火焰校正方法

合集下载

火焰校正

火焰校正
线状加热分为直线、螺旋线、U形曲线三种
三角形加热
加热区为三角形,常用于矫正厚度较大、刚 性较强的焊接构件的变形,也可矫正板料 旁弯。三角形加热一般用于扭曲变形的校 正。
火焰校正概述
火焰校正,这种方法与焊接息息相关,尤其是一些从 事大型结构件焊接的同行们肯定深有感触。由于大 型结构件的焊缝长度、焊缝尺寸等数据都较大,其 焊接后的变形量相对也很大,这样对于焊后尺寸的 保证有很大难度。如薄板件焊后一般会产生波浪变 形、凸起等,细长结构件容易弯曲等等。还有些结 构件由于尺寸较大在装配中测量时容易产生误差, 这些误差累计后就可能会对最终的结构件尺寸影响 较大。我们一般情况下不会轻易将一件大型结构件 报废,只能通过校正、或让步处理等方法来使用。 这就不可避免的要使用到火焰校正(当然有些变形 可以采用压力机等方法校正),在校正时最重要的 是我们要知道在什么位置加热、加热形状、达到多 高的温度、采用什么样的冷却方法等才能达到我们 最终要求的效果。
火焰加热方式及校正温度
火焰加热方式有:圆点加热、线状加热和三角状 加热等三种。
• 低温矫正 500度~600度 冷却方式:水 • 中温矫正(推荐) 600度~700度 冷却方
式:空气和水 ห้องสมุดไป่ตู้ 高温矫正 700度~800度 冷却方式:空气
圆点加热(校正波浪变形)
板厚与加热圆点直径关系 板材 1 2 3 4 5 6 8 10 12 14 16 18 20 22
火焰校正
洪新华
校正方法分类
1. 手工矫正:一般用于尺寸较小的局部变形,手工 矫正的主要设备是大锤和平台。
2. 机械矫正:常用的设备为板料校平机、卷板机和 油压机。
3. 火焰校正:利用金属热胀冷缩的物理特性,采用 火焰局部加热金属,热膨胀部分受周围冷金属 的制约,不能自由变形,而产生压缩塑性变形, 冷却后压缩塑性变形残留下来,引起局部收缩, 即在被加热处产生聚结力,使金属构件变形获 得矫正。

火焰校正知识点总结

火焰校正知识点总结

火焰校正知识点总结火焰校正是指在燃烧过程中根据燃烧反应的化学原理和实验数据,对火焰的温度、组成及燃烧效率等参数进行测量并进行调整,从而达到最佳的燃烧效果。

火焰校正是燃烧控制的重要环节,对于提高燃料利用率、降低排放污染有着重要的作用。

下面将从火焰校正的基本原理、方法、设备及应用等方面进行总结。

一、火焰校正的基本原理1. 燃烧反应火焰校正是基于燃烧反应的化学原理进行的,燃烧是指燃料和氧气在一定条件下经过化学反应产生火焰和释放热能,燃烧反应的基本形式可表示为:燃料 + 氧气→ 二氧化碳 + 水 + 热能。

不同的燃料在燃烧过程中产生的化学反应产物和热能会有所不同。

2. 燃烧参数火焰校正中需要测量和调整的参数主要有温度、组成和效率。

温度是指火焰的燃烧温度,直接影响着燃烧反应的速率和产物的生成。

组成是指火焰中各种化学物质的成分及配比,不同的组成会影响燃烧反应的效率和产物的种类。

效率是指燃料在燃烧过程中释放的能量与输入的能量之间的比率,是评价燃烧质量和经济性的重要指标。

二、火焰校正的方法1. 热电偶法热电偶法是通过将热电偶插入火焰中进行温度测量,根据热电偶的热电效应将温度信号转换为电信号,再经过放大、滤波和处理得到火焰的温度值。

