我国在微生物代谢领域的研究现状及展望
合成生物学——人工合成微生物代谢途径的研究

合成生物学——人工合成微生物代谢途径的研究随着人类对生命的认识不断深入,合成生物学成为了一个热门的研究领域。
通过模拟自然界中的基因操作和遗传变异,人们可以通过自主设计和构建微生物的代谢途径来实现对生物体系的控制和调节。
这种技术不仅可以用来生产高附加值化学品,还可以为制药、农业、食品和能源等领域提供新技术和新思路。
一、微生物代谢途径的基础知识微生物是一类简单的生物体系,拥有独特的代谢过程和生命活动方式。
代谢过程是细胞在生命过程中进行一系列生化变化,使它们从低能态成分转化为高能态成分的过程。
微生物代谢的多样性和灵活性是探索生命的基本条件,同时也为人们提供了实现人工合成和改造微生物的平台。
微生物代谢通常包括两个步骤:底物转化和产品合成。
底物转化是指细胞将外源性或内源性底物分解为一系列代谢产物,而产品合成是细胞合成高某个化学品的过程。
底物转化和产物合成过程相互联系,共同推动微生物的代谢活动。
微生物的代谢途径非常复杂,在不同的培养条件下可能会产生各种代谢产物。
二、人工合成微生物代谢途径的原理对微生物代谢途径的构建过程就是对微生物代谢途径进行改造和优化的过程。
它通过引入外源基因从而增加或删除底物转化和产物合成酶的数量,从而达到改变微生物代谢途径的目的。
在这个过程中,最重要的是通过调整微生物代谢途径的平衡点来控制代谢活动。
这种方法可以建立新的代谢途径,还可以调整和改变单个酶的活性和特异性。
人工合成微生物代谢途径的目标是生产一种或多种特定的化学品和生物产品。
例如,通过修改大肠杆菌的嗜酸乳杆菌酸代谢途径来合成异戊酸,这种新的微生物白叟更容易生存,并且可以提高产量和稳定性。
此外,人工合成微生物代谢途径还可以利用植物或其他微生物的酶代替微生物中缺少的酶,从而增加代谢产物种类和数量。
这种方法被广泛应用于生产制药,并已推广到食品、化学和能源等领域。
三、合成生物学在人工合成微生物代谢途径中的应用合成生物学是一种新兴的生物学技术,它将基因工程、系统生物学和合成化学等多个学科领域进行了整合。
年度总结微生物(3篇)

第1篇一、引言微生物作为地球上最基本的生物群体,与人类生活息息相关。
在过去的这一年里,微生物领域的研究取得了显著成果,不仅加深了我们对微生物的认识,也为人类健康、农业、环境保护等领域提供了新的思路。
本文将对微生物领域的研究进展进行总结,并对未来发展趋势进行展望。
二、微生物领域研究进展1. 微生物基因组学微生物基因组学是微生物领域研究的热点之一。
近年来,随着测序技术的快速发展,微生物基因组数据量呈指数级增长。
以下是一些重要进展:(1)微生物基因组注释:通过生物信息学方法,对微生物基因组进行注释,揭示其基因功能、代谢途径等信息。
(2)微生物基因岛研究:发现微生物基因岛在基因转移、适应性进化等方面发挥重要作用。
(3)微生物基因组进化:通过比较不同微生物基因组,研究其进化历程和适应性进化机制。
2. 微生物与人类健康微生物与人类健康密切相关。
以下是一些微生物领域在人类健康方面的研究进展:(1)肠道菌群与疾病:研究发现,肠道菌群与多种疾病的发生、发展密切相关,如肥胖、糖尿病、心血管疾病等。
(2)微生物与抗生素耐药性:随着抗生素的广泛应用,细菌耐药性逐渐增强。
研究微生物耐药机制,为开发新型抗生素提供依据。
(3)微生物与传染病:研究微生物与传染病的相互作用,有助于开发新型疫苗和治疗方法。
3. 微生物与农业微生物在农业领域发挥着重要作用。
以下是一些微生物领域在农业方面的研究进展:(1)微生物肥料:利用微生物促进植物生长,提高农作物产量和品质。
(2)生物防治:利用微生物抑制害虫和病原菌,减少化学农药的使用。
(3)微生物酶制剂:利用微生物生产酶制剂,提高工业生产效率。
