IGBT详解

合集下载

详解IGBT系统[图文]

详解IGBT系统[图文]

详解IGBT系统[图文]IGBT,中文名字为绝缘栅双极型晶体管,它是由MOSFET(输入级)和PNP晶体管(输出级)复合而成的一种器件,既有MOSFET 器件驱动功率小和开关速度快的特点(控制和响应),又有双极型器件饱和压降低而容量大的特点(功率级较为耐用),频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内。

理想等效电路与实际等效电路如图所示:IGBT 的静态特性一般用不到,暂时不用考虑,重点考虑动态特性(开关特性)。

动态特性的简易过程可从下面的表格和图形中获取:IGBT的开通过程IGBT 在开通过程中,分为几段时间1.与MOSFET类似的开通过程,也是分为三段的充电时间2.只是在漏源DS电压下降过程后期,PNP晶体管由放大区至饱和过程中增加了一段延迟时间。

在上面的表格中,定义了了:开通时间Ton,上升时间Tr和Tr.i 除了这两个时间以外,还有一个时间为开通延迟时间td.on:td.on=Ton-Tr.iIGBT在关断过程IGBT在关断过程中,漏极电流的波形变为两段。

第一段是按照MOS管关断的特性的第二段是在MOSFET关断后,PNP晶体管上存储的电荷难以迅速释放,造成漏极电流较长的尾部时间。

在上面的表格中,定义了了:关断时间Toff,下降时间Tf和Tf.i 除了表格中以外,还定义trv为DS端电压的上升时间和关断延迟时间td(off)。

漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而总的关断时间可以称为toff=td(off)+trv十t(f),td(off)+trv之和又称为存储时间。

从下面图中可看出详细的栅极电流和栅极电压,CE电流和CE电压的关系:从另外一张图中细看MOS管与IGBT管栅极特性可能更有一个清楚的概念:开启过程关断过程尝试去计算IGBT的开启过程,主要是时间和门电阻的散热情况。

C.GE 栅极-发射极电容C.CE 集电极-发射极电容C.GC 门级-集电极电容(米勒电容)Cies = CGE + CGC 输入电容Cres = CGC 反向电容Coes = CGC + CCE 输出电容根据充电的详细过程,可以下图所示的过程进行分析对应的电流可简单用下图所示:第1阶段:栅级电流对电容CGE进行充电,栅射电压VGE上升到开启阈值电压VGE(th)。

