高中数学第一章集合与函数概念(函数的概念)教案新人教版必修1
高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
新人教版高中数学必修一全套教案

b. {(x,y) ∣ x+y=6 ,x、 y∈ N}用列举法表示为
.
c. 用列举法表示下列集合 , 并说明是有限集还是无限集 ?
(1){x ∣ x 为不大于 20 的质数 }; (2){100
以下的 ,9 与 12 的公倍数 };
(3){(x,y)
∣ x+y=5,xy=6};
d. 用描述法表示下列集合 , 并说明是有限集还是无限集 ?
1. 1. 2 集 合间的基 本关系 (1 课时 )
教学目标: 1. 理解子集、真子集概念;
2. 会判断和证明两个集合包含关系;
3. 理解“ ”、“ ”的含义; 4. 会判断简单集合的相等关系;
5. 渗透问题相对的观点。
教学重点: 子集的概念、真子集的概念
教学难点: 元素与子集、属于与包含间区别、描述法给定集合的运算
, 以提供某种规律 ,
例 1.用列举法表示下列集合: (1) 小于 5 的正奇数组成的集合; (2) 能被 3 整除而且大于 4 小于 15 的自然数组成的集合; (3) 从 51 到 100 的所有整数的集合; (4) 小于 10 的所有自然数组成的集合;
(5) 方程 x 2 x 的所有实数根组成的集合;
②若 a Ν ,b Ν , 则 a+b 的最小值是 2 ④ x 2+4=4x 的解集可表示为 {2,2}
其中正确命题的个数是 ( )
A .0
B
.1
C
.2
D
.3
( IV )课时小 结
1. 集 合的含 义;
2. 集合元素的三个特征中,确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集
合的表示,无序性可用于判定集合的关系。
人教课标版高中数学必修1第一章集合与函数概念集合教案

⼈教课标版⾼中数学必修1第⼀章集合与函数概念集合教案课题:1.1集合-集合的概念(1)教学⽬的:(1)使学⽣初步理解集合的概念,知道常⽤数集的概念及记法(2)使学⽣初步了解“属于”关系的意义(3)使学⽣初步了解有限集、⽆限集、空集的意义教学重点:集合的基本概念及表⽰⽅法教学难点:运⽤集合的两种常⽤表⽰⽅法——列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的⼀个重要的基本概念在⼩学数学中,就渗透了集合的初步概念,到了初中,更进⼀步应⽤集合的语⾔表述⼀些问题在⼏何中⽤到的有点集⾄于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运⽤,基本的逻辑知识在⽇常⽣活、学习、⼯作中,也是认识问题、研究问题不可缺少的⼯具这些可以帮助学⽣认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在⾼中数学的最开始,是因为在⾼中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使⽤数学语⾔的基础例如,下⼀章讲函数的概念与性质,就离不开集合与逻辑本节⾸先从初中代数与⼏何涉及的集合实例⼊⼿,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常⽤表⽰⽅法,包括列举法、描述法,还给出了画图表⽰集合的例⼦这节课主要学习全章的引⾔和集合的基本概念学习引⾔是引发学⽣的学习兴趣,使学⽣认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有⼀个初步认识教科书给出的“⼀般地,某些指定的对象集在⼀起就成为⼀个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:⼀、复习引⼊:1.简介数集的发展,复习最⼤公约数和最⼩公倍数,质数与和数;2.教材中的章头引⾔;3.集合论的创始⼈——康托尔(德国数学家)(见附录);4.“物以类聚”,“⼈以群分”;5.教材中例⼦(P4)⼆、讲解新课:阅读教材第⼀部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表⽰的?(3)集合中元素的特性是什么?(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的.我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:⼀般地,某些指定的对象集在⼀起就成为⼀个集合. 1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R{}数数轴上所有点所对应的=R 注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0 的集,表⽰成Z *3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、⑴集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… ⑵“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 5练习1、22、下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数(不确定)(2)好⼼的⼈(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b 是⾮零实数,那么bb aa +可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素5、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证: (1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,⽽x1不⼀定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2 ∵a ∈Z, b ∈Z,c ∈Z, d ∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d)2 ∈G ,⼜∵211b a x +==2222222b a b b a a --+-且22222,2ba bb a a ---不⼀定都是整数,∴211b a x +==2222222b a b b a a --+-不⼀定属于集合G四、⼩结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于) 2.