4. 微生物与环境保护微生物在环境保护方面具有重要意义。
以下是一些微生物领域在环境保护方面的研究进展:(1)生物修复:利用微生物降解污染物,净化环境。
(2)生物降解:研究微生物降解塑料、有机物等,减少环境污染。
(3)微生物与碳循环:研究微生物在碳循环中的作用,为应对气候变化提供科学依据。
微生物产业发展现状及展望

05
结论与建议
结论
01
微生物产业的发展迅速,已经 成为全球生物医药领域的重要 支柱。
02
微生物产业的发展前景广阔, 未来将会有更多的应用领域和 市场需求。
03
微生物产业的发展面临着技术 、市场、政策等多方面的挑战 和风险。
建议
加强微生物产业的技术研发和 创新,提高产业的技术水平和 核心竞争力。
中国微生物产业市场规模也在不断增 长,成为全球微生物产业发展的重要 推动力。
微生物产业市场的增长主要得益于新 技术的不断涌现和应用场景的拓展。
微生物产业应用领域
微生物产业的应用领域非常广泛,除了医药、农业 、环保、食品等领域,还包括能源、材料、化工等
领域。
在医药领域,微生物产业主要用于抗生素、维生素 等药品的生产;在农业领域,微生物产业则主要用
性质的纳米材料。
纳米药物载体
利用微生物细胞或其代谢产物为 原料,制备药物载体,提高药物 的治疗效果和降低副作用。
纳米生物传感器
利用微生物细胞或其代谢产物为原 料,制备生物传感器,用于检测环 境中的有害物质和生物指标。
03
微生物产业发展展望
微生物产业未来发展趋势
1 2
微生物技术应用领域不断扩大
微生物技术已广泛应用于医药、农业、环保等 领域,未来其应用领域还将不断扩大。
微生物基因工程技术
基因克隆与表达
将目的基因克隆到表达载体中,实现目的基因的 高效表达。
基因修饰与改造
对微生物基因进行修饰和改造,以提高产品的产 量和纯度。
系统生物学研究
利用系统生物学方法研究微生物生命活动的规律 和机制,为工业化应用提供理论支持。
微生物纳米技术
纳米材料制备
微生物发展历程及前景展望

微生物学发展历程及前景展望微生物学(microbiology)生物学的分支学科之一。
它是在分子、细胞或群体水平上研究各类微小生物的形态结构、生长繁殖、生理代谢、遗传变异、生态分布和分类进化等生命活动的基本规律,并将其应用于工业发酵、医学卫生和生物工程等领域的科学。
微生物学是高等院校生物类专业必开的一门重要基础课或专业基础课,也是现代高新生物技术的理论与技术基础。
基因工程、细胞工程、酶工程及发酵工程就是在微生物学原理与技术基础上形成和发展起来的;《微生物学》也是高等农林院校生物类专业发展及农林业现代化的重要基石之一。
随着生物技术广泛应用,微生物学对现代与未来人类的生产活动及生活必将产生巨大影响。
一、发展历程(一)微生物学的经验时期公元二千多年的夏禹时代,就有仪狄作酒的记载。
北魏(386~534)贾思勰《齐民要术》一书中,详细地记载了制醋方法。
我国古代人民也发现豆类的发酵过程,从而制成了酱。
十一世纪时。
北宋未年刘真人就有肺痨由虫引起之说。
意大利学者Fracastoro 认为传染病的传播有直接、间接和通过空气等几种途径。
在预防医学方面,我国自古以来就有将水煮沸后饮用的习惯。
明李时珍的《本草纲目》中,亦有对病人穿过的衣服应该进行消毒的记载。
我国古代人民,创用了预防天花的人痘接种法。
大量古书证明,我国在明代隆庆年间,人痘已经广泛使用,并先后传至俄国、日本、朝鲜、土耳其、英国等国家,人痘接种是我国对预防医学的一大贡献。
(二)实验微生物学时期1.微生物的发现首先看到微生物的是荷兰人列文虎克。
他于1676年创制了一架原始显微镜,正确地描述了微生物的形态有球形、杆状、螺旋样等,为微生物的存在提供了有力证据。
法国科学家巴斯德首先实验证明有机物质的发酵与腐败是由微生物引起。
