光电探测器,这种探测器不需要外加电压也能把光信号转变为电信 号,并有较好的频率响应。常用的光电池有硅光电池和硒光电池两种。硒光电池的光谱灵敏范围 为 380~750nm,峰值波长为 570nm,与人眼的光谱灵敏度曲线很相近,经常用于与人的视觉有 关的光学实验、测试实验、测试和控制技术中,硅光电池的光谱灵敏度范围为 400~1000nm,峰 值波长为 780nm,其性能稳定,寿命长,光谱响应范围宽,响应快,常用在光度、色度和辐射测 量技术中。 光电池使用中应避免长时间集中照射光电池上某一部位,以免加快老化。
光学设计指导书
光学设计指导书刘冬梅、王文生等主编长春理工大学光电工程学院2005年前言按照“应用光学”教学大纲规定的设计要求,并结合光电工程学院的《应用光学》教学特点及具体的情况,我们编写了《光学设计指导书》。
本指导教程着眼于应用光学的基本理论知识、光学设计基本理论和方法,侧重于典型系统具体设计的思路和过程,加强学生对光学设计的切身领会和理解,将理论与实际融合、统一,以提高学生综合分析及解决问题能力的培养。
在该实验指导教程中共包含三部分的内容:光学设计中的PW法、望远系统PW方法的具体计算过程、ABR程序的介绍及使用等。
在编写过程中我们吸纳了过去课程设计的经验与长处,内容深入浅出、文字通顺、易读易懂,具有自己的特色。
本教程由光电工程学院刘冬梅、王文生、刘智影、霍富荣等主编。
由于本人水平有限,教程中难免有不足之处,衷心希望广大读者对教程中的不足之处给予批评指正。
编者2005年1月目 录第一章 光学设计中的PW 法 (4)§1-1光学系统的基本象差参量………………………………………4 §1-2光学系统的基本象差参量的规化…………………………………7 §1-3双胶合薄透镜组的I C W P ,,∞∞与结构参数的关系 (9)第二章 望远系统PW 法的具体计算过程 (15)§2-1望远系统的原理...................................................15 §2-2课程设计的内容及要求..........................................15 §2-3望远系统PW 法的具体设计过程 (16)第三章 ABR 程序的介绍及使用 (32)§3-1 ABR 程序的介绍................................................32 §3-2 数据文件的建立及ABR 程序的操作 (32)第一章 光学设计中的PW 法§1-1光学系统的基本象差参量任何光学系统都是由许多光组组成,每个光组都有自己的性能要求,如显微系统、望远系统至少要由物镜和目镜两部分构成,照相系统多为一个照相物镜。
光学设计实验指导书
实验一光学设计软件ZEMAX的安装和基本操作一.实验目的学习ZEMAX软件的安装过程,熟悉ZEMAX软件界面的组成及基本使用方法。
二.实验要求a)掌握ZEMAX软件的安装、启动与退出的方法。
b)掌握ZEMAX软件的用户界面。
c)掌握ZEMAX软件的基本使用方法。
d)学会使用ZEMAX的帮助系统。
三.实验内容1.通过桌面快捷图标或“开始—程序”菜单运行ZEMAX,熟悉ZEMAX的初始用户界面,如下图所示:图1.1 ZEMAX用户界面2.浏览各个菜单项的内容,熟悉各常用功能、操作所在菜单,了解各常用菜单的作用。
3. 熟悉使用各个常用的快捷按钮。
4.学会从主菜单的编辑菜单下调出各种常见编辑窗口(镜头数据编辑、优化函数、多重数据结构)。
5.调用ZEMAX自带的例子(例如根目录下samples\tutorial\tutorial zoom2.zmx文件),学会打开常用的分析功能项:草图(2D草图、3D草图、实体模型、渲染模型等)、特性曲线(像差曲线、光程差曲线)、点列图、调制传递函数等,学会由这些图进行简单的成像质量分析。
6.从主菜单中调用优化工具,简单掌握优化工具界面中的参量。