IGBT工作原理

IGBT工作原理

IGBT工作原理引言概述:IGBT是一种广泛应用于电力电子领域的功率半导体器件,具有高效率、高速度和高可靠性等优点。

了解IGBT的工作原理对于电力电子工程师和研究人员来说至关重要。

本文将详细介绍IGBT的工作原理,包括结构、工作方式和应用等方面。

一、IGBT的结构1.1 发射极结构:IGBT的发射极是由N+型硅衬底、N型漏极和P型基极组成的结构。

1.2 栅极结构:IGBT的栅极是由金属层和绝缘层组成的结构,用于控制电流流动。

1.3 集电极结构:IGBT的集电极是由N+型硅衬底和P型漏极组成的结构,用于集中电流输出。

二、IGBT的工作方式2.1 关态:当IGBT的栅极施加正向电压时,电流可以从集电极流向发射极,器件处于导通状态。

2.2 开态:当IGBT的栅极施加负向电压时,电流无法从集电极流向发射极,器件处于关断状态。

2.3 开关速度:IGBT的开关速度取决于栅极电压的变化速度,快速开关速度可以提高器件的效率和性能。

三、IGBT的特点3.1 高效率:IGBT具有低导通压降和低开关损耗,能够提高系统的能效。

3.2 高速度:IGBT的开关速度快,能够实现快速的电流控制和开关操作。

3.3 高可靠性:IGBT具有较高的耐压和耐热性能,能够在恶劣环境下稳定工作。

四、IGBT的应用领域4.1 变频调速:IGBT广泛应用于变频调速系统中,实现机电的精确控制和能量调节。

4.2 逆变器:IGBT可以用于逆变器中,将直流电源转换为交流电源,满足不同电器设备的电源需求。

4.3 电力传输:IGBT可用于电力传输系统中,提高电网的稳定性和效率,实现电力的远距离传输。

五、总结IGBT作为一种重要的功率半导体器件,在电力电子领域具有广泛的应用前景。

了解IGBT的结构、工作方式和特点对于电力电子工程师和研究人员来说至关重要,可以匡助他们设计和优化电力电子系统,提高系统的效率和性能。

希翼本文能够匡助读者更好地理解IGBT的工作原理,为他们在实际应用中提供指导和匡助。

IGBT模块参数详解

IGBT模块参数详解

IGBT模块参数详解一-IGBT静态参数•VCES:集电极-发射极阻断电压在可使用的结温范围内栅极-发射极短路状态下,允许的断态集电极-发射极最高电压;手册里VCES是规定在25°C结温条件下,随着结温的降低VCES也会有所降低;降低幅度与温度变化的关系可由下式近似描述:.模块及芯片级的VCES对应安全工作区由下图所示:文章来源:voltage of the IGBT由于模块内部杂散电感,模块主端子与辅助端子的电压差值为,由于内部及外部杂散电感,VCES在IGBT关断的时候最容易被超过;VCES在任何条件下都不允许超出,否则IGBT就有可能被击穿;•Ptot:最大允许功耗在Tc=25°C条件下,每个IGBT开关的最大允许功率损耗,及通过结到壳的热阻所允许的最大耗散功率;Ptot可由下面公式获得:;Maximum rating for Ptot二极管所允许的最大功耗可由相同的方法计算获得;•IC nom:集电极直流电流在可使用的结温范围内流过集电极-发射极的最大直流电流;根据最大耗散功率的定义,可以由Ptot的公式计算最大允许集电极电流;因而为了给出一个模块的额定电流,必须指定对应的结和外壳的温度,如下图所示;请注意,没有规定温度条件下的额定电流是没有意义的;Specified as data code: FF450R17ME3在上式中Ic及VCEsat Ic都是未知量,不过可以在一些迭代中获得;考虑到器件的容差,为了计算集电极额定直流电流,可以用VCEsat的最大值计算;计算结果一般会高于手册值,所有该参数的值均为整数;该参数仅仅代表IGBT的直流行为,可作为选择IGBT的参考,但不能作为一个衡量标准;•ICRM:可重复的集电极峰值电流最大允许的集电极峰值电流Tj≤150°C,IGBT在短时间内可以超过额定电流;手册里定义为规定的脉冲条件下可重复集电极峰值电流,如下图所示;理论上,如果定义了过电流持续时间,该值可由允许耗散功耗及瞬时热阻Zth计算获得;然而这个理论值并没有考虑到绑定线、母排、电气连接器的限制;因此,数据手册的值相比较理论计算值很低,但是,它是综合考虑功率模块的实际限制规定的安全工作区;•RBSOA:反偏安全工作区该参数描述了功率模块的IGBT在关断时的安全工作条件;如果工作期间允许的最大结温不被超过,IGBT芯片在规定的阻断电压下可驱使两倍的额定电流;由于模块内部杂散电感,模块安全工作区被限定,如下图所示;随着交换电流的增加,允许的集电极-发射极电压需要降额;此外,电压的降额很大程度上依赖于系统的相关参数,诸如DC-Link的杂散电感以及开关转换过程换流速度;对于该安全工作区,假定采用理想的DC-Link电容器,换流速度为规定的栅极电阻及栅极驱动电压条件下获得;Reverse bias safe operating area•Isc:短路电流短路电流为典型值,在应用中,短路时间不能超过10uS;IGBT的短路特性是在最大允许运行结温下测得;•VCEsat:集电极-发射极饱和电压规定条件下,流过指定的集电极电流时集电极与发射极电压的饱和值IGBT在导通状态下的电压降;手册的VCEsat值是在额定电流条件下获得,给出了Tj在25o C及125o C的值;Infineon的IGBT都具有正温度效应,适宜于并联;手册的VCEsat值完全为芯片级,不包含导线电阻;VCEsat随着集电极电流的增加而增加,随着Vge增加而减少;Vge不推荐使用太小的值,会增加IGBT的导通及开关损耗;VCEsat可用来计算IGBT的导通损耗,如下式描述,切线的点应尽量靠近工作点;对于SPWM控制方式,导通损耗可由下式获得:IGBT模块参数详解二-IGBT动态参数动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT 寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合可全面评估IGBT芯片的性能; RGint:模块内部栅极电阻:为了实现模块内部芯片均流,模块内部集成有栅极电阻;该电阻值应该被当成总的栅极电阻的一部分来计算器的峰值电流能力;RGext:外部栅极电阻:外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能;上图中开关测试条件中的栅极电阻为Rgext的最小推荐值;用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff;已知栅极电阻和驱动电压条件下,理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和;实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到;如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响;最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏;Cge:外部栅极电容:高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗;IGBT寄生电容参数:IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示;输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略;其中:Cies = C GE + C GC:输入电容输出短路Coss = C GC + C EC:输出电容输入短路Cres = C GC:反馈电容米勒电容动态电容随着集电极与发射极电压的增加而减小,如下图所示;手册里面的寄生电容值是在25V栅极电压测得,CGE的值随着VCE的变化近似为常量;CCG 的值强烈依赖于VCE的值,并可由下式估算出:IGBT所需栅极驱动功率可由下式获得:或者Q G:栅极充电电荷:栅极充电电荷可被用来优化栅极驱动电路设计,驱动电路必须传递的平均输出功率可通过栅极电荷、驱动电压及驱动频率获得,如下式:其中的Q G为设计中实际有效的栅极电荷,依赖于驱动器输出电压摆幅,可通过栅极IGBT开关时间参数电荷曲线进行较精确的近似;通过选择对应的栅极驱动输出电压的栅极电荷,实际应该考虑的Q