巴斯德的研究开始了微生物的生理学时期。
自此,微生物学开始成为一门独立的学科。
巴斯德创造了巴氏消毒法。
随后,英国外科医师李斯德创用石碳酸喷洒手术室和煮沸手术用具,以防止外科手术的继发感染,为防腐、消毒以及无菌操作打下基础。
微生物工程的应用研究现状和前景展望

微生物工程的应用研究现状和前景展望微生物是一类极小的单细胞生物,具有高效率、易培养、生长速度快、自然产生的代谢产物复杂多样等特性。
微生物工程是将工程原理应用于微生物生理和代谢过程中,从而达到利用微生物合成、代谢、酶法等技术手段制备化学品、生物药物、生物饲料、生物酶制剂和生物能源等目的的一门学科。
本文旨在探讨微生物工程的应用研究现状和前景展望。
一、微生物工程的应用研究现状目前微生物工程的应用已经广泛涉及多个领域,尤其在生物制药、工业合成和环境治理等方面表现得尤为突出。
下面就分别介绍一下:1. 生物制药方面利用微生物代谢合成生物制药物,是应用微生物工程的一个重要方向。
微生物工程技术可以改变生物体的代谢规律,通过克隆重组、选择性培养、代谢工程等手段,提高生物法合成的精确度和产量,从而产生高效、低成本的生物制药品,如重组人胰岛素、激素等。
2. 工业合成方面微生物工程以其高效快速的特点,也为不同领域生产中应用成为最佳选择。
植物化学物和药物化学物的合成、大规模生产,生物纤维素、植酸酶、纤维加强剂、堆肥发酵等工艺和废弃物生物降解等方面都有广泛的应用。
3. 环境治理方面微生物工程技术在环保领域中得到广泛应用,如污水处理、垃圾处理等。
通过微生物的代谢能力降低或减少污染物的危害。
利用微生物工程技术对废水进行生物处理,可以将废水中的有害物质转化为无害物质,如生物法净化和原位生物修复等技术。
二、微生物工程的前景展望1. 在生物制药方面微生物工程技术可以精确控制重组工程和微生物的代谢规律,生产出高效、低成本的药物产物。
未来生物制药的发展趋势是采用不同种类的微生物工程技术,降低药品的成本,提高药品质量和稳定性,实现可持续发展。
2. 在环境治理方面未来微生物工程技术将广泛应用于环境治理领域,如流行病防控、环境污染治理等。
未来将研究并发展更多的菌株,优化工艺,提高微生物的降解效率,实现更加高效、安全、绿色的环境治理。
3. 在工业生产方面未来微生物工程技术将进一步逐步实现重要化学品、生物能源、生物饲料等领域的产业化,提高生产效率和利用效率,实现产业的低碳差异化发展。
我国微生物农药的研发与应用研究进展

我国农作物种植面积广阔,种植作物种类多样,在农业生产中,农作物常常受到多种病虫草害的危害。
化学农药因其适用范围广、作用效果迅速、使用方便等被广泛用于防治各类病虫草害,但使用化学农药也容易造成人畜中毒、杀害有益生物等,同时由于化学农药的滥用使得部分害虫、致病菌和杂草的抗药性增强,导致防治难度加大。
相比于化学农药,以真菌、细菌和病毒等生物活体或其代谢产物为主要成分的生物农药对生物和环境更加友好,自20世纪80年代以来,生物农药迅速发展,行业市场规模逐步扩大。
生物农药可分为微生物农药、植物源农药和生物化学农药等,经农业农村部农药检定所查询,截至2022年12月31日,我国在有效登记状态的农药登记产品为45172个,其中生物农药产品2159个 (未包括农用抗生素和天敌),占全部农药总数的4.78%,占比非常低。
在生物农药中,微生物农药是研究热点之一。
在《农药登记资料要求》中规定,微生物农药是指以天然的或经基因修饰的细菌、真菌和病毒等微生物活体为有效成分的农药,按用途可分为微生物杀虫剂、微生物杀菌剂和微生物除草剂等。
该类农药具有有效成分来源广泛、选择性强、对人畜毒性低等优点。
经农业农村部农药检定所查询,截至2016年12月31日,我国已登记微生物农药有效成分42个,到2022年12月31日,已达56种,可见微生物农药呈逐年增长趋势。