集合元素的性质:确定性,互异性,⽆序性 3.常⽤数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:⼋、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor ,1845-1918)是德国数学家,集合论的创始者1845年3⽉3⽇⽣于圣彼得堡,1918年1⽉6⽇病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时⼊瑞⼠苏黎世⼤学,翌年⼊柏林⼤学,主修数学,1866年曾去格丁根学习⼀学期1867年以数论⽅⾯的论⽂获博⼠学位年在哈雷⼤学通过讲师资格考试,后在该⼤学任讲师,1872年任副教授,1879年任教授由于研究⽆穷时往往推出⼀些合乎逻辑的但⼜荒谬的结果(称为“悖论”),许多⼤数学家唯恐陷进去⽽采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的⽆穷宣战他靠着⾟勤的汗⽔,成功地证明了⼀条直线上的点能够和⼀个平⾯上的点⼀⼀对应,也能和空间中的点⼀⼀对应这样看起来,1厘⽶长的线段内的点与太平洋⾯上的点,以及整个地球内部的点都“⼀样多”,后来⼏年,康托尔对这类“⽆穷集合”问题发表了⼀系列⽂章,通过严格证明得出了许多惊⼈的结论康托尔的创造性⼯作与传统的数学观念发⽣了尖锐冲突,遭到⼀些⼈的反对、攻击甚⾄谩骂有⼈说,康托尔的集合论是⼀种“疾病”,康托尔的概念是“雾中之雾”,甚⾄说康托尔是“疯⼦”来⾃数学权威们的巨⼤精神压⼒终于摧垮了康托尔,使他⼼⼒交瘁,患了精神分裂症,被送进精神病医院真⾦不怕⽕炼,康托尔的思想终于⼤放光彩1897年举⾏的第⼀次国际数学家会议上,他的成就得到承认,伟⼤的哲学家、数学家罗素称赞康托尔的⼯作“可能是这个时代所能夸耀的最巨⼤的⼯作”可是这时康托尔仍然神志恍惚,不能从⼈们的崇敬中得到安慰和喜悦1918年1⽉6⽇,康托尔在⼀家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产⽣了探索⽆穷集和超穷数的兴趣康托尔肯定了⽆穷数的存在,并对⽆穷问题进⾏了哲学的讨论,最终建⽴了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创⽴了集合论作为实数理论,以⾄整个微积分理论体系的基础17世纪⽜顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创⽴微积分理论体系之后,在近⼀⼆百年时间⾥,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等⼈进⾏的微积分理论严格化所建⽴的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的⽼师,对康托尔表现了⽆微不⾄的关怀他⽤各种⽤得上的尖刻语⾔,粗暴地、连续不断地攻击康托尔达⼗年之久他甚⾄在柏林⼤学的学⽣⾯前公开攻击康托尔⼀个薪⾦较⾼、声望更⼤的教授职位使得康托尔想在柏林得到职位⽽改善其地位的任何努⼒都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个⼈,⽽且还不只我⼀⼈,认为重要之点在于,切勿引进⼀些不能⽤有限个⽂字去完全定义好的东西集合论是⼀个有趣的“病理学的情形”,后⼀代将把(Cantor)集合论当作⼀种疾病,⽽⼈们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想H.A.施⽡兹,康托尔的好友,由于反对集合论⽽同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很⾃卑,甚⾄怀疑⾃⼰的⼯作是否可靠他请求哈勒⼤学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒⼤学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着⼿研究数学中最困难的问题之⼀⼀般π次⽅程求解问题许多数学家为之耗去许多精⼒,但都失败了直到1770年,法国数学家拉格朗⽇对上述问题的研究才算迈出重要的⼀步伽罗华在前⼈研究成果的基础上,利⽤群论的⽅法从系统结构的整体上彻底解决了根式解的难题他从拉格朗⽇那⾥学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进⼀步发展了他的思想,把全部问题转化成或者归结为置换群及其⼦群结构的分析上同时创⽴了具有划时代意义的数学分⽀——群论,数学发展史上作出了重⼤贡献1829年,他把关于群论研究所初步结果的第⼀批论⽂提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论⽂的鉴定⼈在1830年1⽉18⽇柯西曾计划对伽罗华的研究成果在科学院举⾏⼀次全⾯的意见听取会然⽽,第⼆周当柯西向科学院宣读他⾃⼰的⼀篇论⽂时,并未介绍伽罗华的著作1830年2⽉,伽罗华将他的研究成果⽐较详细地写成论⽂交上去了以参加科学院的数学⼤奖评选,论⽂寄给当时科学院终⾝秘书J .B .傅⽴叶,但傅⽴叶在当年5⽉就去世了,在他的遗物中未能发现伽罗华的⼿稿1831年1⽉伽罗华在寻求确定⽅程的可解性这个问题上,⼜得到⼀个结论,他写成论⽂提交给法国科学院于群论的重要著作当时的数学家S .K .泊松为了理解这篇论⽂绞尽了脑汁尽管借助于拉格朗⽇已证明的⼀个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5⽉30⽇,临死的前⼀夜,他把他的重⼤科研成果匆忙写成后,委托他的朋友薛伐⾥叶保存下来,从⽽使他的劳动结晶流传后世,造福⼈类年5⽉31⽇离开了⼈间死因参加⽆意义的决⽃受重伤1846年,他死后14年,法国数学家刘维尔着⼿整理伽罗华的重⼤创作后,⾸次发表于刘维尔主编的《数学杂志》上课题:1.1集合-集合的概念(2)教学⽬的:(1)进⼀步理解集合的有关概念,熟记常⽤数集的概念及记法(2)使学⽣初步了解有限集、⽆限集、空集的意义(3)会运⽤集合的两种常⽤表⽰⽅法教学重点:集合的表⽰⽅法教学难点:运⽤集合的列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:⼀、复习引⼊:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾃然数集:全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… (2)“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写⼆、讲解新课:(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程012=-x 