这种方法具有测量范围广、响应速度快等优点,但对火焰的位置和尺寸有一定的限制。

2. 光谱法光谱法是利用火焰燃烧时产生的光谱特性进行温度、组成和效率的测量,通过分析火焰中不同波长的光谱特征来推断出火焰的参数。

这种方法具有非接触式测量、对火焰位置和尺寸的要求不高等优点,适用于复杂形状和高温的火焰测量。

3. 燃烧气体分析法燃烧气体分析法是通过对火焰燃烧产生的氧气、二氧化碳、氮气等气体成分进行分析,来推断出火焰的组成和效率。

这种方法具有直接测量燃烧产物、对火焰的位置和尺寸要求不高等优点,适用于实时监测燃烧过程中的气体成分。

三、火焰校正的设备1. 热电偶热电偶是火焰校正中常用的温度测量器件,由两种不同金属线组成的,当两种金属相接时,当两个接点的温度不相同时,就会在两个接点间产生电动势,通过检测这个电动势就可以推测出温度值。

火焰校正的名词解释

火焰校正的名词解释

火焰校正的名词解释火焰校正是一种用于数码摄影的后期处理技术,旨在调整和优化图像中的色彩和亮度,使其更加真实和艺术化。

尽管现代数码相机在捕捉图像时已经越来越接近真实场景,但是由于光照和监视器显示的差异等因素,图像中的色彩和亮度可能会与实际场景有所偏差。

火焰校正就是通过对这些差异进行校正,达到还原真实场景的目的。

本文将从火焰校正的原理、过程和应用等方面进行阐述。

一、火焰校正的原理火焰校正的原理可以简单概括为"调整像素值"。

在数字图像中,每个像素都有一个数值表示其亮度和色彩信息。

火焰校正通过检测图像中的像素值差异,并进行调整,使图像的色彩和亮度更加真实和准确。

二、火焰校正的过程火焰校正的过程可以分为以下几个步骤:1. 白平衡校正:白平衡是火焰校正的重要一环,它通过调整图像中的颜色温度,使白色对象在图像中呈现真正的白色。

摄影师或后期处理软件可以根据实际情况设定颜色温度值,但也可以通过自动白平衡功能实现。

白平衡校正使得图像中的颜色更加准确,不再偏向黄色或蓝色。

2. 色彩校正:色彩校正是火焰校正的核心步骤之一,它通过调整图像中的饱和度、色相和对比度等参数,使得图像色彩更加真实而丰富。

对于普通人而言,为了忠实地还原真实场景,色彩校正非常重要。

3. 亮度校正:亮度校正用于调整图像中的明暗程度,使图像的亮度达到合适的水平。

这一步是为了确保图像中明暗部分的细节都能清晰可见,同时保持适当的对比度。

4. 锐化和降噪:锐化和降噪是火焰校正过程中常用的步骤,用于增强图像细节和减少噪点。

锐化可以使图像边缘更加清晰,降噪可以减少图像中的噪点和颗粒感。

三、火焰校正的应用火焰校正在数码摄影中有着广泛的应用。

不论是专业摄影师还是普通爱好者,几乎每张照片都需要进行一定程度的后期处理,而火焰校正是其中必不可少的一步。

1. 修复照片:火焰校正可以修复因光照不均匀或白平衡错误而导致的图像问题。

通过调整颜色、曝光和对比度等参数,可以修正和优化照片,使其呈现出更好的效果。

火焰校正方法

火焰校正方法

浅谈火焰校正摘要由于材料、设备、运输等因素的影响,会引起原材料的变形,而在制造过程中有切割变形、焊接变形、运输变形及吊装变形;对于这些变形,通过实践与初步的理论分析,对校正的工序进行了探讨,并对校正的温度、加热时间、加热范围进行了研究,对校正的位置作了一般性讨论。