我国的微生物农药发展已经进入了一个相对快速发展的阶段,生防微生物不断增多,各种新型微生物农药也不断涌现。
已有研究对微生物农药常见剂型种类及特点、产品质量、安全性评价和使用技术相关标准、助剂研发、管理现状、产业发展等方面进行了详尽的阐述,但尚缺乏典型微生物农药在防治重大病虫害方面应用情况的综述报道。
鉴于此,本文梳理了我国近几年一些原创的、新型的微生物杀虫剂、杀菌剂和除草剂在生防菌株筛选、产品创制与应用等方面的研究进展,并对微生物农药发展提出建议和展望,旨在为行业相关单位和人员提供参考。
2024年环境工程微生物总结

2024年环境工程微生物总结
2024年,环境工程微生物领域取得了一系列重要的进展和总结。
以下是2024年环境工程微生物领域的总结:
1. 新的微生物研究技术和方法的发展:随着基因测序技术和生物信息学的快速发展,2024年环境工程微生物领域出现了许多新的高通量测序技术和生物信息学工具,这些工具使得研究者能够更准确、更精细地研究环境中微生物的物种组成、功能和相互作用。
2. 微生物酶和代谢产物的应用:2024年环境工程微生物领域研究了许多新的微生物酶和代谢产物的应用,这些酶和代谢产物在废水处理、土壤修复和能源生产等方面发挥了重要作用。
通过研究微生物的酶和代谢产物,环境工程师能够开发出高效、经济、环保的微生物技术来解决环境问题。
3. 微生物组群调控环境污染:2024 年环境工程微生物领域对环境中的微生物组群进行了深入研究,发现微生物组群在调控环境污染过程中发挥了重要作用。
研究者发现通过调节微生物组群的结构和功能,可以实现废水处理、土壤修复和气候变化等环境问题的解决。
4. 微生物生态学的应用和研究:2024年环境工程微生物领域重视微生物生态学的应用和研究。
通过研究微生物在不同环境条件下的适应性和相互作用,环境工程师可以设计出更具适应性和高效性的微生物技术来解决环境问题。
5. 微生物技术的商业化应用:2024年环境工程微生物领域的研究成果开始加速商业化应用。
许多环境工程公司开始将微生物技术应用于废水处理、土壤修复和能源生产等领域,取得了显著的经济和环境效益。
总的来说,2024年环境工程微生物领域在研究方法、应用领域和商业化方面取得了重要的进展。
这些进展使得环境工程师能够更加有效地解决环境问题,保护和改善环境质量。
微生物代谢研究的研究进展

微生物代谢研究的研究进展微生物是地球上最古老的生命形式之一,其活动对自然界和人类的生活有着重要的影响。
微生物的代谢研究一直是微生物学领域的热点和难点问题之一。
本文将对微生物代谢研究的研究进展进行简单阐述。
一、微生物代谢研究的意义微生物代谢研究对于了解微生物的生物学特性、发掘微生物资源、开发新型药物、改良微生物发酵工艺等方面具有重要的意义。
微生物代谢能力的强弱和差异也是微生物在自然界中不断演化和适应的重要表现。
因此,了解微生物代谢的机制和途径是微生物研究中的重要一环。
二、微生物代谢的包括内容微生物代谢研究内容广泛,主要包括以下几个方面。
(一)细胞内代谢途径微生物的代谢途径十分复杂,包括细胞内代谢途径和细胞外代谢途径两个方面。
细胞内的代谢途径主要指微生物利用各种基础物质合成有机物质的过程,如糖分解途径、脂肪代谢途径等。
其中,糖分解途径可以产生巨量的ATP和其他重要代谢产物,是微生物代谢过程中最为重要的代谢途径之一。
(二)细胞外代谢途径微生物的细胞外代谢途径指微生物通过胞外代谢产生各种有用的物质的过程。
比如,微生物可以利用胞外代谢途径合成一系列抗生素、酶类、生物质等。
这些产物被广泛应用于医药、生物工程、食品工业等领域,具有非常广泛的应用前景。
(三)微生物与环境的互动微生物和环境之间的相互作用对于微生物代谢研究具有重要的意义。
