剩余类理想
近世代数第四章 环与域题解讲解

第四章环与域§1 环的定义一、主要内容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:二、释疑解难1.设R是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).三、习题4.1解答1.2.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§4.2 环的零因子和特征一、主要内容1.环的左、右零因子和特征的定义与例子.2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子. 二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素⎪⎪⎭⎫⎝⎛0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵),(00Q y x y x ∈∀⎪⎪⎭⎫ ⎝⎛对方阵普通加法与乘法作成的环.则易知⎪⎪⎭⎫⎝⎛0001是R 的一个右零因子,但它却不是R 的左零因子.2.关于零因子的定义.关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l 且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.定义4 阶大于1、有单位元且无零因子的交换环,称为整环.以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1的方法也有很多原因,现举一例。
剩余类与剩余系

一、同餘,剩餘類與剩餘系(a ) 同餘的性質:(1) a ≡b (mod m ),c ≡d (mod m ),則 a ±c ≡b ±d (mod m ) 且ac ≡bd (mod m )。
(2) a ≡b (mod m ),c ∈N ,則 ac ≡bc (mod cm )。
(3) a ≡b (mod m ),n ∈N 且 m n ,則 a ≡b (mod n )。
(4) 若a ≡b (mod m ),則 (a ,m )=(b ,m )。
(5) 整數a ,b ,則 ab ≡1 (mod m ) iff (a ,m )=1。
(b ) 剩餘類:m 為正整數,將全體整數按照對模m 的餘數進行分類,餘數為r (10-≤≤m r ) 的所有整數歸為一類,記為K r (r =0,1,..,m -1),每一類K r 均稱為模m 的剩餘類 (同餘類)。
剩餘類K r 是數集K r ={mq +r m 是模,r 是餘數,q ∈Z }={a Z a ∈且)(mod m r a ≡}, 它是一個以m 為公差的(雙邊無窮)等差數集。
並具有如下的性質:(1) 1210-⋃⋃⋃⋃=m K K K K Z 且∅=⋂j i K K (j i ≠)。
(2) 對於任意的Z n ∈,有唯一的r 0使0r K n ∈。
(3) 對於任意的a 、b Z ∈,a 、b r K ∈ ⇔ )(mod m b a ≡(c ) 完全剩餘系:設K 0,K 1,…,K m-1是模m 的全部剩餘類,從每個K r 中取任取一個數a r ,這m 個數a 0,a 1,…,a m-1組成的一個數組稱為模m 的一個完全剩餘系。
(d ) 簡化剩餘系:如果一個模m 的剩餘類K r 中任一數都與m 互質,就稱K r 是一個與模m 互質的剩餘類。
在與模m 互質的每個剩餘類中,任取一個數 (共)(m ϕ個) 所組成的數組,稱為模m 的一個簡化剩餘系。
(二) 高觀點:同餘類環(ring)1.等價關係:給集合S中一個關係”~”。
剩余类与完全剩余系ppt课件

6
定理3 设m 1,a,b是整数,(a, m) = 1,{x1, x2, , xm} 是模m的一个完全剩余系,则
{ax1 b, ax2 b, , axm b}也是模m的完全剩余系。 证明 由定理2,只需证明:若xi xj,1 i, j m
从而
axi b
m
k j
m
j
m1 j
i 1
m
j 1
m j1 m
j1 m
m1 j
1 m(m 1) m 1 .
