热负荷计算方法
热负荷量的计算公式

热负荷量的计算公式热负荷量是指建筑物或设备需要排除的热量的量度。
在建筑设计和工程领域中,热负荷量的计算是非常重要的,它可以帮助工程师和设计师确定建筑物所需的制冷或供暖能力,以确保建筑物内部的舒适性和能源效率。
热负荷量的计算公式是根据建筑物的尺寸、材料、朝向、使用情况等因素来确定的,下面我们将详细介绍热负荷量的计算公式及其应用。
热负荷量的计算公式通常包括以下几个主要因素,传导热、对流热和辐射热。
传导热是指热量通过建筑物的墙壁、屋顶、地板等传导到室内的过程;对流热是指空气或水通过对流传热的方式将热量传递到室内;辐射热是指太阳辐射或室内设备产生的热量通过辐射的方式传递到室内。
这些因素都会对建筑物的热负荷量产生影响,因此在计算热负荷量时需要综合考虑这些因素。
传导热的计算公式通常采用热传导方程来确定,该方程可以根据建筑物的尺寸、材料的热传导系数和温度差来计算传导热的量。
对流热的计算公式通常采用对流传热方程来确定,该方程可以根据空气或水的流速、温度差和表面积来计算对流热的量。
辐射热的计算公式通常采用辐射传热方程来确定,该方程可以根据辐射源的温度、表面积和辐射率来计算辐射热的量。
在实际的热负荷量计算中,通常会将传导热、对流热和辐射热的计算结果进行综合考虑,以确定建筑物所需的制冷或供暖能力。
一般来说,热负荷量的计算公式可以表示为以下形式:Q = U × A ×ΔT。
其中,Q表示热负荷量,U表示传导热系数或对流传热系数,A表示传热表面积,ΔT表示温度差。
这个公式可以根据具体的情况进行调整,以满足不同建筑物的需求。
在实际的工程项目中,热负荷量的计算通常会结合建筑物的设计参数、使用情况和环境条件来确定。
例如,建筑物的朝向、材料的热传导系数、空调系统的效率等因素都会对热负荷量产生影响,因此在计算热负荷量时需要综合考虑这些因素。
除了热负荷量的计算公式外,建筑物的能源消耗和能源效率也是非常重要的考虑因素。
暖通房间热负荷计算方法

暖通房间热负荷计算方法
宝子,咱来唠唠暖通房间热负荷咋计算哈。
还有一种更精确的计算方法,得考虑好多因素呢。
像房间的围护结构,这就包括墙、窗户、屋顶啥的。
墙的导热系数很关键,如果墙比较厚,保温性能好,那热量散失就慢。
窗户也是个大问题,单层玻璃的窗户肯定比双层玻璃的散热快多啦。
咱得算出这些围护结构每小时能传导出去多少热量,这就用到一些公式啦。
比如说Q = K×F ×Δt,这里的Q就是传热量,K是围护结构的传热系数,F是面积,Δt是室内外的温差。
室内外温差也很重要哦。
如果冬天外面是零下10度,室内想要20度,那温差就是30度呢。
这温差越大,房间热量散失得就越快,需要补充的热量就越多。
另外,房间里如果有人,人也会散发一定的热量呢。
一个成年人安静的时候大概散发100瓦左右的热量。
还有房间里如果有电器设备,像电脑、电视啥的,它们运行的时候也会产生热量。
这些热量在计算热负荷的时候都得考虑进去。
要是把这些额外的热量也算上,那实际需要暖通系统提供的热量就可以稍微少一点啦。
宝子,总的来说,暖通房间热负荷计算就是要把这些零零碎碎的因素都考虑周全。
这样算出来的结果才准确,咱的暖通系统才能既让房间暖和,又不浪费能源。
这就像给房间量身定制一件温暖的“小棉袄”,不多不少,刚刚好呢。
采暖负荷计算

采暖负荷计算只设采暖系统的民用建筑物,其采暖负荷可按下列两种方法进行估算,注以下计计算方法要求建筑物均按照国家节能建筑设计标准设计,建筑围护结构采取了一定的节能措施,达到了节能建筑的最低节能要求,对于未按节能标准设计的建筑应根据具体情况进行修正。