G’可以从上图中获取;工业应用设计中,典型的关断栅极电压常被设置为0V或者-8V,可由下式近似计算:例如,IGBT的栅极电荷参数如上表,实际驱动电压为+15/-8V,则所需的驱动功率为:IGBT开关时间参数:开通延迟时间tdon:开通时,从栅极电压的10%开始到集电极电流上升至最终的10%为止,这一段时间被定义为开通延迟时间;开通上升时间tr:开通时,从集电极电流上升至最终值的10%开始到集电极电流上升至最终值的90%为止,这一段时间被定义为开通上升时间;关断延迟时间tdoff:关断时,从栅极电压下降至其开通值的90%开始到集电极电流下降到开通值的90%为止,这一段时间被定义为关断延迟时间;关断下降时间tf:关断时,集电极电流由开通值的90%下降到10%之间的时间;开关时间的定义由下图所示:因为电压的上升下降时间及拖尾电流没有制定,上述开关时间参数无法给出足够的信息用来获取开关损耗;因而,单个脉冲的能量损耗被单独给出,单个脉冲开关损耗可由下列积分公式获得:单个脉冲的开关时间及能量参数强烈地依赖于一系列具体应用条件,如栅极驱动电路、电路布局、栅极电阻、母线电压电流及结温;因而,手册里的值只能作为IGBT开关性能的参考,需要通过详细的仿真和实验获得较为精确的值;针对半桥拓扑电路,可根据手册里的开关时间参数,设置互补的两个器件在开通及关断时的死区时间;IGBT模块参数详解三-短路及寄生导通IGBT短路性能:短路特性强烈地依赖于具体应用条件,如温度、杂散电感、电路及短路回路阻抗;IGBT短路特性可用下面测试电路描述;一个IGBT短接集电极及发射极,另一个IGBT施加单个驱动脉冲;对应的电压电流典型波形如右图所示,导通IGBT的电流以一定的斜率迅速上升,速度取决于DC-Link电压及回路杂散电感;IGBT进入退饱和状态,短路电流被限制在额定电流的若干倍取决于IGBT的结构特性,集电极-发射极电压保持在高位,芯片的温度由于短路大电流造成的功耗而上升,温度上升短路电流会略微下降;在一个规定的短路维持时间tsc内,IGBT必须被关断以避免损坏;文章来源:手册规定短路电流值是典型值,在应用中短路时间不应该超过10us.IGBT寄生导通现象:IGBT半桥电路运作时的一个常见问题是因米勒电容引起的寄生导通问题,如下图所示;S2处于关断状态,S1开通时,S2两端会产生电压变化dv/dt,将会形成因自身寄生米勒电容CCG所引发的电流,这个电流流过栅极电阻RG与驱动内部电阻,造成IGBT栅极到射极上的压降,如果这个电压超过IGBT的栅极临界电压,那么就可能造成S2的寄生导通,形成短路,引起电流击穿问题,进而可能导致IGBT损坏;寄生导通的根本原因是集电极和栅极之间固有的米勒电容造成的,如果集电极与发射极之间存在高电压瞬变,由于驱动回路寄生电感,米勒电容分压器反应速度远远快于外围驱动电路;因此即使IGBT关断在0V栅极电压,dvce/dt将会造成栅极电压的上升,栅极电路的影响将被忽略;栅极发射极电压可由下式计算:由上式可知,Cres/Cies的比例应该越小越好;为了避免栅极驱动的损耗,输入电容的值也应该越小越好;因为米勒电容随着VCE的增大而减小,所以,随着集电极-发射极电压的增大,抑制dv/dt寄生导通的鲁棒性能也增加;IGBT模块参数详解四-热阻特性I的耗散功率以及额定电流的值抛开及热阻的规定是没有意义的,因此,为了比较不同的功率器件性能,有必要分析他们的热特性;功率损耗产生的热量会使器件内部的结温升高,进而降低器件及性能并缩短寿命;让从芯片结点产生的热量消散出去以降低结温是非常重要的,瞬态热阻抗Zthjct描述了器件的热量消散能力;热阻Rth的定义为硅片消耗功率并达到热平衡时,消耗单位功率导致结温相对于外部指定点的温度上升的值,是衡量能力的关键因素;RθJC结到壳热阻:是指每个开关管结合部硅片同外壳模块底板之间的热阻;该值大小完全取决于封装设计及内部框架材料;RθJC通常在Tc=25℃条件下测得,可由下式计算:Tc=25℃是采用无穷大散热器的条件,及外壳的温度与环境温度一样,该散热器可以达到Tc=Ta;IGBT模块产品手册分别规定了IGBT和反并联二极管的RΘJC值;RΘCS接触热阻,壳到散热器:是指模块底板与散热器之间热阻;该值与封装形式、导热硅脂的类型和厚度以及与散热器的安装方式有关;RΘSA散热器到大气的热阻:取决于散热器的几何结构、表面积、冷却方式及质量;当描述带基板的功率模块或分立器件的热特性时时,需要观察芯片结点、外壳、散热器的温度;手册中结到底板的热阻及底板到散热器的热阻规范如下图所示,底板到散热器的热阻R thCH定义了一个在规定的热界面材料条件下的典型值;Thermal resistance IGBT, junction to case and case to heat sink热阻Rth描述了IGBT模块在稳定状态下的热行为,而热阻抗Zth描述了IGBT模块的瞬态或者短脉冲电流下的热行为;Rth只能描述DC工作模式,大部分IGBT实际应用是以一定的占空比进行开关动作;这种动态条件下,需要考虑采用热阻加热容的方法描述其等效电路;下图显示瞬态热阻抗ZthJC是作为时间的函数,ZthJCt到达最大值RθJC时饱和;Transient Thermal Impedance of IGBTChanges in junction temperature respect to conduction time单个脉冲曲线决定了以一定占空比D的连续脉冲工作状态下的热阻,如下式:式中:Zthjct为占空比为D的连续脉冲瞬态热阻,Sthjct:单个脉冲瞬态热阻a Transient thermal impedance junction to case andb transient thermal model IGBT模块的功耗主要是通过不同材料从芯片消散到散热器,每一种功率耗散路径上的材料都具有自身的热特性;因而,IGBT模块的热阻抗行为可以使用合适的系数进行建模,得到了上图a的热阻抗曲线ZthJCt;图b中单独的RC元素没有物理意义,它们的值是由相应的分析工具,从测量的模块加热曲线上提取得到;规格书包含了部分分数系数,如上图a中表格所示;电容的值可以由下式所得:IGBT模块的热阻分布及等效电路图如下图所示:IGBT模块热阻及温度分布图IGBT模块热阻等效电路假定散热器是等温的,则有热传输与电流传输有极大的相似性,遵从热路欧姆定律,可用上图的等效电路描述热量消散通道;从芯片结点到环境中的整体热阻以RθJA表示,等效电路可由下式描述:IGBT模块一个桥臂的热阻与桥臂内IGBT及二极管的热阻关系如下图所示:如果给定模块的热阻R thCH,可以由下式计算每个IGBT和二极管的热阻:下图为逆变器在不同的工作频率下IGBT结温的仿真结果:由上图可见,即使相同的功耗,不同的工作频率会导致Tj较大的偏差,若要获得详细仿真结果,可由器件供应商的仿真软件仿真得到;IGBT模块参数详解五-模块整体参数该部分描述与机械构造相关的电气特性参数,包括绝缘耐压、主端子电阻、杂散电感、直流电压能力;绝缘耐压:为了评定的额定绝缘电压值,将所有端子连接到一起,接至高压源高端,基板接至测试仪器低压端;高阻抗高压源必须提供需要的绝缘测试电压Viso,将测试电压逐渐提升至规定值,该值可由下式确定并保持规定的时间t,然后将电压降为0;英飞凌的设计至少可达到IEC61140标准的等级1,对于内部带有NTC的,可通过在接地的NTC与其他连到一起的所有控制及主端子之间接高压,验证绝缘要求;合适的绝缘电压取决于IGBT的额定集电极-发射极电压,对于1700V IGBT模块大部分应用需要的绝缘耐压要求;但对于牵引应用,同样1700阻断电压的IGBT模块需要4KV的绝缘耐压能力;因此,选择IGBT模块时,关注应用场合是非常重要的;英飞凌除了工业应用的1200V 模块满足VDE0160/EN50178要求,其他所有的IGBT模块都按照IEC1287通过了绝缘测试;因为绝缘测试意味着模块被施加极端压力,如果客户需要重复测试,则建议降额值最初值的85%;Insulation test voltage高压模块也同样采用标准IEC1287进行局部放电试验,保证长时间工作可靠性;上图所示规格书中的绝缘耐压测试应该在IGBT模块的可靠性测试之前及之后进行,可作为该压力测试下的部分失效判据;内部NTC的绝缘只是满足一个功能性隔离要求;在栅极驱动电路失效时,绑定线有可能由于失效事件改变位置,移动的绑定线或者失效过程电弧放电产生的等离子有可能与NTC接触;因而,如果有对绝缘能力有更高的要求,需要额外增加外部绝缘隔板;杂散电感Lδ杂散电感在开关转换时会导致浪涌电压,为主要的EMI来源;同时,结合组件的寄生电容形成谐振电路,从而使电压及电流在开关瞬间震荡;有杂散电感产生的瞬间过压可由下式计算,因此为了减少关断瞬间的过压,杂散电感应该设计成最小;规格书中的IGBT模块内部杂散电感值如下图所示,取决于IGBT的拓扑结构;Module stray inductance主端子电阻:IGBT模块主端子的电阻会进一步造成压降及损耗;手册里规定的单个开关功率端子的电阻值如下图,该值是指功率端子到芯片之间连接部分阻值;主端子产生的损耗会直接加到模块的外壳上;Module lead resistance根据下图模块端子电阻的等效电路可以得到整个模块主端子的电阻为DC stability VCED对于高压模块,宇宙射线的影响会更加严重,规格书规定了会产生可忽略的失效率100fit情况下的直流电压值,如上图所示;直流稳定电压是在室温及海平面下测得,不建议设置直流电压超过VCED;。