关键词火焰校正位置时间温度加热工序在钢结构制造过程中,由于材料、设备、运输等因素的影响,会引起原材料的变形。

在制造过程中有切割变形、焊接变形、运输变形及吊装变形等。

在这些变形中,像原材料的变形可采用平板机或卷板机来消除变形,而像翼板小于60毫米的“H、T”等规则物体的焊接变形则可以通过翼缘校直机校正龟背,其它变形与大尺寸的工件的就无法通过校直机来校正,尤其就是焊接后的复杂外形就更加无法采用校直机校正,而就是一般采用火焰校正的方法。

引起这些变形的原因就是由于构件或原材料受到外力或者内力的作用,会引起拉伸,压缩,弯曲,扭曲或复合变形。

各种变形的产生原因分析如下:原材料的变形:生产时轧辊的变曲或间隙与速度分布不一致时会在宽度方向产生机械应力引起变形;存放不当引起的变形,存放的多、堆放的时间长因自重而引起朔性变形,运输吊装不正确会引起物体变形或将物体吊坏等。

切割变形:因氧气乙炔火焰高温时切边的金属的冷热收缩不一致,使切口在切割加热边向外弯曲,冷却后内应力使加热边向内弯曲、组装变形:组装时许多板料由于多方面的原因需要用外力强行组合,使得组装件在焊接前就因残余应力而产生了变形。

焊接变形:焊接产生的不均匀温度场使构件因焊接的热变形无法自由伸缩机遇产生的温度应力造成的变形。

加热温度达到一定程度就会影响组织的形变而造成的变形。

各种变形中以焊接变形最为严重,而焊接变形又可分为如下几种:纵向收缩变形:构件沿长度方向的收缩、横向变形:构件沿焊缝的垂直方向收缩。

挠曲变形:构件焊后由于纵向或横向收缩变形引起。

角变形:构件的平面绕焊缝产生的角变形。

波浪变形:构件产生的平面弯曲、其中我公司20-40毫米的钢板最容易产生这种变形。

钢材火焰校正常用的方法有

钢材火焰校正常用的方法有

钢材火焰校正常用的方法有
钢材火焰校正是通过对钢材进行加热处理,以改善其力学性能和组织结构的一种方法。

常用的钢材火焰校正方法有以下几种:
1. 均质化火焰校正:将钢材加热到一定温度,在均质化温度保持一定时间后迅速冷却。

通过均匀加热和均匀冷却的过程,使钢材的组织结构得到改善,减少内部应力产生。

2. 归纳火焰校正:将钢材加热到一定温度,并保持一段时间,以使组织达到热力平衡。

然后迅速冷却,使组织结构中细小的碳化物析出,从而提高强度和硬度。

3. 回火火焰校正:在钢材淬火后进行加热处理,将其加热到适当温度进行保温一段时间,然后缓慢冷却。

回火火焰校正可以提高钢材的延展性,减轻淬火应力,提高钢材的耐腐蚀性。

4. 焊接焊接火焰校正:针对焊接过程中产生的应力和变形问题,在焊接后对焊缝进行火焰校正。

主要通过加热焊缝和周围的钢材,使其达到足够的温度,以减少焊接引起的变形和应力。

5. 淬火火焰校正:将钢材加热到非常高的温度,然后迅速冷却。

这种方法主要用于硬化钢材,以提高其硬度和强度。

需要根据具体的钢材类型、应用场景和要求选择合适的火焰校正方法,并在操作中严格控制加热温度、保温时间和冷却速度等参数,以确保获得符合要求的钢材性能。

火工校正工艺

火工校正工艺

火工校正主要是用来消除钢板扎制、热切割、焊接产生的残余应力和变形。

在焊接钢结构制造中最主要是用来对焊接变形的校正。

2 火工校正的原理火焰矫正是利用金属热胀冷缩的物理特性,采用火焰局部加热金属,热膨胀部分受周围冷金属的制约,不能自由变形,而产生压塑性变形,冷却后压塑性变形残留下来,引起局部收缩,即在被加热处产生积聚力,使金属构件变形获得矫正。