j1 m m
2
2
9
3、剩余系间的联系 定理4 设m1, m2N,AZ,(A, m1) = 1,
X { x1, x2 ,L , xm1 } ,Y { y1, y2,L , ym2 } 分别是模m1与模m2的完全剩余系, 则 R = { Ax m1y:xX,yY }是模m1m2的一个 完全剩余系。
Ax Ax (mod m1) x x (mod m1) x = x ,
由x = x ,Ax m1y Ax m1y (mod m1m2),
(2) 定理3也可以叙述为:设m 1,a,b是整数, (a, m) = 1,若x通过模m的一个完全剩余系, 则ax+b也通过模m的一个完全剩余系;
(3)特别地,若x通过模m的一个完全剩余系, (a, m) = 1,,则ax和x+b也分别通过模m的一 个完全剩余系。
8
例2 设A = {x1, x2, , xm}是模m的一个完全剩余系, 以{x}表示x的小数部分,证明:若(a, m) = 1,则
§3.2 剩余类与完全剩余系
一、剩余类 ——按余数的不同对整数分类
一个整数被正整数n除后,余数有n种情形:0,1,2, 3,…,n-1,它们彼此对模n不同余。这表明,每个 整数恰与这n个整数中某一个对模n同余。这样一来, 按模n是否同余对整数集进行分类,可以将整数集分 成n个两两不相交的子集。
【离散数学】知识点及典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。
【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。
【Abel群/交换群】·适合交换律。
可能不只有两个元素适合x2=1【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。
【子群】按照G中的乘法运算·,子集H仍是一个群。
单位子群{1}和G称为平凡子群。
【循环群】G可以由它的某元素a生成,即G=(a)。
a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。
若G的元数是一个质数,则G必是循环群。
n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。
共有ϕ(n)个。
【三次对称群】{I(12)(13)(23)(123)(132)}【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。
H有限,则H的任意右陪集aH的元数皆等于H的元数。
任意两个右陪集aH和bH或者相等或者不相交。
求右陪集:H本身是一个;任取a∉H而求aH又得到一个;任取b∉H∪aH而求bH又一个。
G=H∪aH∪bH∪…【正规子群】G中任意g,gH=Hg。
(H=gHg-1对任意g∈G都成立)Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。
1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。
2设G为有限群,元数为n,对任意a∈G,有an=1。
3若H在G中的指数是2,则H必然是G的正规子群。
证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。
故Ha=aH。
4G的任意多个子群的交集是G的子群。
并且,G的任意多个正规子群的交集仍是G的正规子群。
5 H是G的子群。
模n剩余类环的理想结构

若 PJ, 则 j q 。这就 矛盾 了 , 也就 是说 P不 整除 q 易见 P是 素数 , 么 ( q 。 那 户,)一1 则 可 以找到整 ,
数 s, ',使得 s+t一1 ;・ +i・ =一 由定 义 2条件 () p p i 一 , q l 2 可得 T 一;・ + ∈M ,由此 可得 M=Z 。 ・
( ) 2一2 ≥f , 一是P 1 当 f r 时 V“ ( ) 2一2<f 。 “ 2 当 t r 时 取 一P
0 b ,=l P
0 则 a =0 所 以 5是无单 位元 的零环 。 。 b 。
0 。一prt = 0 则 a =P 一0 所 以 S是有零 因 子的环 。假 如 2 P z , b , =
维普资讯
1 0
佛 山科 学技 术 学院 学报 ( 自然科 学版)
第2 6卷
命题 2 当 一户(≥2 , 中 P是 素数 时 , z P 阶 (<f理 想 5是 含零 因子无 单位 元的 环 。 f ) 其 则 , 的 r )
证明 Z P , 的 阶 理 想 S : , , ,P 一 1 户 } 一 0P … ( ) 。
知 道 任意 一个 环至 少 有零 理 想 和单 位 理想 两 个 理想 , 以 Z 也 至 少 有零 理想 S一 { } 单位 理想 所 0和
S 一Z 个 理 想 。 ,两
注 意 z 的这 两个理 想 是相 同 的 , 。 即所 以也 可 以说仅 有 一个 理想 。
2 模 剩 余 类环 的理 想
有单 位元 。 则可得 S—Z 与 l P 矛盾 。 因此 是无单 位 的环 。 5l —P<
命 题 3 若 一 P , 是 素 数 , qP q是 大 于 1的 正 整 数 , ( q 一 1时 , , P 阶 理 想 S 是 域 , S 当 P,) Z, 的 且 兰
模n剩余类环

剩余类环中非零元不是可逆元就是零因子.