IGBT工作原理和工作特性

IGBT工作原理和工作特性

IGBT工作原理和工作特性1. IGBT的基本原理IGBT(Insulated Gate Bipolar Transistor)是一种高压、高速开关设备,结合了MOSFET和双极晶体管(BJT)的特性。

它具有MOSFET的高输入阻抗和BJT的低导通压降。

2. IGBT的结构IGBT由N型衬底、P型衬底和N型增强层组成。

增强层上有一个PN结,形成NPN三极管结构,而P型衬底连接到集电极。

3. IGBT的工作原理当IGBT的栅极电压为零时,栅极-源极结处形成反向偏置,导通区域被截断。

当栅极电压大于阈值电压时,栅极-源极结处形成正向偏置,导通区域开始形成导电通道,电流开始流动。

4. IGBT的工作特性(1)低导通压降:IGBT的导通压降较低,可以减少功耗和热损耗。

(2)高输入阻抗:IGBT的栅极电流非常小,输入阻抗较高,可以减少输入功率和电流。

(3)高开关速度:IGBT的开关速度较快,可以实现高频率开关操作。

(4)大功率处理能力:IGBT能够处理大功率电流和高电压。

(5)可靠性:IGBT具有较高的可靠性和稳定性,适用于各种工业应用。

5. IGBT的应用领域(1)电力电子:IGBT广泛应用于电力变换器、逆变器、交流调速器等领域。

(2)电动车:IGBT用于电动车的电机驱动系统,提供高效率和高性能。

(3)可再生能源:IGBT在太阳能和风能转换系统中用于能量转换和电网连接。

(4)工业自动化:IGBT用于工业机器人、自动化控制系统和电力工具等。

6. IGBT的优势和劣势(1)优势:高压能力、低导通压降、高开关速度、可靠性高、适用于大功率应用。

(2)劣势:对静电放电敏感、温度敏感、需要驱动电路。

7. IGBT的发展趋势(1)高集成度:将多个IGBT芯片集成在一个封装中,提高功率密度和可靠性。

(2)低损耗:减少导通和开关损耗,提高能效。

(3)高温特性:提高IGBT在高温环境下的工作能力。

(4)低成本:降低生产成本,推动IGBT技术的普及和应用。

IGBT模块参数详解

IGBT模块参数详解

IGBT模块参数详解一-IGBT静态参数•VCES:集电极-发射极阻断电压在可使用的结温围栅极-发射极短路状态下,允许的断态集电极-发射极最高电压。

手册里VCES是规定在25°C结温条件下,随着结温的降低VCES也会有所降低。

降低幅度与温度变化的关系可由下式近似描述:.模块及芯片级的VCES对应安全工作区由下图所示:文章来源:.igbt8./jc/19.htmlCollector-emitter voltage of the IGBT由于模块部杂散电感,模块主端子与辅助端子的电压差值为,由于部及外部杂散电感,VCES在IGBT关断的时候最容易被超过。

VCES在任何条件下都不允许超出,否则IGBT就有可能被击穿。

•Ptot:最大允许功耗在Tc=25°C条件下,每个IGBT开关的最大允许功率损耗,及通过结到壳的热阻所允许的最大耗散功率。

Ptot可由下面公式获得:。

Maximum rating for Ptot二极管所允许的最大功耗可由相同的方法计算获得。

•IC nom:集电极直流电流在可使用的结温围流过集电极-发射极的最大直流电流。

根据最大耗散功率的定义,可以由Ptot的公式计算最大允许集电极电流。

因而为了给出一个模块的额定电流,必须指定对应的结和外壳的温度,如下图所示。

请注意,没有规定温度条件下的额定电流是没有意义的。

Specified as data code: FF450R17ME3在上式中Ic及VCEsat Ic都是未知量,不过可以在一些迭代中获得。

考虑到器件的容差,为了计算集电极额定直流电流,可以用VCEsat的最大值计算。

计算结果一般会高于手册值,所有该参数的值均为整数。

该参数仅仅代表IGBT的直流行为,可作为选择IGBT的参考,但不能作为一个衡量标准。

•ICRM:可重复的集电极峰值电流最大允许的集电极峰值电流(Tj≤150°C),IGBT在短时间可以超过额定电流。

IGBT的构造与工作原理详解

IGBT的构造与工作原理详解

IGBT的构造与工作原理详解
什么是IGBT
IGBT(晶闸管)是一种半导体器件,它将晶体管和可控硅的特点结合
在一起,并具有低电流、高电压、高效率、高频率和高安全性等优点。