3 焊接变形的种类3.1 纵向收缩变形构件焊后在焊缝方向产生收缩。

焊接结构焊后出现的收缩变形是难以修复的,必须在构件下料时加放余量。

3.2 横向收缩变形构件焊后在焊缝横向产生收缩。

焊接结构焊后出现的收缩变形是难以修复的,必须在构件下料时加放余量。

3.3 角变形构件焊后,构件的平面围绕焊缝发生的角位移。

主要是由于焊缝截面形状不对称,或施焊层次不合理致使焊缝在厚度方向上横向收缩量不一致引起的。

3.4 波浪变形薄板焊后易产生这种失稳变形,形状呈波浪状。

产生原因是由于焊缝的纵向和横向收缩在拘束度较小结构部位造成较大的压应力而引起的变形,或由几个互相平行的角焊缝横向收缩产生的角变形而引起的组合变形,或由上述两种原因共同作用而产生的变形。

3.5 弯曲变形构件焊后发生弯曲。

弯曲变形是由纵向收缩引起和或横向收缩引起。

3.6 扭曲变形焊后沿构件的长度出现螺旋形变形,这种变形是由于装配不良,施焊顺序不合理,致使焊缝纵向和横向收缩没有一定规律而引起的变形。

4 火焰加热对材料性能的影响w(C)小于0.25%的低碳钢,在通常火焰加热、冷却(包括水冷)时,不易获得马氏体组织,仍保持钢材原来组织,即铁素体加珠光体,因此这种钢火焰矫正加热、冷却对力学性能影响不大。

低合金钢采用火焰局部加热空冷对力学性能无显著影响、且疲劳试验对刚度也没有影响。

但如冷却速度过快也能出现低碳马氏体组织,影响力学性能。

所以火焰矫正应控制加热温度和冷却速度。

如若采用浇水冷却,最好加热温度不超过7230C。

5 火焰矫正基本参数选择5.1 火焰加热温度火焰矫正根据材质、板厚和加热方法等不同情况,选择不同的加热温度。

火焰矫正的规范改

火焰矫正的规范改

管子校正———工艺及技术要求一、撑直由于管子在堆放、吊运、焊接产生的弯曲变形,需进行撑直,一般采用冷撑:用液压撑直机——撑单支管(蛇形管≤φ42也可用手工撑直耙撑直),对管径Dw≤108mm的管子撑直后的直线度以每M 长度内应≤2.5mm;全长L内应≤5mm。

并要注意在撑直是不能压伤管子。

撑直工序安排如下:1.原材料有弯曲的——必在下料前先撑直后下料;2.弯管的直段部位有弯曲的——必在对样(或装配)前撑直;3.单支出厂管上焊有其他零件而弯曲的——必在泵水前撑直;4.不装、焊的直管上有弯曲的——必在油漆之前撑直。

5.管子的对接焊头处折弯超差的——必在通球前撑直(撑直—通球—探伤)。

二、对样及校正:管子的的外形与样台上的放样线间的偏移规定如下(对样检查):1. 蛇形管:单根蛇形管的管端偏移Δb,当管端的直段长度L端≤400mm时,Δb≤2mm;当L端﹥400mm时,Δb≯0.005L端;管端直段长度L端+4mm 、-2mm。