1.1、单位面积热指标法当我们只知道建筑物总面积时,其采暖热负荷可参考下列数值进行估算:Q=q×FQ:建筑物采暖负荷(w);q:单位面积热指标(w/m3),查表1,对于窗墙比比较大的建筑物应参考注释“窗墙比公式法”进行修正;F:建筑面积(m2);表1:单位面积热指标注释:1) 总建筑面积大、外围护结构热工性能好、窗户面积小,采用较小的指标;反之采用较大的指标;2)当我们已知外墙面积、窗墙比及建筑面积时,对窗墙比比较大的建筑物,单位面积热指标应按下式进行修正:)()7.17(w n t t FW q -+∂=q :建筑物采暖面积指标(w/m 2);∂:外窗面积与外墙面积(包括窗)之比;W :外墙总面积(包括窗)(m 2); F :总建筑面积(m 2); tn :室内采暖设计温度(℃);(1) 设计集中采暖时,冬季室内采暖设计温度,应根据建筑物的用途,按下列规定采用: a 民用建筑的主要房间,散热器对流采暖宜采用16-20℃,地板辐射采暖宜采用14-18℃,空气调节宜采用18-22℃(风机盘管);b 生产厂房的工作地点:轻作业设计温度不应低于15℃;中作业设计温度不应低于12℃;重作业设计温度不应低于10℃,作业种类的划分应按国家现行《工业企业设计卫生标准》执行,当每名工人占用较大面积(50~100m 2)时,轻作业可低至10℃,中作业可低至7℃,重作业可低至5℃;c 辅助建筑物及辅助用房,不应低于下列数值:浴室25℃;更衣室23℃;托儿所、医务室、儿院20℃;办公用室16~18℃;食堂14℃;厕所12℃;车库5℃;d 工艺或使用有特殊要求时应按相关专业标准、规范执行;e 对于冬季空气调节室内计算参数,应符合室内计算温度为18~22℃。
采暖热负荷计算实例

采暖热负荷计算实例采暖热负荷计算是指对建筑物进行能量平衡计算,以确定在特定的气候条件下所需的供暖能量。
这个过程包括考虑建筑物外墙、屋顶、地板、门窗等的传热,以及人员、照明、机械设备等产生的内部热量。
下面以办公楼为例,介绍采暖热负荷计算的步骤和方法。
首先,我们需要收集建筑物的一些基本信息,比如建筑物的功能和用途、建筑面积、朝向、墙壁和屋顶的材料以及厚度等。
假设该办公楼位于北京,建筑面积为1000平方米,是一个四层楼的建筑物。
第一步是计算外墙、屋顶、地板的传热量。
传热量的计算可以用传热公式Q=k*A*(T1-T2)/L来计算,其中Q为传热量,k为材料的导热系数,A为传热面积,T1和T2分别是两侧的温度,L为材料的厚度。
假设外墙使用保温材料,导热系数为0.2W/m·K,屋顶和地板使用混凝土,导热系数为1.5W/m·K,墙壁和屋顶的厚度为0.2米,地板的厚度为0.1米。
外墙的传热量Q1=k1*A1*(Tin-Tout)/L1,其中Tin为室内温度,Tout为室外温度,A1为外墙的面积,L1为外墙的厚度。
假设室内温度为20°C,室外温度为-10°C,外墙的面积为400平方米,计算得到Q1=0.2*400*(20-(-10))/0.2=4800W。
第二步是计算建筑内部产生的热量。
建筑物内部的热量主要来自于人员、照明、机械设备等。
根据经验数据,每平方米办公区域的照明和插座负荷为80W,人员负荷为100W/人。
假设办公楼一天工作8小时,人数为50人,计算得到照明和插座负荷为80*1000+50*100=8500W。
根据计算结果,该办公楼的采暖热负荷为140.8kW,表示在北京的冬季,需要提供至少140.8kW的供暖能量才能保持室内的舒适温度。
这个结果可以用来选择合适的采暖设备和设计供暖系统,以确保建筑物的供暖需求得到满足。
采暖热负荷计算方法

热负荷计算方法发布时间:2016-02-24城市集中供热系统的用户在单位时间内所需的热量。
它是制订城市供热规划和设计供热系统的重要依据,也是对供热系统设计进行技术经济分析的重要原始资料。
集中供热系统的热负荷主要有采暖、通风、热水供应和生产工艺等热负荷。
其中采暖和通风用热是季节性热负荷,而热水供应和生产工艺用热则多是常年性热负荷。