7.掌握镜头数据编辑(LDE)窗口的作用以及窗口中各个行列代表的意思。
8.从主菜单-报告下形成各种形式的报告。
9.通过主菜单-帮助下的操作手册调用帮助文件,学会查找相关帮助信息。
四.报告要求:1. 打开安装目录下的samples\tutorial\tutorial zoom2.zmx文件,生成其2D图、实体(转角)、渲染(转角)、像差特征曲线、OPD曲线、曲面数据报告(第7面)、规则报告(截屏至“角度放大率”)和图解报告4。
截屏后打印出来。
2. 试在打印出来的2D图上标出各个面的位置以及相应面厚度值的具体指向(方向、范围);比较分析LDE窗口中两个“半径”(Radius和Semi-Diameter)具体指的是什么,并定性的在2D图中标出第5面和第7面分别的Radius和Semi-Diameter。
工程光学实验指导书
前言本课程的实验环节其设计思想是与课堂教学相结合,除了进一步巩固和深化学生基础知识之外,以更开放、更灵活的方式培养学生动手能力、合作精神和对工程技术问题的思考方式,形成开放式创新思维。
通过实验,进一步加深对几何光学的基本现象、概念、原理与定律的理解,了解和熟悉有关光学仪器及装置的结构、原理及使用,掌握基本的实验方法和技能,学会用实验的方法分析一些光学现象。
实验是工程光学课程体系的重要一环。
实验环节的目标是:使学生能够比较牢固地建立研究意识、工程意识、分工合作的工作方式,培养独立自主地分析和解决问题的能力。
本实验教学环节采用模块化实验组合,学生可以小组为单位进行实验,力求培养学生的自主学习与创新能力和团队协作精神。
基本要求:要求实验前做好预习,理解每个实验的原理、步骤;实验时正确操作仪器,认真观察各种实验现象,仔细记录、分析数据;实验结束后及时做好实验报告。
主要内容:模块一光组的成像特性 (2)模块二光组的焦距测量 (6)模块三典型光学系统设计及特性测量 (8)附录 (11)思考题 (16)模块一 光组的成像特性实验目的1.验证物像位置关系,深入了解透镜成像特性。
2.掌握望远镜、显微镜、复合透镜的组合方法。
3.观察光线在棱镜中传播的情况,并了解各种棱镜的成像特性,熟悉各种棱镜的结构。
‴ 透镜成像特性1. 实验仪器及设备指标、透镜架、透镜、成像屏、光具座、照明系统。
图1 透镜成像特性实验装置2. 实验原理l 和l’分别表示物像距,f’为光组的焦距,则当光组处于空气中时,有:(1)可知,对于具有一定焦距的光组,其像的位置随物体位置的变化而变化,而其相应的横向放大率可表示如下:(2) 3. 实验内容与步骤取一正透镜使物体(指标)位于 ①② ③ ④ ; 取一负透镜使物体位于① ② ③ ④ 。
分别记录物体经透镜所成像的大小、正倒及位置。
‴光组组合1. 实验仪器及设备六只正透镜、二只负透镜、光具座、一只平行光管、平面反射镜、投影屏。
物理光学实验指导书
物理光学实验实验指导书北京航空航天大学仪器科学与光电工程学院教学实验中心2005年9月实验规则及注意事项1.压强计不可超量程使用,以免损坏。
2.压强计使用结束,应把气室的气体放光,否则压强计不能回零。
3.在打开激光电源前,必须确认高压插座可靠的与激光管连接,激光电源严禁开路使用。
4.He-Ne激光器的阳带有几千伏的高压,请注意安全!!!5.激光管为玻璃结构,易碎,特别是布氏窗结构,由多种玻璃构成,应避免受力和碰窗。
激光膜片是非常易损的光学元件,应绝对避免人手的触摸和剐蹭,必要的清洁请使用专用长丝棉或脱脂棉结合干净的乙醚或丙酮轻轻擦拭。
目 录实验一、组合干涉仪 (3)实验二、衍射现象的观察 (6)实验三、偏振光的检测 (7)实验四、He-Ne激光器和激光谐振腔 (9)实验报告 (12)实验一 组合干涉仪一、实验目的通过本实验,观察干涉现象,了解干涉原理,学会干涉光路的搭构与调整,通过干涉环的变化与被测量的关系,得到一些被测的物理量二、实验原理简介:干涉测量技术是一种利用光的干涉现象来测量某些物理量的微小变化的技术,一般情况下,它是将一束光通过光学元件分为两束,一束作为参考光,另一束作为测量光,测量光落在被测物体上或通过被测样品,然后再将这两束光重新拟合,利用干涉图形的变化,检查出目标某个物理量的微小变化.这种测量方法由于大多采用高稳定度的、长相干的激光作为光源,因此一般都具有大量程、高分辨率、高精度、对目标影响小的特点,被广泛应用在国民经济的各个领域。