多根套排蛇形管,必在单根蛇形管对样及校正合格后,才能套排;套排中各管间的间隙≮1mm。

2. 需与锅筒或集箱连接的管子,管端偏移Δb≤3mm;管端直段长度L端+3mm、-3mm;管子的中间管段偏移Δc≤5mm。

平面弯管的管径≤φ89的平面度(不平度)Δa≤6mm;特别是要保证接口位置便于安装。

当管子的外形与放样的偏移超过上述规定时,除图纸注明不能用火校以外,对≥101.6m的厚壁管一般采用火焰加热和人工匀速搬动——长缩短伸的方法使其合格。

对铬钼钢管进行火焰校正时,加热温度不得超过回火温度,且须有检查员的监控。

对常用管材的校正温度应严格控制在如下范围内:碳钢管——≤950;15CrMoG——≤740℃;T91——≤750℃(SA-213T91管子热校后应立即用保温材料覆盖保护冷却至尊=室温,并在24小时内完成回火热处理,同时此材料在热处理后禁止校正);12Cr2MoWVTiBG(钢102)——≤760℃;12Cr1MoVG——≤770℃;1Cr18Ni9Ti、TP304H、TP347H——≤850-930℃.烘烤部位——弯头的起、止线(俗称尺线)或左、或右约20mm的范围内在尽量短时间加热至许可温度;对受拉伸一侧的温度略高;受压缩一侧温度略低;否则容易鼓包或者起邹。

火焰校正使用原理及操作实例

火焰校正使用原理及操作实例

火焰校正使用原理及操作实例作者:苗玲来源:《科技传播》2010年第10期摘要火焰校正是中大型金属结构件完成后经测量发现局部误差时的一种修正工艺。

在实际生产中,火焰校正达不到预期效果的原因有很多。

本文详细的介绍了火焰校正的原理,并以装载机动臂为例介绍了具体操作过程及注意事项。

关键词火焰校正;变形;操作;实例分析中图分类号 TG44文献标识码 A 文章编号 1674-6708(2010)19-0017-02目前,钢结构已在厂房建筑中得到广泛应用。

而钢结构件在制作过程中都存在焊接变形问题,如果焊接变形不予以校正,则不仅影响结构整体安装,还会降低工程的安全可靠性。

特别是对于工程机械的大型结构件焊接的校正,有着更高的要求。

焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行校正,使其达到符合产品设计要求。

实践证明,多数变形的构件是可以校正的。

校正方法都是设法造成新的变形来抵消已经发生的变形。

在生产过程中普遍应用的校正方法,主要有机械校正、火焰校正和综合校正。

火焰校正是一门较难操作的工艺,方法掌握、温度控制不当会造成构件新的更大变形。

因此,火焰校正要有丰富的实践经验。

火焰校正的概念在许多工具书中都提到过,但在规模生产中很少应用。

究其原因,是工具书中对该种工艺的原理阐述较少,具体操作方法又不涉及,阅读者只能建立一种概念,往往将需要校正的部位全部加热至亮红色(830℃以上),然后浇水急冷,获得翘曲变形,这种变形的方向和尺寸都无法控制,往往需反复校正,人力、物力浪费严重,在规模生产中无法作为常规工艺实施。

本文从火焰校正的变形原理入手来介绍这种工艺。

1 火焰校正原理火焰校正是利用火焰加热变形构件的凸部,使凸部金属加热膨胀受阻而产生压缩应力,当压缩应力超过加热金属的屈服点时,凸部金属纤维产生塑性变形,从而达到校正的目地。

金属受热会膨胀是因为金属晶格在受热时发生膨胀,而冷却时金属晶格收缩,金属也就发生收缩。

火焰校正,实质上就是利用金属局部受火焰加热后冷却时的收缩所引起的变形,利用应力来微量修正金属的现状,去校正已经产生的误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈火焰校正摘要由于材料、设备、运输等因素的影响,会引起原材料的变形,而在制造过程中有切割变形、焊接变形、运输变形及吊装变形;对于这些变形,通过实践与初步的理论分析,对校正的工序进行了探讨,并对校正的温度、加热时间、加热范围进行了研究,对校正的位置作了一般性讨论。

关键词火焰校正位置时间温度加热工序在钢结构制造过程中,由于材料、设备、运输等因素的影响,会引起原材料的变形。

在制造过程中有切割变形、焊接变形、运输变形及吊装变形等。

在这些变形中,像原材料的变形可采用平板机或卷板机来消除变形,而像翼板小于60毫米的“H、T”等规则物体的焊接变形则可以通过翼缘校直机校正龟背,其它变形和大尺寸的工件的就无法通过校直机来校正,尤其是焊接后的复杂外形就更加无法采用校直机校正,而是一般采用火焰校正的方法。