的所有解组成的集合,可以表⽰为{-1,1} 注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表⽰⼀个元素,{a}表⽰⼀个集合,该集合只有⼀个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{x ∈A| P (x )}含义:在集合A 中满⾜条件P (x )的x 的集合例如,不等式23>-x 的解集可以表⽰为:}23|{>-∈x R x 或23|{>-x x所有直⾓三⾓形的集合可以表⽰为:}|{是直⾓三⾓形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直⾓三⾓形};{⼤于104的实数} (2)错误表⽰法:{实数集};{全体实数}3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?⑴有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三)有限集与⽆限集1、有限集:含有有限个元素的集合2、⽆限集:含有⽆限个元素的集合3、空集:不含任何元素的集合Φ,如:}01|{2=+∈x R x三、练习题:1、⽤描述法表⽰下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且 2、⽤列举法表⽰下列集合①{x ∈N|x 是15的约数} {1,3,5,15} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防⽌把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(-④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)} ⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的⽅程ax +b=0,当a,b 满⾜条件____时,解集是有限集;当a,b 满⾜条件_____时,解集是⽆限集4、⽤描述法表⽰下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、⼩结:本节课学习了以下内容:1.集合的有关概念:有限集、⽆限集、空集2.集合的表⽰⽅法:列举法、描述法、⽂⽒图五、课后作业:六、板书设计(略)七、课后记:1.2 ⼦集、全集、补集教学⽬标:(1)理解⼦集、真⼦集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关⼦集、全集、补集的符号及表⽰⽅法,会⽤它们正确表⽰⼀些简单的集合,培养学⽣的符号表⽰的能⼒;(4)会求已知集合的⼦集、真⼦集,会求全集中⼦集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会⽤符号及图形(⽂⽒图)准确地表⽰出来,培养学⽣的数学结合的数学思想;(6)培养学⽣⽤集合的观点分析问题、解决问题的能⼒.教学重点:⼦集、补集的概念教学难点:弄清元素与⼦集、属于与包含之间的区别教学⽤具:幻灯机教学过程设计(⼀)导⼊新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表⽰⽅法是列举法.2.哪些集合表⽰⽅法是描述法.3.将集M、集从集P⽤图⽰法表⽰.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系⽤符号表⽰出来.将集N中元素3与集M的关系⽤符号表⽰出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学⽣回答】1.集合M和集合N;(⼝答)2.集合P;(⼝答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(⼝答)5.,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(⼝答)【引⼊】在上⾯见到的集M与集N;集M与集P通过元素建⽴了某种关系,⽽具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(⼆)新授知识1.⼦集(1)⼦集定义:⼀般地,对于两个集合A与B,如果集合A的任何⼀个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。
必修1第一章集合与函数概念1.1.2集合间的基本关系教案

1.1.2 集合间的基本关系教学目的: 让学生初步了解子集的概念及其表示方法,同时了解相等集合、真子集和空集的有关概念.教学重难点:1、子集、真子集的概念及它们的联系与区别;2、空集的概念以及与一般集合间的关系.教学过程:一、复习(结合提问):1.集合的概念、集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.关于“属于”的概念二、新课讲授(一)子集的概念1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B (或B⊇A),读作“A含于B”(或“B包含A”).2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B 已(或B⊄A)(二)空集的概念不含任何元素的集合叫做空集,记作φ,并规定: 空集是任何集合的子集.(三)“相等”关系1、实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A 与B,如果集合A 的任何一个元素都是集合B 的元素,同时,集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B,记作A=B(即如果A ⊆B 同时 B ⊆A 那么A=B).2、 ① 任何一个集合是它本身的子集. A ⊆A② 真子集:如果A ⊆B ,且A ≠B 那就说集合A 是集合B 的真子集,记作A B ③ 空集是任何非空集合的真子集.④ 如果 A ⊆B, B ⊆C ,那么 A ⊆C.证明:设x 是A 的任一元素,则 x ∈AA ⊆B,∴x ∈B 又 B ⊆C ∴x ∈C 从而 A ⊆C同样;如果 A ⊆B, B ⊆C ,那么 A ⊆C(三)例题与练习例1 设集合A={1,3,a},B={1,a2-a+1}A ⊇B,求a 的值练习1 写出集合A={a,b,c}的所有子集,并指出哪些是真子集?有多少个?例2 求满足{x|x 2+2=0} M ⊆{x|x2-1=0}的集合M. 例3 若集合A={x|x 2+x-6=0},B={x|ax+1=0}且B A,求a 的值. 练习 集合M={x|x=1+a 2,a ∈N*}, P={x|x=a 2-4a+5,a ∈N*}下列关系中正确的是( )⊂ ≠⊂ ≠⊂ ≠A M PB P MC M=PD M P 且 P M 三、小结子集、真子集、空集的有关概念.四、作业⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠。