2020/7/10
08:42
例 1 Z12
解 (1) 全部零因子:
[2],[3],[4],[6],[8],[9],[10]
(2) 全部可逆元: [1],[5],[7],[11]
直接计算可知,相应的逆元为
[1]1 [1],[5]1 [5],[7]1 [7],[11]1 [11]
(3) 全部子环:
([0]), ([1]), ([2]), ([3]), ([4]), ([6])
(4) 各子环特征:
char(([0])) 1, char(([1])) 12, char(([2])) 6,
char(([3])) 4, char(([4])) 3, char(([6])) 2.
为其一同态满射,则在之下单位元的象是单位元,
~
即1 1,从而对任意的整数x有
~
~~
:x x 特别有0=m m 0.故n m
2020/7/10
08:42
定理4 除去零乘环外,在同构意义下,循环环有且 只有整数环及其子环以及剩余类环及其子环. 注:整数环及其所有非零子环虽然作为加群他们 彼此同构,但是作为环来说,它们彼此并不同构.
近世代数
第四章 环与域 §4 模n剩余类环
2020/7/10
08:42
定义1(同余)整数a关于模正整数m同余于 整数b,是指
m∣a-b, 并写a≡b (mod m).
整数模m同余类共有m个,他们分别为 mk+0, mk+1, mk+2,…mk+(m-1); k∈z,每 一个算一类,每一类都可以选一个代表元, 一般选这一类中的最小的非负整数。于是 称[0],[1],[2],…[m-1]为标准完全剩余系。
高中数学竞赛——数论

高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。
K 0,K 1,…,K m-1为模m 的全部剩余类.(2)性质(ⅰ)i m i K Z 10-≤≤= 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里.(ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ⇔a ≡b(modm).2.剩余系的定义与性质(1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系.特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,21,,1,0,1,,121,21--+----m m m ;当m 为偶数时,12,,1,0,1,,12,2--+--m m m 或2,,1,0,1,,12m m -+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系⇔两两对模m 不同余.(ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系.证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm),矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m1,m2是两个互质的正整数,而x,y分别遍历模m1,m2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.既约剩余系的定义与性质(1)定义3如果剩余类K r里的每一个数都与m互质,则K r叫与m互质的剩余类.在与模m互质的全部剩余类中,从每一类中任取一个数所做成的数组,叫做模m的一个既约(简化)剩余系.如:模5的简系1,2,3,4;模12的简系1,5,7,11.(2)性质(ⅰ)K r与模m互质⇔K r中有一个数与m互质;证明:设a∈K r,(m,a)=1,则对任意b∈K r,因a≡b≡r(modm),所以,(m,a)=(m,r)= (m,b)=1,即K r与模m互质.(ⅱ)与模m互质的剩余类的个数等于)m(ϕ,即模m的一个既约剩余系由)m(ϕ个整数组成()m(ϕ为欧拉函数);(ⅲ)若(a,m)=1,则x与ax同时遍历模m的既约剩余系.证明:因(a,m)=1,(x,m)=1,所以,(ax,m)=1.若ax1≡ax2(modm),则有x1≡x2(modm),矛盾!(ⅳ)若a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m 的一个既约剩余系.(ⅴ)设m 1,m 2是两个互质的正整数,而x,y 分别历遍模m 1,m 2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1, (m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,所以,(m 2x,m 1)=(m 1y,m 2)=1,因(m 1,m 2)=1,所以,(m 1,x )=(m 2,y )=1.证毕.推论1若m 1,m 2是两个互质的正整数,则)()()(2121m m m m ϕϕϕ=.