IGBT使得电能变换更加高效、经济和可靠,在汽车电子、电力电子、不
间断电源、五金制造等多个领域有着广泛的应用。

IGBT由一块特殊的半导体晶片制成,这块晶片由多层厚制结构组成,包括两个N型掺杂层和一个P型金属化层。

晶栅的底部被一个大面积的(接地)碳层覆盖,用于收集负载电流。

另外,IGBT的构造还包括具有负载电流收集端的正极和控制电流的
负极,后者的电极基本上是晶体管的极化,具有特定的分压值,使得
IGBT晶片的高端和低端之间的工作电压可以控制在可接受的范围内当IGBT被施加一个高电压的时候,IGBT会被激活,产生交换电流,
这就是IGBT的开启电路原理。

IGBT的关断原理也很简单,就是当我们对IGBT施加一个较低的控制电压的时候,IGBT就会断开,关闭IGBT的开关,使IGBT的另一端的交换电流关闭。

另外,IGBT也具有较高的注入能力。

IGBT模块参数详解

IGBT模块参数详解

IGBT模块参数详解一-IGBT固态参数之阳早格格创做•VCES:集电极-收射极阻断电压正在可使用的结温范畴内栅极-收射极短路状态下,允许的断态集电极-收射极最下电压.脚册里VCES是确定正在25°C 结温条件下,随着结温的落矮VCES也会有所落矮.落矮幅度与温度变更的闭系可由下式近似形貌:Collector-emitter voltage of the IGBT由于模块内里纯集电感,模块主端子与辅帮端子的电压好值为,由于内里及中部纯集电感,VCES正在IGBT闭断的时间最简单被超出.VCES正在所有条件下皆不允许超出,可则IGBT便有大概被打脱.•Ptot:最大允许功耗正在Tc=25°C条件下,每个IGBT启闭的最大允许功率耗费,及通过结到壳的热阻所允许的最大耗集功率.Ptot可由底下公式赢得:.Maximum rating for Ptot二极管所允许的最大功耗可由相共的要领估计赢得.•IC nom:集电极直流电流正在可使用的结温范畴内流过集电极-收射极的最大直流电流.根据最大耗集功率的定义,不妨由Ptot的公式估计最大允许集电极电流.果而为了给出一个模块的额定电流,必须指定对付应的结战中壳的温度,如下图所示.请注意,不确定温度条件下的额定电流是不意思的.Specified as data code: FF450R17ME3正在上式中Ic及VCEsat @ Ic皆是已知量,不过不妨正在一些迭代中赢得.思量到器件的容好,为了估计集电极额定直流电流,不妨用VCEsat的最大值估计.估计截止普遍会下于脚册值,所有该参数的值均为整数.该参数只是代表IGBT的直流通为,可动做采用IGBT的参照,然而不克不迭动做一个衡量尺度.•ICRM:可沉复的集电极峰值电流最大允许的集电极峰值电流(Tj≤150°C),IGBT正在短时间内不妨超出额定电流.脚册里定义为确定的脉冲条件下可沉复集电极峰值电流,如下图所示.表里上,如果定义了过电流持绝时间,该值可由允许耗集功耗及瞬时热阻Zth估计赢得.然而那个表里值并不思量到绑定线、母排、电气对接器的节制.果此,数据脚册的值相比较表里估计值很矮,然而是,它是概括思量功率模块的本量节制确定的仄安处事区.•RBSOA:反偏偏仄安处事区该参数形貌了功率模块的IGBT正在闭断时的仄安处事条件.如果处事功夫允许的最大结温不被超出,IGBT芯片正在确定的阻断电压下可鼓励二倍的额定电流.由于模块内里纯集电感,模块仄安处事区被规定,如下图所示.随着接换电流的减少,允许的集电极收射极电压需要落额.别的,电压的落额很大程度上依好于系统的相闭参数,诸如DCLink的纯集电感以及启闭变换历程换流速度.对付于该仄安处事区,假定采与理念的DCLink电容器,换流速度为确定的栅极电阻及栅极启动电压条件下赢得.Reverse??bias??safe??operating??area•Isc:短路电流短路电流为典型值,正在应用中,短路时间不克不迭超出uS.IGBT的短路个性是正在最大允许运止结温下测得.•VCEsat:集电极收射极鼓战电压确定条件下,流过指定的集电极电流时集电极与收射极电压的鼓战值(IGBT正在导通状态下的电压落).脚册的VCEsat值是正在额定电流条件下赢得,给出了Tj正在??oC及??oC的值.Infineon的IGBT皆具备正温度效力,相宜于并联.脚册的VCEsat值真足为芯片级,不包罗导线电阻.VCEsat随着集电极电流的减少而减少,随着Vge减少而缩小.Vge不推荐使用太小的值,会减少IGBT的导通及启闭耗费.VCEsat可用去估计IGBT的导通耗费,如下式形貌,切线的面应尽管靠拢处事面.对付于SPWM统制办法,导通耗费可由下式赢得:IGBT模块IGBT模块固态参数可周到评估IGBT芯片的本能.RGint:模块内里栅极电阻:为了真止模块内里芯片均流,模块内里集成有栅极电阻.该电阻值该当被当成总的栅极电阻的一部分去估计IGBT启动器的峰值电流本领.RGext:中部栅极电阻:中部栅极电阻由用户树坐,电阻值会做用IGBT的启闭本能.上图中启闭尝试条件中的栅极电阻为Rgext的最小推荐值.用户可通过加拆一个退耦合二极管树坐分歧的Rgon战Rgoff.已知栅极电阻战启动电压条件下,IGBT启动其中:Cies = CGE + CGC:输进电容(输出短路)Coss = CGC + CEC:输出电容(输进短路)Cres = CGC:反馈电容(米勒电容)动向电容随着集电极与收射极电压的减少而减小,如下图所示.脚册内里的寄死电容值是正在25V栅极电压测得,CGE的值随着VCE的变更近似为常量.CCG的值热烈依好于VCE的值,并可由下式估算出:IGBT所需栅极启动功率可由下式赢得:大概者QG:栅极充电电荷:栅极充电电荷可被用去劣化栅极启动电路安排,启动电路必须传播的仄稳输出功率可通过栅极电荷、启动电压及启动频次赢得,如下式:其中的QG为安排中本量灵验的栅极电荷,依好于启动器输出电压晃幅,可通过栅极IGBT启闭时间参数电荷直线举止较透彻的近似.通过采用对付应的栅极启动输出电压的栅极电荷,本量该当思量的QG’不妨从上图中获与.工业应用安排中,典型的闭断栅极电压常被树坐为0V大概者-8V,可由下式近似估计:比圆,IGBT的栅极电荷参数如上表,本量启动电压为+15/-8V,则所需的启动功率为:IGBT启闭时间参数:启通延缓时间td(on):启通时,从栅极电压的10%启初到集电极电流降下至最后的10%为止,那一段时间被定义为启通延缓时间.启通降下时间tr:启通时,从集电极电流降下至最后值的10%启初到集电极电流降下至最后值的90%为止,那一段时间被定义为启通降下时间.闭断延缓时间td(off):闭断时,从栅极电压下落至其启通值的90%启初到集电极电流下落到启通值的90%为止,那一段时间被定义为闭断延缓时间.闭断下落时间tf:闭断时,集电极电流由启通值的90%下落到10%之间的时间.启闭时间的定义由下图所示:果为电压的降下下落时间及拖尾电流不制定,上述启闭时间参数无法给出脚够的疑息用去获与启闭耗费.果而,单个脉冲的能量耗费被单独给出,单个脉冲启闭耗费可由下列积分公式赢得:单个脉冲的启闭时间及能量参数热烈天依好于一系列简直应用条件,如栅极启动电路、电路筹备、栅极电阻、母线电压电流及结温.果而,脚册里的值只可动做IGBT启闭本能的参照,需要通过仔细的仿真战真验赢得较为透彻的值.