该技术在实际应用中,根据使用环境和要求的不同,往往采用不同的光路结构。
本实验主要搭构三种较为常见的光路结构,组成1)迈克尔逊干涉仪,2)马赫-曾德尔干涉仪,3)萨格奈克干涉仪,以熟悉它们的结构和特点。
1)迈克尔逊干涉仪迈克尔逊干涉仪作为一种十分古老的干涉仪,于1880年由迈克尔逊发明,并主要由此于1907年获得诺贝尔奖金。
它的基本光路结构如图1。
它常被用来测量物体的微小位移变化:从光源发出的一束相干光经分束镜G一分为二,分为两束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学设计实验指导书实验一光学设计软件ZEMAX的安装和基本操作一.实验目的学习ZEMAX软件的安装过程,熟悉ZEMAX软件界面的组成及基本使用方法。
二.实验要求a)掌握ZEMAX软件的安装、启动与退出的方法。
b)掌握ZEMAX软件的用户界面。
c)掌握ZEMAX软件的基本使用方法。
d)学会使用ZEMAX的帮助系统。
三.实验内容1.通过桌面快捷图标或“开始—程序”菜单运行ZEMAX,熟悉ZEMAX的初始用户界面,如下图所示:图 1.1 ZEMAX用户界面2.浏览各个菜单项的内容,熟悉各常用功能、操作所在菜单,了解各常用菜单的作用。
3. 熟悉使用各个常用的快捷按钮。
4.学会从主菜单的编辑菜单下调出各种常见编辑窗口(镜头数据编辑、优化函数、多重数据结构)。
5.调用ZEMAX自带的例子(例如根目录下samples\tutorial\tutorial zoom2.zmx文件),学会打开常用的分析功能项:草图(2D草图、3D草图、实体模型、渲染模型等)、特性曲线(像差曲线、光程差曲线)、点列图、调制传递函数等,学会由这些图进行简单的成像质量分析。
6.从主菜单中调用优化工具,简单掌握优化工具界面中的参量。
7.掌握镜头数据编辑(LDE)窗口的作用以及窗口中各个行列代表的意思。
8.从主菜单-报告下形成各种形式的报告。
9.通过主菜单-帮助下的操作手册调用帮助文件,学会查找相关帮助信息。
四.报告要求:1. 打开安装目录下的samples\tutorial\tutorial zoom2.zmx文件,生成其2D图、实体(转角)、渲染(转角)、像差特征曲线、OPD曲线、曲面数据报告(第7面)、规则报告(截屏至“角度放大率”)和图解报告4。
截屏后打印出来。
2. 试在打印出来的2D图上标出各个面的位置以及相应面厚度值的具体指向(方向、范围);比较分析LDE窗口中两个“半径”(Radius和Semi-Diameter)具体指的是什么,并定性的在2D图中标出第5面和第7面分别的Radius 和Semi-Diameter。
3. 试从帮助手册(主菜单-帮助-操作手册)中查找点列图左下角关于GEO RADIUS和RMS RADIUS的定义和区别。
五.实验仪器PC机实验二基于ZEMAX的简单透镜的优化设计一.实验目的学会用ZEMAX对简单单透镜和双透镜进行设计优化。
二.实验要求1.掌握新建透镜、插入新透镜的方法;2.学会输入波长和镜片数据;3.学会生成光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spot diagram)、产生图层和视场曲率图;4.学会面厚度的求解方法,学会定义透镜的边缘厚度解和视场角,进行简单的优化。
三.实验内容(一). 用BK7玻璃设计一个焦距为100mm的F/4单透镜,要求在轴上可见光范围内。
1. 打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新建一个新的空白透镜。