微生物能快速适应不同的环境条件,从而改变其代谢产物的种类和产量。
比如,不同的营养条件会对微生物的代谢产物产生重要的影响。
因此,了解微生物代谢过程与环境之间的相互作用机制对于微生物研究具有重要的意义。
(四)微生物代谢动力学研究微生物代谢本质上是一种动态过程。
因此,了解微生物代谢动力学和调控机制对于研究微生物代谢产物的生成规律、寻找新型代谢途径等具有重要的意义。
三、微生物代谢研究的新进展随着微生物代谢研究的不断深入,人们对于微生物代谢机制和途径有了越来越深入的了解,取得了一系列重要进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国在微生物代谢领域的研究现状及展望
发表时间:2012-06-18T14:33:59.827Z 来源:《赤子》2012年第8期供稿作者:李夏
[导读] 微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。
李夏(四川化工职业技术学院,四川泸州 646005)
摘要:微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。
在分解代谢中,有机物在微生物作用下,发生氧化、放热和酶降解过程,使结构复杂的大分子降解;合成代谢中,微生物利用营养物及分解代谢中释放的能量,发生还原吸热及酶的合成过程,使微生物生长增殖。
文章主要介绍我国在微生物代谢领域的研究现状及对未来的展望,为我们呈现了一个广阔的微生物代谢世界。
关键词:微生物代谢;分解代谢;合成代谢;研究现
前言
微生物在生长过程中机体内的复杂代谢过程是互相协调和高度有序的,并对外界环境的改变能够迅速做出反应。
其原则是经济合理地利用和合成所需要的各种物质和能量,使细胞处于平衡生长状态。
在实际生产中,往往需要高浓度的积累某一种代谢产物,而这个浓度又常常超过细胞正常生长和代谢所需的范围。
因此要达到超量积累这种产物,提高生产效率,必须打破微生物原有的代谢调控系统,在适当的条件下,让微生物建立新的代谢方式,高浓度的积累人们所期望的产物[1]。
1 我国微生物代谢的研究现状
1.1 利用微生物代谢生产酶
工业上,曾由植物、动物和微生物生产酶。
微生物的酶可以用发酵技术大量生产,是其最大的优点。
而且与植物或动物相比,改进微生物的生产能力也方便得多。
微生物的酶主要应用于食品及其有关工业中。
酶的生产是受到微生物本身严格控制。
为改进酶的生产能力可以改变这些控制,如在培养基中加入诱导物和采用菌株的诱变和筛选技术,以消除反馈阻遏作用。
1.2 利用微生物代谢产生的代谢产物生产目的物
在微生物对数生长期中,所产生的产物,主要是供给细胞生长的物质,入氨基酸、核苷酸、蛋白质、核酸、脂类和碳水化合物等。
这些产物称为初级代谢产物。
利用发酵生产的许多初级代谢产物,具有重大的经济意义,我国现已可以根据微生物代谢调控的理论,通过改变发酵工艺条件如pH、温度、通气量、培养基组成和微生物遗传特性等,达到改变菌体代谢平衡,过量生产所需要产物的目的。
1.3 利用微生物代谢理论发展产生了代谢工程
代谢工程是指利用基因工程技术,定向的对细胞代谢途径进行修饰、改造,以改变微生物的代谢特征,并于微生物基因调控、代谢调控及生化工程相结合,构建新的代谢途径,生产新的代谢产物的工程技术领域。
1.4 改变微生物代谢途径生产目的物
改变代谢途径是指改变分支代谢的流向,阻断其他代谢产物的合成,以达到提高目的产物的目的。
改变代谢途径有各种方法,如加速限速反应,改变分支代谢途径流向、构建代谢旁路、改变能量代谢途径等不同方法[1]。
1.5 利用微生物代谢进行发酵
数千年来由于科学技术进步缓慢,各种微生物工业也未能充分发展。
直到20世纪中期才建立了一系列新的微生物工业。
近几年来,由于微生物代谢工程的应用,发酵工业开始进入新的发展时期。