针对付半桥拓扑电路,可根据脚册里的启闭时间参数,树坐互补的二个器件正在启通及闭断时的死区时间.IGBT短路本能:IGBT模块脚册确定短路电流值是典型值,正在应用中短路时间不该该超出10us.IGBT寄死导通局里:IGBT半桥电路运做时的一个罕睹问题是果米勒电容引起的寄死导通问题,如下图所示.S2处于闭断状态,S1启通时,S2二端会爆收电压变更(dv/dt),将会产死果自己寄死米勒电容CCG所激励的电流,那个电流流过栅极电阻RG与启动内里电阻,制成IGBT栅极到射极上的压落,如果那个电压超出IGBT的栅极临界电压,那么便大概制成S2的寄死导通,产死短路,引起电流打脱问题,从而大概引导IGBT益坏.寄死导通的根根源基本果是集电极战栅极之间固有的米勒电容制成的,如果集电极与收射极之间存留下电压瞬变,由于启动回路寄死电感,米勒电容分压器反应速度近近快于中围启动电路.果此纵然IGBT闭断正在0V栅极电压,dvce/dt将会制成栅极电压的降下,栅极电路的做用将被忽略.栅极收射极电压可由下式估计:由上式可知,Cres/Cies的比率该当越小越佳.为了预防栅极启动的耗费,输进电容的值也该当越小越佳.果为米勒电容随着VCE的删大而减小,所以,随着集电极-收射极电压的删大,压制dv/dt寄死导通的鲁棒本能也减少.IGBT模块参数详解四-热阻个性IGBT模块的耗集功率以及额定电流的值扔启IGBT模块温度及热阻的确定是不意思的,果此,为了比较分歧的功率器件本能,有需要分解他们的热个性.IGBT模块功率耗费爆收的热量会使器件内里的结温降下,从而落矮器件及IGBT 变流器本能并收缩寿命.让从芯片结面爆收的热量消集进去以落矮结温利害常要害的,瞬态热阻抗Zthjc(t)形貌了器件的热量消集本领.热阻Rth的定义为硅片消耗功率并达到热仄稳时,消耗单位功率引导结温相对付于中部指定面的温度降下的值,是衡量IGBT集热本领的闭键果素. RθJC(结到壳热阻):是指每个启闭管分离部(硅片)共中壳(模块底板)之间的热阻.该值大小真足与决于启拆安排及内里框架资料.RθJC常常正在Tc=25℃条件下测得,可由下式估计:Tc=25℃是采与无贫大集热器的条件,及中壳的温度与环境温度一般,该集热器不妨达到Tc=Ta.IGBT模块产品脚册分别确定了IGBT战反并联二极管的RΘJC值.RΘCS(交战热阻,壳到集热器):是指模块底板与集热器之间热阻.该值与启拆形式、导热硅脂的典型战薄度以及与集热器的拆置办法有闭. RΘSA(集热器到大气的热阻):与决于集热器的几许结构、表面积、热却办法及品量.当形貌戴基板的功率模块大概分坐器件的热个性常常,需要瞅察芯片结面、中壳、集热器的温度.脚册中结到底板的热阻及底板到集热器的热阻典型如下图所示,底板到集热器的热阻RthCH定义了一个正在确定的热界里资料条件下的典型值. Thermal resistance IGBT, junction to case and case to heat sink 热阻Rth形貌了IGBT模块正在宁静状态下的热止为,而热阻抗Zth形貌了IGBT模块的瞬态大概者短脉冲电流下的热止为.Rth只可形貌DC处事模式,大部分IGBT本量应用是以一定的占空比举止启闭动做.那种动向条件下,需要思量采与热阻加热容的要领形貌其等效电路.下图隐现瞬态热阻抗ZthJC是动做时间的函数,ZthJC(t)到达最大值RθJC时鼓战.Transient Thermal Impedance of IGBTChanges in junction temperature respect to conduction time 单个脉冲直线决断了以一定占空比(D)的连绝脉冲处事状态下的热阻,如下式:式中:Zthjc(t)为占空比为D的连绝脉冲瞬态热阻,Sthjc(t):单个脉冲瞬态热阻a) Transient thermal impedance junction to case and b)transient thermal modelIGBT模块的功耗主假如通太过歧资料从芯片消集到集热器,每一种功率耗集路径上的资料皆具备自己的热个性.果而,IGBT模块的热阻抗止为不妨使用符合的系数举止修模,得到了上图a的热阻抗直线ZthJC(t).图b中单独的RC 元素不物理意思,它们的值是由相映的分解工具,从丈量的模块加热直线上提博得到.规格书籍包罗了部分分数系数,如上图a中表格所示.电容的值不妨由下式所得:IGBT模块的热阻分集及等效电路图如下图所示:IGBT模块热阻及温度分集图IGBT模块热阻等效电路假定集热器是等温的,则有热传输与电流传输有极大的相似性,遵从热路欧姆定律,可用上图的等效电路形貌热量消集通讲.从芯片结面到环境中的真足热阻以RθJA表示,等效电路可由下式形貌:IGBT模块一个桥臂的热阻与桥臂内IGBT及二极管的热阻闭系如下图所示:如果给定模块的热阻RthCH,不妨由下式估计每个IGBT战二极管的热阻:下图为顺变器正在分歧的处事频次下IGBT结温的仿真截止:由上图可睹,纵然相共的功耗,分歧的处事频次会引导Tj 较大的偏偏好,若要赢得仔细仿真截止,可由器件供应商的仿真硬件仿真得到.IGBT模块参数详解五-模块真足参数该部分形貌与IGBT模块板滞构制相闭的电气个性参数,包罗绝缘耐压、主端子电阻、纯集电感、直流电压本领.绝缘耐压:为了评比IGBT模块的额定绝缘电压值,将所有端子对接到所有,接至下压源下端,基板接至尝试仪器矮压端.下阻抗下压源必须提供需要的绝缘尝试电压Viso,将尝试电压渐渐提下至确定值,该值可由下式决定并脆持确定的时间t,而后将电压落为0.英飞凌的IGBT模块安排起码可达到IEC61140尺度的等第1,对付于内里戴有NTC的IGBT模块,可通过正在接天的NTC与其余连到所有的所有统制及主端子之间接下压,考证绝缘央供.符合的绝缘电压与决于IGBT的额定集电极-收射极电压,对付于1700V IGBT模块大部分应用需要2.5KV的绝缘耐压央供.然而对付于牵引应用,共样1700阻断电压的IGBT模块需要4KV的绝缘耐压本领.果此,采用IGBT模块时,闭注应用场合利害常要害的.英飞凌除了工业应用的1200V模块谦脚VDE0160/EN50178央供,其余所有的IGBT模块皆依照IEC1287通过了绝缘尝试.果为绝缘尝试表示着模块被施加极度压力,如果客户需要沉复尝试,则修议落额值最初值的85%.Insulation test voltage 下压模块也共样采与尺度IEC1287举止局部搁电考查,包管万古间处事稳当性.上图所示规格书籍中的绝缘耐压尝试该当正在IGBT模块的稳当性尝试之前及之后举止,可动做该压力尝试下的部分做废判据.内里NTC的绝缘不过谦脚一个功能性断绝央供.正在栅极启动电路做废时,绑定线有大概由于做废事变改变位子,移动的绑定线大概者做废历程电弧搁电爆收的等离子有大概与NTC交战.果而,如果有对付绝缘本领有更下的央供,需要特殊减少中部绝缘隔板.纯集电感Lδ纯集电感正在启闭变换时会引导浪涌电压,为主要的EMI 根源.共时,分离组件的寄死电容产死谐振电路,从而使电压及电流正在启闭瞬间震荡.有纯集电感爆收的瞬间过压可由下式估计,果此为了缩小闭断瞬间的过压,纯集电感该当安排成最小.规格书籍中的IGBT模块内里纯集电感值如下图所示,与决于IGBT的拓扑结构.Module stray inductance主端子电阻:IGBT模块主端子的电阻会进一步制成压落及耗费.脚册里确定的单个启闭功率端子的电阻值如下图,该值是指功率端子到芯片之间对接部分阻值.主端子爆收的耗费会间接加到模块的中壳上.Module lead resistance根据下图模块端子电阻的等效电路不妨得到所有模块主端子的电阻为DC stability (VCED)对付于下压模块,宇宙射线的做用会越收宽沉,规格书籍确定了会爆收可忽略的做废用100fit情况下的直流电压值,如上图所示.直流宁静电压是正在室温及海仄里下测得,不修议树坐直流电压超出VCED.。