引起这些变形的原因是由于构件或原材料受到外力或者内力的作用,会引起拉伸,压缩,弯曲,扭曲或复合变形。

各种变形的产生原因分析如下:原材料的变形:生产时轧辊的变曲或间隙和速度分布不一致时会在宽度方向产生机械应力引起变形;存放不当引起的变形,存放的多、堆放的时间长因自重而引起朔性变形,运输吊装不正确会引起物体变形或将物体吊坏等。

切割变形:因氧气乙炔火焰高温时切边的金属的冷热收缩不一致,使切口在切割加热边向外弯曲,冷却后内应力使加热边向内弯曲.组装变形:组装时许多板料由于多方面的原因需要用外力强行组合,使得组装件在焊接前就因残余应力而产生了变形。

焊接变形:焊接产生的不均匀温度场使构件因焊接的热变形无法自由伸缩机遇产生的温度应力造成的变形。

加热温度达到一定程度就会影响组织的形变而造成的变形。

各种变形中以焊接变形最为严重,而焊接变形又可分为如下几种:纵向收缩变形:构件沿长度方向的收缩.横向变形:构件沿焊缝的垂直方向收缩。

挠曲变形:构件焊后由于纵向或横向收缩变形引起。

角变形:构件的平面绕焊缝产生的角变形。

波浪变形:构件产生的平面弯曲.其中我公司20-40毫米的钢板最容易产生这种变形。

错边变形:两种不同材质焊接时由于热膨胀不一致而产生的变形,分为长度和厚度方向的错边。

螺旋变形:扭曲变形。

复合变形:以上各种变形的汇总.火焰校正的原理:用火焰对校正工件变形部位加热时,其加热部位和附近钢材随温度升高而膨胀,而周围部位的大部分钢材处于常温下并不膨胀,相对比较稳定,阻碍和压抑受热部位膨胀,使加热部位受到径向反作用力。

在温度超过金属的屈服点时就会产生塑性压缩变形,而停止加热时随着温度的降低,高温下产生的局部压缩变形量依然保留下来,由于冷却则产生收缩应力,使其纤维收缩则变短从则达到校正的目的。