2. 在主菜单-系统-光波长弹出的对话框中输入3个覆盖可见光波段的波长,设定主波长。
同样在系统-通用配置里设置入瞳直径值(由设计要求决定)。
3. 在光阑面的Glass列里输入BK7作为指定单透镜的材料,并在像平面前插入一个新的面作为单透镜的出射面。
4. 输入相关各镜面的厚度和曲率半径(STO面厚度举例为4mm,其余各面厚度由设计要求决定)。
5. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。
6. 利用Solve功能来求解第2面的厚度,以便适当的消除离焦现象,更新后观察各分析图的相应变化。
7. 将第1、第2面的曲率半径以及第2面的厚度值设为变量,建构并调用默认优化函数(Merit Function)。
8. 在调用默认优化函数后的优化函数编辑框中的第一行前按INS插入一个新行,在其oper#列处双击(或右键单击),在弹出的对话框中将操作数选为EFFL,target设为100,weight设为1,确定。
9. 调用优化工具进行优化,在优化后更新全部内容,然后观察各分析图的相应变化。
10. 分别调用点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)来观察最优化后的成像质量。
11. 将此设计起名保存,生成报告。
(二). 以前一个实验内容设计优化后的单透镜为基础,添加一块材料为SF1玻璃的透镜来构建胶合双透镜系统,进一步优化成像质量。
1. 插入新的平面作为第二块透镜的出射面,输入相关镜面的厚度(两块透镜厚度举例均为3mm)、曲率半径(由设计要求决定)的初始值以及玻璃类型值(BK7、SF1)。
2. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。
3. 设置STO面、第2、第3面的曲率半径,以及第3面的厚度为变量,沿用前例的优化函数,在优化更新后观察各分析图的相应变化,并分别对比单透镜时的点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)的相应变化,观察双透镜此时的成像质量。
4. 为了实际装配需要,将各透镜半口径改得比系统优化后自动生成的半口径稍大(举例为14mm),更新后观察此时的3D图和各特性曲线的变化,从曲面数据报告中查看各面的边缘厚度值。
5. 利用Solve功能来求解镜片边缘厚度(举例设计要求为3mm),更新后观察各分析图的相应变化。
再一次调用优化函数进行优化后,重新观察各分析图变化。
6. 定义视场(系统-视场,举例加入两个分别为7°和10°的y视场),从分析-杂项-视场场曲调出场曲图来观察此双透镜的离轴特性。
7. 将此设计起名保存,生成报告。
四.报告要求:1.截屏打印:单透镜:LDE窗口,OPD 图,图解报告4,点列图,焦点色位移图双透镜:LDE窗口,第1面的曲面数据报告,2D图,场曲图,焦点色位移图2.试总结本例中是如何实现新建透镜和插入新透镜的;3.试分析实验内容(一).8中各项设置的意义;4.试分析在第1面的曲面数据报告中的Thickess值和Edge Thickness分别指的是什么值,在2D图中标出相应的指向(方向、范围)。
5.上传以各自学号为文件名的*.zmx文件。
五.实验仪器PC机实验三基于ZEMAX的牛顿望远镜的优化设计一.实验目的学会使用ZEMAX软件对典型牛顿望远镜进行优化设计。
二.实验要求1.掌握设立反射镜、使坐标中断的方法;2.学会使用圆锥常量来优化成像质量;3.学习点列图和3D图形分析像质的简单方法。
三.实验内容利用ZEMAX软件来设计一个1000mm F/5的牛顿望远镜,即一个曲率半径为2000mm的镜面和一个200mm的孔径。
图3.1典型牛顿反射式望远镜1.打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新建一个新的空白透镜。