证明:因当x,y 分别历遍模m 1,m 2的既约剩余系时,m 2x+m 1y 也历遍模m 1m 2的既约剩余系,即m 2x+m 1y 取遍)(21m m ϕ个整数,又x 取遍)(1m ϕ个整数,y 取遍 )(2m ϕ个整数,所以, m 2x+m 1y 取遍)()(21m m ϕϕ个整数,故)()()(2121m m m m ϕϕϕ=.推论2 设整数n 的标准分解式为k kp p p n ααα 2121=(k p p ,,1 为互异素数, *1,,N k ∈αα ),则有)11()11)(11()(21kp p p n n ---= ϕ. 证明:由推论1得)()()()(2121k k p p p n αααϕϕϕϕ =,而1)(--=αααϕp p p ,(即从1到αp 这αp 个数中,减去能被p 整除的数的个数),所以,)())(()(11221112211------=kk k k p p p p p p n ααααααϕ )11()11)(11(21kp p p n ---= . 4.欧拉(Euler)与费尔马(Fermat)定理欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ.证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ )(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例2证明从任意m 个整数a 1,a 2,…,a m 中,必可选出若干个数,它们的和(包括只一个加数)能被m 整除.证明:考虑m 个数a 1,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a m ,如果其中有一个数能被m 整除,则结论成立,否则,必有两个数属于modm 的同一剩余类,这两个数的差即满足要求.例3设f(x)=5x+2=f 1(x), f n+1(x)=f[f n (x)].求证:对任意正整数n,存在正整数m,使得2011|f n (m).证明:因f 2(x)=f[f(x)]=5(5x+2)+2=52x+5×2+2,f 3(x)=f[f 2(x)]=53x+52×2+5×2+2,..., f n (x)=5n x+5n-1×2+5n-2×2+ (2)因(5n ,2011)=1,所以,x 与f n (x)同时历遍mod2011的完系,1≤x ≤2011,所以,存在正整数m(1≤m ≤2011)使得f n (m)≡0(mod2011),即2011|f n (m).例4设123,,,a a a 是整数序列,其中有无穷多项为正整数,也有无穷多项为负整数.假设对每个正整数n ,数123,,,,n a a a a 被n 除的余数都各不相同.证明:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但 ∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.最后由正负项均无穷多个(即数列含有任意大的正整数及任意小的负整数)就得到:每个整数在数列中出现且只出现一次.例5偶数个人围着一张圆桌讨论,休息后,他们依不同次序重新围着圆桌坐下,证明至少有两个人,他们中间的人数在休息前与休息后是相等的。
剩余类 理想

由以上四点可得到对一个模n剩余类环,求其所有子环和理想的一个方法。
思路:第一,模n剩余类环对加法构成加群,根据群的定义,找出所有子群;第三,对所有子群,根据环的定义,对乘法封闭,从所有子群里找出所有环;第四,对所有子环,根据理想的定义,找出所有理想。
例题:找出模12的剩余类环的所有理想。
具体步骤:第一步:模12剩余类环所有元素的集合:={[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}找其对加法构成加群的子群,并因为其对加法构成的子群是循环群,所以用生成元表示:([0])={[0]};([1])=([11])= {[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}= ;([2])=([10])={[0],[2],[4],[6],[8],[10]};([3])=([9])={[0],[3],[6],[9]};([4])=([8])={[0],[4],[8]};([6])={[0],[6]};第二步:考虑对乘法的封闭性,求其子环:([0])={[0]};([1])=([11])= {[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}= ; ([2])=([10])={[0],[2],[4],[6],[8],[10]};([3])=([9])={[0],[3],[6],[9]};([4])=([8])={[0],[4],[8]};([6])={[0],[6]};第三步:根据理想的定义,对以上的子环,求其理想:([0])= ([12])={[0]};([1])=([11])= {[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}= ; ([2])=([10])={[0],[2],[4],[6],[8],[10]};([3])=([9])={[0],[3],[6],[9]};([4])=([8])={[0],[4],[8]};([6])=([6])={[0],[6]};解答完毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由以上四点可得到对一个模n剩余类环,求其所有子环和理想的一个方法。