依照虎克定律有:ε=fs/E,其中E为钢材的弹性模量,E=206Mpa,fs为钢材的屈服强度,ε为钢材的应变。

而钢材在温度变化时的应变有如下的公式:ε=α△T,其中α为钢材的线膨胀系数,与常温相比,温度达到△T℃时会产生塑性变形,△T=fs/(E*α)。

在没有达到△T以前是弹性变形,而弹性变形是会恢复的。

总之火焰校正的基本方式就是将工件松的部位收缩变紧,即使晶格间距由长变短。

加热温度与变形量成正比的关系。

一般的说,小于200度时无明显的校正效果,而大于900度时会达到奥氏相变温度,使内部组织发生组织变化,晶粒变得粗大。

钢材校正时温度的颜色判断见下表:火焰的分类:. 外焰:适用于各种管件的矫正。

中焰:温度最高适用于低碳钢。

.内焰:适用于焊接。

火焰校正适用的种类:焊接件、铆接件、毛坯件、成品件、压装件、碳钢、有色金属、低合金钢,而对铸铁件、高合金钢及高碳钢不宜采用。

火焰校正法的特点:操作方便,使用设备简单,校正速度快,效率高,经济效率好,适用面广。

经过长期的实践,我们总结出钢结构校正方法及适用的情况如下:一单板校正:a类:一般在凸处加热,采用线形(带状)加热法,温度及宽度一般视钢板厚度及变形大小而定;如厚度为100毫米的1米×1米的柱底板,凸处3毫米,烤的宽度为120毫米红点深度为25-30毫米,温度为300度左右,;而厚度为30 毫米,宽度为350毫米焊接接口凸处为20毫米,烤的宽度约为80-100毫米,温度约为300度左右,红热深度约为10毫米左右. 附图一单板A类b类:实践中一般在弯曲最多点加热,(加热大小及温度视板材厚度及弯曲大小而定);如一次校正不到位时,等其冷却后利用相同的方法继续下去.还有一种方法,首先在弯曲最多点烤一个圆点,要求板两面温度基本相同,而且红透,冷却后从旁边补火,直至合符要求;如板厚为50毫米,D=200毫米,长度为10米,弯曲为10毫米,先选择性的烤六个圆点,直径大小约为70毫米。

温度为600度左右,冷却后在圆点边补火,补火大小为直径100毫米,温度同前,直到合格为止。

如果板厚大于40mm,宽度在200~800mm中间,长度又较长时,一般将板坎起校正,效果较好而且可以节约成本和人力。

附图二单板B类c类:此类板一般为扭曲,通常为冷压反变形或是加外力后加热消除应力。

附图三单板C类二H型梁校正方法及顺序:a 先将两翼板平面度校正(见工艺流程上标准),我厂除垂撑(板厚在30mm以上)及板厚在60mm以上的柱子外,一般利用翼缘校正机进行校正。

b 90度校正:在大于90度方向对腹板进行线性加热,加热温度视板厚度而定(如板厚为10毫米,角度为100度,加热温度为150度左右的线状,即烤炬移动速度约为1m/20秒),对腹板厚度大于20毫米且角度变化较大时为了做到又快又好可适当添加外力,但需注意的是加外力时角度校正量因弹形变形而要适当大一点点。

c 平、侧弯校正:具体方法同单板校正基本相同,但要控制好温度,侧弯烤点要多且温度不易过高,如板厚为20毫米,D为350毫米,长度为8米,弯曲为6毫米,一般选择4或5个点,烤点大小为70毫米左右的半圆,温度为450度左右;平弯校正时对薄板一般先烤翼板,而厚板的平弯较大时,则先在腹板上烤火,冷却后再在翼板上较火;如翼板厚度为60毫米,腹板厚度为40毫米,宽度为720毫米,高度为500毫米,长度为8米,弯曲为12毫米,一般在腹板上较4~5点,三角形大小为120*180毫米的等腰三角形,120为底边长,温度为500度左右,在翼板上烤火宽度为100-120毫米,红焰深度约为25~30毫米,温度约为450~500度.d扭曲校正: 先看扭曲点位置, ,如在翼板,则在翼板上烤斜火,斜火方向是高点对高点约为45度,对板厚20毫米以下的H型梁扭曲为3毫米,翼板一般斜4 火,(依照经验,一般上下各烤一火,则扭曲变量为0.5~0.8mm)火焰宽度为25毫米~40毫米,温度约为300~350度(考虑加热方向,对薄板可适当加上外力),如在腹板上,则在腹板上加斜火,方法同上,温度在200度左右;扭曲校正完毕后还会产生局部的侧弯变形,要进一步完善,使之整体符合校正要求。

三槽钢及槽钢梁校正方法及顺序:a 90度方向校正:方法同前(主要针对组合成槽钢形式的焊接梁).b 平侧弯校正:对于槽钢平侧弯校正,在纳雍一号炉的钢性梁的校正,槽钢中间焊接夹板后平侧弯变形较大,一般一根十米长的槽钢焊接后平弯一般在50~100毫米左右,则至少要分二步走:第一步,选择性在槽钢窄边同时校4~5个圆点,烤火大小约为40~50毫米的圆,火焰的温度约为300度,即每个烤点估计在30秒左右,冷却后看看效果,如不行的话再校之,直到符合要求,若校多了,则在其二背面筋上反校,长度约为200-300毫米,宽度为25~35毫米,时间约为40秒;第二步:侧弯校正,在凸边窄边靠角筋处校火,宽度不能超过窄边的一半,温度为250~280度左右,长度一般在300毫米,有时会长度达到一米,在实际作业中要考虑其它因素;槽钢形式的组合梁在校正好90度后,如果梁高600毫米,梁长3.5米宽度为150毫米,那么角度校正好后,应在窄板上有选择地同时校7或8个圆点,其直径约为70毫米,然方法基本同槽钢梁,本人曾经在别的书上看到过有利用两把烤矩同时加热校正的方法,但是在实际工作中还是我们的方法比较适用。