2.在LDE(透镜数据编辑器)中输入相关平面的曲率半径、厚度和玻璃类型值(反射镜玻璃类型为MIRROR)。
3.在主菜单-系统中设置孔径值,并沿用默认的波长和视场角值。
4.生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。
5.生成标准点列图,并与艾利斑对比(从点列图中选设置-查看比例-Airy Disk)来进行像质的简单分析。
6.在像平面前插入一个新的虚构面(未来放置反射镜),合理设置中断的坐标值以获得光阑面和虚构面的厚度,将两个厚度输入LDE 中的相应位置。
7.从主菜单-工具-折叠反射镜里添加一个反射镜,设置交叠曲面为2,确定。
8.更新后观察此时的各分析图,注意分析哪些图已经不再起作用了。
通过相应按键操作旋转缩放3D类的分析图来观察成像质量。
9.在光阑面(STO)前新添加一个圆形挡光面,设置合理的面厚度和挡光半径。
10.更新后重新观察此时的3D类分析图,观察此时的成像质量和效果。
11.更名存盘后生成报告。
四.报告要求:1.分析:(1)试解释添加折返面的对话框中的3个选项的意义及添加后多出来的两个虚构面的作用;(2)若要使本例的反射后的转角分别向上、(垂直于显示器平面)向里和(垂直于显示器平面)向外,那么分别应该做哪些具体改变?2.分别打印反射方向为向上向下向里向外的最终实体图及某一方向的LDE的截图。
3.上传任一反射方向的存档,以学号为文件名。
五.实验仪器PC机实验四基于ZEMAX的施密特-卡塞格林系统的优化设计一.实验目的学会使用ZEMAX软件对带有非球面矫正器的施密特-卡塞格林系统进行优化设计。
二.实验要求1. 掌握使用多项式的非球面的方法;2. 掌握遮拦、孔径的相关知识;3. 掌握OPD图和MTF分析像质的简单方法。
三.实验内容设计一个带多项式非球面矫正器的施密球面反射镜(主镜)特-卡塞格林系统,要求10英寸的孔径,10英寸的后焦距(从主镜的后面到焦点)。
施密特校正板图4.1 典型的带有施密特校正板的折反射式物镜图4.2 典型的卡塞格林反射式物镜图4.3 内嵌卡塞格林结构的施密特系统1. 打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新建一个新的空白透镜。
2. 从主菜单-系统-通用配置里设置孔径值和单位(英寸),同样在系统-光波长里设置覆盖可见光波段的3个典型波长,设置主波长值。
(至此完成系统参数的设置)3. 在光阑面后插入两个面,输入相应的各面的厚度、曲率半径和玻璃类型值(其中施密特校正板用BK7,厚度举例为1英寸)。
4. 生成2D草图来观察此时的光路和成像效果。
(至此完成施密特结构的创建)5. 新添加一个辅助镜面(即图4.2中的双曲面),合理设置各个平面新的厚度、曲率半径值,并将第四面的曲率半径设为变量,未来让ZEMAX自动求解。
6. 构建新的优化函数,在优化后更新全部内容。
7. 生成OPD图,分析成像质量。
8. 将第一面(STO)的表面类型改为“EVENASPHERE”以便为非球面矫正器指定多项式非球面系数。
将该面的“4th(6th、8th) Order Term”项分别设为变量。
9. 选择主菜单-工具-优化,优化后重新更新OPD图,分析此时的成像质量。
10. 将第一面的半径设为变量,再次优化,更新后生成OPD图,分析此时的成像质量。
11. 从主菜单-系统-视场里将视场角个数设置为3,输入适当的y角度(举例分别为0,0.3,0.5),更新后对比观察此时的OPD图。
12. 重新构建优化函数对此设计进行进一步的优化,更新后再观察此时的OPD,分析成像质量。
13. 从主菜单-分析-调制传递函数-快速傅里叶变换生成MTF图,由图分析此时的像质。
(至此完成卡塞格林结构的创建和优化)14. 返回LDE,双击第三面的第一列,将Aperture标签中的光圈类型改为“圆形光圈”,设置最小半径为1.7,最大半径为6,完成主反射面上缺口的设计。