高一数学必修1--集合教案

第一章集合与函数概念§1.1集合(第一课时)教学过程:读一读课本第2页问:下面8个问题的研究对象是什么?对象的全体又称为什么?1、1--20以内的所有素数(质数)2、我国从1991--2003年的13年内所发射的所有人造卫星3、金星汽车厂2003年生产的所有汽车4、2004年1月1日之前与我国建立外交关系的所有国家5、所有正方形6、到直线l的距离等于定长d的所有点7、方程x2+3x-2=0的所有实数根8、兴华中学2004年9月入学的所有高一学生总结:⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…,或数字、式子等表示。
例如A={1,3,a,c,a+b}3.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
4.常用的数集及记法:非负整数集(或自然数集),记作N;(0、1 、2······)正整数集,记作N*或N+;N内排除0的数集.整数集,记作Z;有理数集,记作Q;实数集,记作R;做一做1、A表示“1~20以内的所有素数”组成的集合是则有3 A,4 A, 7 A,9 A,13 A,15 A 填(∈或∉)2、 A={2,4,8,16},则4 A,8 A,32 A. 填(∈或∉)3.用“∈”或“∉”符号填空:⑴8 N;⑵0 N;⑶-3 Z;;(5)-14 R(6)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A (7)若A={x|x2=x}则-1 A 。
(8)若B={x2+x-6=0},则3 B6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
人教A版高中数学必修1教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
人教版高中数学必修1第1章第一章 集合与函数概念复习课教案

第一章集合与函数概念复习课教学目标分析:知识目标:进一步领会函数单调性和奇偶性的定义,并在此基础上,熟练应用定义判断和证明函数的单调性及奇偶性,初步学习单调性和奇偶性结合起来解决函数的有关问题。
过程与方法:体会单调性和奇偶性在解决函数有关问题中的重要作用,提高应用知识解决问题的能力。
情感目标:体会转化化归及数形结合思想的应用,培养学生的逻辑思维能力。
重难点分析:重点:函数的性质的灵活应用。
难点:函数的性质的灵活应用。
互动探究:一、课堂探究:一、复习回顾1、集合的包含关系;2、集合的交、并、补运算;3、函数的单调性(概念、判断方法、应用——求函数的最值);4、函数的奇偶性(概念、图像特征、判断方法);5、函数最值的求法.二、典型例题探究1、集合的概念以及运算例1、设集合2==∈==-∈,求P Q.P y y x x R Q y y x x R{|,},{|2||,}答案:{|02}=≤≤.P Q y y变式:已知全集32C A=,求=++和它的子集{1,|21|}U x x x{1,3,32}A x=-,如果{0}U实数x的值.答案:1x=-2、函数及映射的概念例2、已知集合42{1,2,3,},{4,7,,3}==+,且,,,A kB a a a∈∈∈∈,映射a N k N x A y B=+和A中元素x对应,求,a k的值.y x→,使B中元素31:f A B答案:2,5==a k3、分段函数例3、若不等式|2||1|++->恒成立,求实数a的取值范围.x x a答案:3a <.变式:若不等式|2||1|x x a +-->的解集是空集,求实数a 的取值范围.答案:3a ≥.4、函数的定义域和值域例4、若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求,a b 的值.答案:3,32a b ==.变式1:若函数()y f x =的值域是[1,3],求函数()12(3)F x f x =-+的值域.答案:[5,1]--变式2:若函数()y f x =的值域为1[,3]2,求函数1()()()F x f x f x =+的值域.答案:10[2,]35、函数的单调性例5、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是多少?答案:(1)-变式:已知()(0,)()()(),(2)1x f x f f x f y f y+∞=-=是定义在上的增函数,且, 解不等式1()()23f x f x -≤-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.1函数的概念一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念 (1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ).记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域(range ).注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x . (2)构成函数的三要素是什么?定义域、对应关系和值域 (3)区间的概念 ①区间的分类:开区间、闭区间、半开半闭区间; ②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0) y =ax 2+b x +c (a ≠0) y =xk(k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