季节性热负荷随气候条件而变化,在一年中变化很大,但在一天内波动较小。
常年性热负荷受气候条件影响较小,在一年中变化不大,但在一天内波动大,特别是对非全天需热的用户。
采暖热负荷在冬季某一室外温度下,为达到要求的室内温度,供热系统在单位时间内向建筑物供给的热量。
采暖设计热负荷是指当室外温度为采暖室外计算温度时,为了达到上述所要求的室内温度,供热系统在单位时间内向建筑物供给的热量。
在制订城市或区域供热规划或设计其供热系统时,往往缺乏确切的原始资料,一般只能用热指标法估算,即用单位建筑面积的热指标乘以建筑面积,得出采暖的设计热负荷Q(瓦)。
用公式表示为:Q=qfFqf--单位建筑面积热指标(W/㎡);F--建筑面积(㎡)如已知房屋体积,也可采用每立方米建筑体积在室内外温差为1°C时的热指标qv 【W/(m3·°C)】Q=qvV(tn-tw)V--建筑体积(m3);tn--室内计算温度(°C);tw--采暖室外计算温度(°C)。
采暖热指标qv和qf的大小与建筑物围护结构的传热系数、外围体积、密闭性或通风条件、建筑物的类型和外形以及墙窗面积比等许多因素有关,通常是依据实际工程统计分析而得,设计时可参考有关部门提供的资料,结合具体情况选用。
一、维护结构的耗热量1.维护结构的基本耗热量Qj--j部分围护结构的基本耗热量,W;Aj--j部分围护结构的表面积,m2;Kj--j部分围护结构的传热系数,W/(m2*℃);tR--冬季室内计算温度,℃;tow-- 采暖室外计算温度,℃;α--围护结构的温差修正系数2.维护结构附加耗热量(1)朝向修正率不同朝向的围护结构,收到的太阳辐射热量是不同的;同时,不同的朝向,风的速度和频率也不同。
热负荷计算方法

风量后,再计算其耗热。
4. 外门开启冲入冷风耗热量 Q3(W)
请参考《实用供热空调设计手册》第二版
P314 。
5. 单层厂房的大门开启冲入冷风耗热量
Q3(W)
每班开启时间等于或者小于 15min 的大门,采用附加率法确定其大门冲入冷风耗热
附加在大门的基本耗热量上,附加率为 200% ~ 500%
每班开启时间大于 15min 的大门,按下面经验公式确定其大门开启冲入冷风量
V 的计算方法:
V = ∑(l ·L ·n )
(3.1.1)
式中:
l— 房间某朝向上的可开启门、窗缝隙的长度, m ;
L— 每米门窗缝隙的渗风量, m3/(m ? h) ;
n — 渗风量的朝向修正系数。
考虑热压与风压的联合作用, 且室外风速随高度递增时的计算方法 (暖通与空调设
计规范规定之方法) : V = l1 ·L0 ·pow(m, b) 式中:
式中:
Qj — 该围护物的基本耗热量, W ;
βch — 朝向修正;
βf — 风力修正;
βlang — 两面外墙修正;
βm —窗墙面积比过大修正;
βfg —房高修正;
βjian —间歇附加。
3. 通过门、窗缝隙的冷风渗透耗热量
Q2(W)
Q2 = 0.28 ·Cp ·V ·ρw·(tn - tw)
式中:
F—车间上部可能开启的排风窗或排气孔的面积,
m2
多层厂房大门开启冲入冷风耗热量可按民用多层建筑外门开启冲入冷风耗热量计算,
条
件是车间内无机械通风造成的余压(或正或负) ,无天窗,无大量余热。
3
G
( kg/s ): G=A+(a+N · vw) ·F 式中:
用热负荷计算方法

用热负荷计算方法
热负荷计算是指通过测定建筑内外的温度、相对湿度、气流速度、墙体、屋顶、地面等热工性能参数,计算出建筑表面单位面积
与环境之间的热交换量,以评定建筑内部的热环境负荷,为确定合
适的采暖、通风空调系统提供科学、合理的依据。
因此,在房屋设
计和改建时进行热负荷计算是非常重要的。
热负荷计算方法主要分为传统计算方法和现代计算方法。
传统
计算方法分为经验计算法和精细计算法。