IGBT的基础知识--IGBT的基本结构,参数选择,使用注意

IGBT的基础知识--IGBT的基本结构,参数选择,使用注意

IGBT的基础知识--IGBT的基本结构,参数选择,使用注意1.IGBT的基本结构绝缘栅双极晶体管(IGBT)本质上是一个场效应晶体管,只是在漏极和漏区之间多了一个P 型层。

根据国际电工委员会的文件建议,其各部分名称基本沿用场效应晶体管的相应命名。

图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+区称为源区,附于其上的电极称为源极。

N+ 区称为漏区。

器件的控制区为栅区,附于其上的电极称为栅极。

沟道在紧靠栅区边界形成。

在漏、源之间的P型区(包括P+和P一区)(沟道在该区域形成),称为亚沟道区(Subchannel region )。

而在漏区另一侧的 P+ 区称为漏注入区(Drain injector ),它是 IGBT 特有的功能区,与漏区和亚沟道区一起形成 PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。

附于漏注入区上的电极称为漏极。

为了兼顾长期以来人们的习惯,IEC规定:源极引出的电极端子(含电极端)称为发射极端(子),漏极引出的电极端(子)称为集电极端(子)。

这又回到双极晶体管的术语了。

但仅此而已。

IGBT的结构剖面图如图2所示。

它在结构上类似于MOSFET ,其不同点在于IGBT是在N沟道功率MOSFET 的N+基板(漏极)上增加了一个P+ 基板(IGBT 的集电极),形成PN结j1 ,并由此引出漏极、栅极和源极则完全与MOSFET相似。