师:归纳总结(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域 例1:已知函数f (x ) =3+x +21+x (1)求函数的定义域; (2)求f (-3),f (32)的值; (3)当a >0时,求f (a ),f (a -1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解:略例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.分析:由题意知,另一边长为2280x-,且边长为正数,所以0<x<40.所以s=8022xx-⋅ = (40-x)x(0<x<40)引导学生小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义.巩固练习:课本P19第12、如何判断两个函数是否为同一函数例3、下列函数中哪个与函数y=x相等?(1)y = (x)2 ; (2)y = (33x);(3)y =2x; (4)y=xx2分析:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:(略)课本P18例2(四)巩固深化,反馈矫正:(1)课本P19第3题(2)判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?①f ( x ) = (x-1) 0;g ( x ) = 1②f ( x ) = x;g ( x ) = 2x③ f ( x ) = x 2;f ( x ) = (x + 1) 2④ f ( x ) = | x | ;g ( x ) = 2x (3)求下列函数的定义域 ① 1()||f x x x =- ② 1()11f x x=+③ f (x ) = 1+x +x-21 ④ f (x ) =24++x x ⑤()1f x (五)归纳小结①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。
(六)设置问题,留下悬念1、课本P 24习题1.2(A 组) 第1—7题 (B 组)第1题2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。
【A 组】1.下列各组函数中,表示同一函数的是( )A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==答案:C2.求下列函数定义域:()f x =1()11/f x x =+答案:-41](,{0,1}x x x ≠≠-且 【B 组】1.已知x x x f 2)12(2-=+,则)3(f = -1 .2. 已知f(x+1)=2x 2-3x +1,求f(-1)。
变:1()1x f x x -=+,求f(f(x)) 解法一:先求f(x),即设x +1=t ;(换元法) 解法二:先求f(x),利用凑配法; 解法三:令x +1=-1,则x =-2,再代入求。
(特殊值法)3.从集合{a,b}到集合{1,2,3},可以建立映射的个数是_______9_______. 【C 组】1.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为 ( A ) A .正数B .负数 C .0 D .符号与a 有关2.已知221)1(xx x x f +=-,则)1(+x f 等于 ( C ) A. 22)1(1)1(+++x x B. 22)1(1)1(xx x x -+- C. 2)1(2++x D. 1)1(2++x§1.2.2函数的表示法一.教学目标1.知识与技能(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数; (3)通过具体实例,了解简单的分段函数及应用. 2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法。
二.教学重点和难点教学重点:函数的三种表示方法,分段函数的概念.教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象. 三.学法及教学用具1.学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标. 2.教学用具:圆规、三角板、投影仪. 四.教学思路(一)创设情景,揭示课题.我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题. (二)研探新知1.函数有哪些表示方法呢?(表示函数的方法常用的有:解析法、列表法、图象法三种) 2.明确三种方法各自的特点?(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况) (三)质疑答辩,排难解惑,发展思维.例1.某种笔记本的单价是5元,买}{(1,2,3,4,5)x x ∈个笔记本需要y 元,试用三种表示法表示函数()y f x =.分析:注意本例的设问,此处“()y f x =”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.解:(略) 注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等; ②解析法:必须注明函数的定义域; ② 象法:是否连线;④列④列表法:选取的自变量要有代表性,应能反映定义域的特征.例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具? 解:(略)①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点: ②本例能否用解析法?为什么? 例3.画出函数||y x 的图象解:(略)例4.某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:(略) 注意:①本例具有实际背景,所以解题时应考虑其实际意义; ②象例3、例4中的函数,称为分段函数.③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况. (四)巩固深化,反馈矫正. (1)课本P 23 练习第1,2,3题(2)国内投寄信函(外埠),假设每封信函不超过20g ,付邮资80分,超过20g 而不超过40g 付邮资160分,每封xg (0<x ≤100=的信函应付邮资为(单位:分) (五)归纳小结理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法。