附图四槽钢梁校正四箱形梁校正(附图五)a 翼板边缘平面度校正: 加热方法采用线性加热,内侧宽度略宽于外侧边.b 平弯校正:先烤腹板,(基本型是同时上拱),冷却后加温翼板, 附图六.c 侧弯校正:先在翼板上校圆点,大小约为翼板宽度的2/5,冷却后再补火,补火范围一般为翼板边缘加焊缝,大小略大于圆点,为半圆形。

d 扭曲校正:如果焊接时不加以控制的话,几乎所有的箱形梁均会产生扭曲,校正方法有二个,(1):施加外力后烤斜线,则需注意斜线的起、转折点基本要能连接(除起点终点外),且温度, 宽度需加以控制;本人在实际作业过程中一般一个圈能校正扭曲0.5~1.2毫米左右;(2):对于翼板大于30毫米,高度超过600毫米,长度约为4米,扭曲量较大时需要采用以下方法:加外力后校正直线圆圈,加热宽度在100~120毫米左右,温度在400~500度左右,红热深度达到板厚的70%。

使用这种方法时一般来说该梁会缩短部分量. 附图七五大型H梁校正:翼板平面度校正时必须是先校正龟背,腹板校正平面弯曲时必须加外加力,且只能为点状;如果不加外力时,则烤点一般是先外后内,温度约为200度左右,具体数据尚在进一步实验中.平面弯曲量较大时,最佳方案是烤焊缝和烤龟背同时进行,这在我们公司制作的耒阳大板梁得到了实践的检验。

六角钢校正:一般采用点状加热,红热范围约为角钢宽度的2/5,烤点两边能见红点,如果角钢内弯时,在筋部不超过1/2处校火,外弯时则以点状校火,在益阳大板梁中,由于运输的变形,大板梁腹板上角钢变形31mm,我们用此方法只用五火就校正好了这根角钢。

附图八七管子及管排校正:a 管子校正主要针对联箱,在短管焊接好后变形较大,选择烤点在短管焊接的正背面,采用点状加热,大小约为60毫米的圆,温度约为400度,红热深度约为80%。

b 管排校正平弯时选择平弯最明显点,隔一根采用带状加热,温度不大于200度.侧弯时先可对管子连接件采用两面加热,温度约小于200度,等到其冷却后,则可在顶点管子处采用带状加热,范围约是管子圆周的1/3,温度约为150~200度,如果温度和范围较大的话,管子直径将缩小,影响其外观。

八复杂连接体校正:此类物体一般结构较为复杂,在我们公司主要表现为水工产品,针对此类物体校正时,一定要注意烤点的位置,而且必要时加外力.如水工产品中的侧轨校正,侧轨在不锈钢板没有焊前应基本校平,不锈钢焊接后需在其内侧焊缝下校火,温度在200度左右,弧度校正时一般采用冷压;平弯校正时一般采取腹板、翼板同时校正,因为侧轨在弧度校正后,平弯都在20毫米左右,方法基本同以前的H型梁,而侧轨的扭曲校正我们有一个不同的方法,侧轨的扭曲校正, 一般在内侧看起来扭曲的H型钢上校斜火,宽度一般在30~50毫米,长度一般在超过内侧工字钢100~150毫米,温度在300度左右,一般每斜火能校正扭曲0.5~1.2毫米(这是我们在我们公司金工车间校正碗米坡闸门中的侧轨时得出的经验)。

相关文档
最新文档