发酵产品增长快、质量明显提高,在国民经济中起重要作用。
1.6 微生物代谢在环境方面的应用
微生物降解是环境中去除污染物的主要途径。
深人了解污染物在微生物内的代谢途径,将有助于人们优化生物降解的条件,从而实现快速的生物修复。
这些代谢中间体大都通过萃取、分析方法进行逐个研究,并借助专家经验拟合出代谢途径,其动力学过程亦很少触及。
代谢组学方法的采用有可能改变这一现状[2]。
1.7 利用微生物代谢进行赖氨酸的生产
在许多微生物中,可用天冬氨酸作原料,通过分支代谢途径合成出赖氨酸、苏氨酸和甲硫氨酸。
赖氨酸在人类和动物营养上是一种十分重要的必须氨基酸,因此,在食品、医药和畜牧业上需求量很大。
但在代谢过程中,一方面由于赖氨酸对天冬氨酸激酶有反馈抑制作用,另一方面,由于天冬氨酸除用于合成赖氨酸外,还要作为合成甲硫氨酸和苏氨酸的原料,因此,在正常细胞内,就难以累积较高浓度的赖氨酸。
为了解除正常的代谢调节以获得赖氨酸的高产菌株,工业上选育了谷氨酸棒杆菌的高丝氨酸缺陷型菌株作为赖氨酸的发酵菌种。
由于它不能合成高丝氨酸脱氢酶,故不能合成高丝氨酸,也不能产生苏氨酸和甲硫氨酸,在补给适量高丝氨酸的条件下,可在含较高糖浓度和铵盐的培养基上,产生大量的赖氨酸[3]。
1.8 微生物代谢与分子生物学方法的结合
随着遗传学、分子生物学等方法的不断发展,人们越来越多地将这些方法运用到微生物的研究工作中。
一些野生菌的合成能力或分泌能力有限,目前可通过人工诱变或构建高效的基因工程菌株等方法对其进行改造以扩大应用范围此外,现在许多细菌合成拮抗物质的基因已被克隆测序,为使植物获得微生物所具有的特殊功能,一种可能的方法是通过基因工程将目的基因导入植物体内,使植物直接表达活性物质[4]。
2 展望
2.1 微生物代谢在医药行业的展望
微生物在代谢过程中可分泌蛋白酶、纤维素酶、半纤维素酶、果胶酶、淀粉酶等几十种胞外酶进入培养基,这些酶有的可以将药物成分分解转化,形成新的化合物,有的可水解植物细胞壁的纤维素、半纤维素、果胶质等,使细胞破裂,利于有效成分溶出。
特别是采用一些酶作用于药用植物材料,使细胞壁及细胞间质中的纤维素、半纤维素等物质降解,使细胞破裂,细胞间隙增加,减小细胞壁、细胞间物质传递屏障、对有效成分从胞内向胞外扩散的阻力减少,可促进有效成分的吸收提高。
2.2 微生物代谢在生理生化、微生物遗传育种方面的展望
随着分子生物学理论与技术的飞速发展,尤其是基因组和后基因组时代的到来,传统上的生理学与遗传学的交叉融合越来越多,许多
研究课题已难以区分为遗传学或生理学问题。
现今的微生物生理与代谢研究是生化研究与分子代谢及遗传分析的结合。
要从根本上揭示生理现象,进行遗传分析研究是必不可少的。
尽管我国科研人员在该领域做了大量的工作,但整体研究水平不高,只有少数几个实验室的研究工作可与国际接轨,部分工作进入国际先进水平行列。
2.3 微生物代谢在农业、土壤和环境微生物学方面的展望
我国科学家在豆科植物根瘤菌资源与分类及生物固氮,杀虫微生物资源、生理生化与遗传,真菌产杀虫活性物质的筛选,植物病原菌的分子生物学,菌根真菌资源等研究上均具有不错的工作,其中“豆科植物根瘤菌资源与分类研究”已在国际上占有重要地位。
对环境修复微生物的研究尽管在应用上取得了一定的效果,但基础研究不够深入。
不过今年已有高水平论文发表。
参考文献
[1]曹军卫,马辉文.微生物工程[M].北京:科学出版社,2002:51-74.
[2]周宏伟,谭凤仪,钟音,等.代谢组学及其在微生物领域的研究进展[J].分析化学,2007(2).
[3]周德庆.微生物学教程[M].北京:高等教育出版社.1993:145-146.
[4]张俊华.微生物代谢产物作用于植物的研究探讨[J].生命科学研究,2007(4).。