现代计算方法主要是利用
计算机进行热负荷计算,计算过程更加准确、可靠,计算时间也更短。
为了实际计算时的方便性,热负荷计算中采用了一些惯用的物
理量和单位。
比如,热负荷计算中需要用到热传导率、传热系数等,这些物理量的单位是经过国际公制单位制定的。
而热负荷计算结果
一般用单位面积的热负荷表示,单位为W/m2。
总之,进行热负荷计算是十分必要的,可以为建筑的采暖、通
风空调系统的选择提供重要的科学依据和帮助。
对于工程技术人员
而言,热负荷计算更是一项重要的技能,具有非常广泛的应用前景。
热负荷计算公式

热负荷计算公式在我们的日常生活和工业生产中,热负荷的计算是一项非常重要的工作。
热负荷指的是在某一特定条件下,为了维持室内或设备的温度,所需供应的热量。
准确计算热负荷对于合理设计供暖、空调、制冷等系统至关重要,它不仅能够保证系统的正常运行,还能有效地节约能源和降低成本。
热负荷的计算涉及到多个因素,包括室内外温度差、建筑物的围护结构特性、室内人员数量、设备的散热量等等。
下面我们就来详细介绍一下常见的热负荷计算公式及其应用。
一、围护结构传热引起的热负荷围护结构包括墙壁、屋顶、窗户、门等,它们的传热会导致热量的散失或增加。
围护结构传热引起的热负荷可以通过以下公式计算:Q1 = K × F ×(tn tw)其中,Q1 表示围护结构的传热热负荷(W);K 表示围护结构的传热系数 W/(m²·℃);F 表示围护结构的面积(m²);tn 表示室内计算温度(℃);tw 表示室外计算温度(℃)。
传热系数 K 取决于围护结构的材料和构造,不同的材料和构造具有不同的传热性能。
例如,砖墙的传热系数比保温材料的传热系数大,意味着热量更容易通过砖墙散失。
在实际计算中,需要分别计算不同朝向的墙壁、屋顶、窗户和门的传热热负荷,然后将它们相加得到总的围护结构传热热负荷。
二、冷风渗透引起的热负荷在建筑物中,由于门窗的缝隙等原因,室外的冷空气会渗入室内,从而带走热量。
冷风渗透引起的热负荷可以通过以下公式计算:Q2 =028 × cp × ρ × L × (tn tw)其中,Q2 表示冷风渗透热负荷(W);cp 表示空气的定压比热容kJ/(kg·℃),约为 101 kJ/(kg·℃);ρ 表示室外空气的密度(kg/m³);L 表示渗透冷空气量(m³/h)。
渗透冷空气量 L 的计算比较复杂,通常可以根据建筑物的类型、门窗的密封性等因素,采用经验公式或查表的方法来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.围护物的基本耗热量Q J的计算
通过供暖房间某一面围护物的温差传热量(也称围护物的基本耗热量)Qτ(W),按下式计算:
Qj=k·F·(tn-tw) ·a (1.1)
式中:
k—该围护物的传热系数,W/(㎡·℃);
F—该面围护物的散热面积,㎡;
tn—室内空气计算温度,℃;
tw—供暖室外计算温度,℃;
a—温差修正系数。
[1].外墙,屋顶的热桥计算
外墙、屋顶的传热系数当考虑梁、楼板、柱等的热桥影响时,采用外墙平均传热系数Km。
按规定,取各成分面积的加权平均值。
[2].地面传热计算
当围护物是贴土的非保温地面时,其温差传热量Qj.d(W)用下式计算:
Qj.d=k pj.d ·F d·(tn-tw) (1.2)
式中:
k pj.d—非保温地面的平均传热系数,W/(㎡·℃);
F d—房间地面总面积,㎡。
2.附加耗热量
附加耗热量按基本耗热量的百分数计算。
考虑了各项附加后,某面围护物的传热耗热量Q1(W):
Q1=Qj ·(1+βch+βf+βlang+βm)(1+βfg)(1+βjian) (2.1)
式中:
Qj—该围护物的基本耗热量,W;
βch—朝向修正;
βf—风力修正;
βlang—两面外墙修正;
βm—窗墙面积比过大修正;