图1 N沟道IGBT结构图2 IGBT的结构剖面图由图2可以看出,IGBT相当于一个由MOSFET驱动的厚基区GTR ,其简化等效电路如图3所示。

图中Rdr是厚基区GTR的扩展电阻。

IGBT是以GTR 为主导件、MOSFET 为驱动件的复合结构。

N沟道IGBT的图形符号有两种,如图4所示。

实际应用时,常使用图2-5所示的符号。

对于P沟道,图形符号中的箭头方向恰好相反,如图4所示。

IGBT 的开通和关断是由栅极电压来控制的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

封装材料:塑料封装
极数:多极
封装外形:平板形
品牌:三菱(MITSUBISHI)
型号:CM450HA-5F
控制方式:IGBT
关断速度:高频(快速)
散热功能:不带散热
频率特性:高频
功率特性:大功率
额定正向平均电流:450A
控制极触发电流:1mA
最大稳定工作电流:450A
反向重复峰值电压:250V
控制极触发电压:1V
正向重复峰值电压:250V
反向阻断峰值电压:250V
E=Emitter 发射极
C=Collector 集电极
G=Gate 门极
解析IGBT的工作原理及作用
本文通过等效电路分析,通俗易懂的讲解IGBT的工作原理和作用,并精简的指出了IGBT 的特点。

可以说,IGBT是一个非通即断的开关,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

IGBT(绝缘栅双极型晶体管),是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。

IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。

非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

目前国内缺乏高质量IGBT模块,几乎全部靠进口。

绝缘栅双极晶体管(IGBT)是高压开关家族中最为年轻的一位。

由一个15V高阻抗电压源即可便利的控制电流流通器件从而可达到用较低的控制功率来控制高电流。

IGBT的工作原理和作用通俗易懂版:
IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT导通,栅源极不加电压或者是加负压时,
IGBT关断,加负压就是为了可靠关断。

IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。

IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。

如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。

IGBT的工作原理和作用电路分析版:
IGBT的等效电路如图1所示。

由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。

图1 IGBT的等效电路
由此可知,IGBT的安全可靠与否主要由以下因素决定:
--IGBT栅极与发射极之间的电压;
--IGBT集电极与发射极之间的电压;
--流过IGBT集电极-发射极的电流;
--IGBT的结温。

如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。

绝缘栅极双极型晶体管(IGBT)
IGBT管不管在什么样的使用环境下,其基本作用都是做为高速无触点电子开关。

比如你举的例子,就是利用IGBT的开关原理,利用控制电路给予适当的开通、关断信号,IGBT就能根据你的控制信号将直流电变换成交流电,直流电转换成交流电后电压会降低,实际上火车
供电系统的600V直流就是将380V交流整流而成,IGBT逆变器驱动板的作用就是将这个过程的再还原。

同时可以通过控制信号的脉宽调节来控制电流的大小,也可以控制交流频率,从而控制电机的转速。

引起烧IGBT的原因
2011-11-09 1862人1页
5.0分用APP查看
引起烧IGBT 的原因
1、LC 谐振电路震荡形成的高压超过了IGBT 的耐压值所致,或选用的IGBT 耐压不够。

2、因同步采样电路故障引起IGBT G 极的脉宽调制信号与IGBT C极因LC 偕振电路产生的交流高压不同步导致烧IGBT 。

3、由于电路故障的原因导致IGBT G极静态时已有明显的电压,使得IGBT 长期处于导通状态,甚至是通电便烧IGBT 。

4、由于IGBT 热敏电阻绝缘不良导致IGBT C极的直流高压和交流高压通过热敏电阻串入片机后烧IGBT 。

这种故障最为严重,有可能将单片机、LM339、HC164和相关的其它元件烧毁。

5、因风机故障,风机的电机形成的反峰电压串入18V 直流电源而烧IGBT 。

6、因热敏电阻不良或单片机不良等原因高温不能做出保护,使得IGBT 温度过高,而烧IGBT 。

7、因选用的锅具不合适而烧IGBT 。

8、因电磁炉长期使用IGBT 老化烧IGBT 。

二、解决故障的相应对策:
因进入市场电磁炉基本不会是电路设计原因引起烧IGBT ,多是元器件发生故障所致,下面就引起烧IGBT 原因作出相应的简单维修介绍。

1、原因:因高压过高烧IGBT ;
解决方法:(1)检测线圈盘和谐振电容是否变质或所更换的元件是否与原机相符,找出故障元件并替换。

(2)检测高压采样电路的电压是否正常,如不正常找出引起该故障的元件并替换。

(3)当做了以上两步仍看不出明显故障点,应考虑高压取样电路中的高频滤波电容是否失容或开路,如有不妥予已替换。

2、原因:因同步采样电路故障引起烧IGBT ;
解决方法:(1)用万用表检测同步采样和同步输出静态电压是否正常,如不正常找出引起该电压变化的故障元件并替换,该处故障最多的是同步取样的大功率电阻。

(2)如同步采样和同步输出电压正常时,可观察IGBT G极触发波形是否正常和单片输出的PWM 信号是否正常,如不正常多是震荡电容阻尼二极管及单片机故障。

通过以上两点基本上能将同步采样电路故障引起烧IGBT 原因找出。

3、原因:IGBT G极静态电压过高;
1/2页
解决方法:(1)检测IGBT 驱动电路元件是否有故障并替换。

(2)测单片机电流检测脚的静态电压是否过高,如过高找出故障元件并替换。

(3)测量单片机PWM 信号输出脚电压是否过高,如过高多是单片机原因。

4、原因:因IGBT 热敏电阻绝缘不良导致IGBT ;
解决方法:在维修电磁炉时如发现单片机LM339和IGBT 同时损坏时应考虑IGBT 热敏电阻是否绝缘良好,可用万用表的2M 或20M 档检查热敏电阻与外壳有没有绝缘不良现象,有则予已替换。

5、原因:因风机故障烧IGBT ;
解决方法:替换。

6、原因:因热敏电阻失效或单片感应不到热敏电阻传来的信息而导致高温烧IGBT ;解决方法:1、用加热的方法检验热敏电阻是否有效,无效则替换。

2、如热敏电阻无故障,则多为单片机不良造成的,替换单片机。

7、原因:因选用的锅具不合适烧IGBT ;
解决方法:选用合适的铁质锅具。

相关文档
最新文档