思路:
第一,模n剩余类环对加法构成加群,根据群的定义,找出所有子群;
第三,对所有子群,根据环的定义,对乘法封闭,从所有子群里找出所有环;
第四,对所有子环,根据理想的定义,找出所有理想。
例题:找出模12的剩余类环的所有理想。
具体步骤:
第一步:
模12剩余类环所有元素的集合:
={[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}找其对加法构成加群的子群,并因为其对加法构成的子群是循环群,所以用生成元表示:
([0])={[0]};
([1])=([11])=
{[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}= ;
([2])=([10])={[0],[2],[4],[6],[8],[10]};
([3])=([9])={[0],[3],[6],[9]};
([4])=([8])={[0],[4],[8]};
([6])={[0],[6]};
第二步:
考虑对乘法的封闭性,求其子环:
([0])={[0]};
([1])=([11])=
{[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}= ; ([2])=([10])={[0],[2],[4],[6],[8],[10]};
([3])=([9])={[0],[3],[6],[9]};
([4])=([8])={[0],[4],[8]};
([6])={[0],[6]};
第三步:
根据理想的定义,对以上的子环,求其理想:
([0])= ([12])={[0]};
([1])=([11])=
{[0],[1] ,[2] ,[3] ,[4] ,[5] ,[6] ,[7] ,[8] ,[9] ,[10] ,[11]}= ; ([2])=([10])={[0],[2],[4],[6],[8],[10]};
([3])=([9])={[0],[3],[6],[9]};
([4])=([8])={[0],[4],[8]};
([6])=([6])={[0],[6]};
解答完毕。
通过观察以上的例子我们发现以下特点:
模12剩余类环的所有对加法构成的子群,等于所有子环,等于所有理想;
所有的子群(对加法)是循环群,所有的理想是主理想;
第一列的所有生成元都是12的因子;
第二列的所有生成元可表示为[12-],其中为12所有的因子. 于是我们有以下结论:
模n剩余类环的所有子群(对加法)是循环子群,所有理想是主理想,并且它们都可由n的所有因子作为生成元生成的(或者由n与其所有因子的差作为生成元生成),它们的个数都为n的欧拉数。
特别地,当n是素数时,只有零理想和单位理想。
命题1模n剩余类环的所有子群(对加法)是循环子群;
这是显然的,因为模n剩余类环本身对加法构成循环群,而循环群的子群是循环群。
得证。
命题2模n剩余类环的所有理想是主理想;
对上面的所有循环子群(对加法),([i]),
根据理想的定义,[a];[b],[c]([i]);有:
[b]-[c]=[b-c]([i]);
[a][b]=[ab]= ([i]),同理:[b][a]([i]);
所以([i])做为一个理想,显然([i])是个主理想,记为。
由命题二的证明过程我们得知:所有循环子群(对加法)加上乘法都是模n剩余类环的主理想。
命题3模n剩余类环的所有循环子群可由n的所有因子作为生成元生成的(或者由n与其所有因子的差作为生成元生成),它们的个数都为n的欧拉数。
设:n的所有因子为,,,…,,…;为n的因子。
任意取一循环子群由[a]生成(0<a<n,a Z);
设d=(a,n);既d是n的因子不妨设为,则a=, n=(,Z, <),且(,)=1,则a的阶为,又a([]),推出([a])=([]),即该循环子群等价于n的一因子作为生成元生成。
综上所述,命题成立。
所以有以下结论:
模n剩余类环的所有理想是主理想,并且它们都可由n的所有因子作为生成元生成的(或者由n与其所有因子的差作为生成元生成),它们的个数都为n的欧拉数。
推论:当n是素数时,模n剩余类环只有零理想和单位理想。
例题1:找出模18的剩余类环的所有理想。
解:
18的因子:1,2,3,6,9,18;
由上述结论知:所有理想为:([0]),([1]),([2]),([3]),([6]),([9])。
(注:通常([n])用([0])代替,二者等价)
例题2:找出模7的剩余类环的所有理想。
解:
7是素数,由推论知:所有理想为:([0]),([1])。