βfg—房高修正;
βjian—间歇附加。
3.通过门、窗缝隙的冷风渗透耗热量Q2(W)
Q2 = 0.28 · Cp ·V ·ρw· (tn - tw) (3.1)
式中:
Cp—干空气的定压质量比热容, Cp = 1.0 Kj / (Kg·℃);
V—渗透空气的体积流量, m^3 / h;
ρw—室外温度下的空气密度,Kg / m^3;
tn—室内空气计算温度, ℃;
tw—室外供暖计算温度, ℃。
[1].缝隙法
●忽略热压及室外风速沿房高的递增,只计入风压作用时的V的计算方法:
V = ∑(l · L · n)(3.1.1)
式中:
l—房间某朝向上的可开启门、窗缝隙的长度,m;
L—每米门窗缝隙的渗风量,m3/(m •h);
n—渗风量的朝向修正系数。
●考虑热压与风压的联合作用,且室外风速随高度递增时的计算方法(暖通与空调设
计规范规定之方法):
V = l1 · L0 · pow(m, b) (3.1.2)
式中:
l1—外门窗缝隙长度, m;
L0—每米门窗缝隙的基准渗风量, m^3 / h.m;
m—门窗缝隙的渗风量综合修正系数;
b—门窗缝隙渗风指数, b = 0.56 ~ 0.78 当无实测数据的时候可以取b = 0.67。
L0的确定:
L = a1 · pow( (v10 · v10 ·ρw / 2), b )(3.1.3)
a1—门窗缝隙渗系数, m^3/(m * h * Pab), 注: Pab代表: Pa(帕)的b次方;
v10—基准高度冬季室外最多风向的平均风速, m/s。
M 的确定:
m = Cr·Cf·( pow(n, 1/b) + C ) · Ch (3.1.4)
式中:
Cr—热压系数;
Cf—风压差系数, m / s, 当无实测数据的时候,可取0.7;
C—作用于门窗分析两侧的有效热压差和有效风压差之比;
Ch—高度修正系数, 可按下式计算。
Ch = 0.3·pow( h, 0.4 ) (3.1.5)
h—计算门窗的中心线的标高。
C的确定
C=70·{(hz - h)/[Cf ·v10 ·v10 ·pow( h, 0.4)]}·[(tn' - tw)/(273+ tn')]
(3.1.6)
式中:
hz—热压单独作用下, 建筑物中和界的标高, m;
tn'—建筑物内形成热压作用的竖井计算温度。
[2].换气次数法
V = K·Vf (3.2.1)
式中:
V—房间冷风渗透量,m3/h;
K—换气次数,1/h;
V f—房间的净面积,m3。
单层工业厂房的门、窗缝隙冷风渗透耗热量Q2可按《实用供热空调设计手册》第二版中表5.1- 16估定
多层工业车间的外门窗缝隙渗风耗热,当车间内无其他人工通风系统工作,无天窗,无大量余热产生时,每米缝隙渗风量可按民用多层建筑渗风量计算,用缝隙法合适,计算得渗风量后,再计算其耗热。
4.外门开启冲入冷风耗热量Q3(W)
请参考《实用供热空调设计手册》第二版P314。
5.单层厂房的大门开启冲入冷风耗热量Q3(W)
每班开启时间等于或者小于15min的大门,采用附加率法确定其大门冲入冷风耗热附加在大门的基本耗热量上,附加率为200% ~ 500%
每班开启时间大于15min的大门,按下面经验公式确定其大门开启冲入冷风量G (kg/s):
G=A+(a+N·vw)·F (5.1)
式中:
G—冲入冷风量,kg/s
a—常数
N—常数,当大门尺寸为3.0m×3.0m时,N=0.25
当大门尺寸为4.0m×4.0m时,N=0.2
当大门尺寸为4.7m×5.6m时,N=0.15
vw—冬季室外平均风速,m/s
F—车间上部可能开启的排风窗或排气孔的面积,m2
多层厂房大门开启冲入冷风耗热量可按民用多层建筑外门开启冲入冷风耗热量计算,条件是车间内无机械通风造成的余压(或正或负),无天窗,无大量余热。