人教版七年级数学上册1.5.1乘方(第一课时)
初中数学七年级上册《1.5.1有理数的乘方(第一课时)》教学课件

2.你能迅速判断下列各幂的正负吗?
165
254
(-8)5
(-3)6
(-1)101
(-2)50
新知小结一
根据有理数乘法法则可以得出: 负数的奇次幂是______,负数的偶次幂是______. 正数的任何次幂都是______, 0的任何正整数次幂都是______.
巩固练习二 1.(-10)8 中-10叫做____数,8叫做____数. 2. -(-2)3 是________(填正数或负数).
人教版七年级上册第一章《有理数》
1.5.1有理数的乘方
学习目标
1.知道乘方、底数、幂的意义,会读乘方算式,会进行 有理数乘方运算. 2.经历乘方符号法则的探究过程,知道乘方的符号法则. 3.能够进行有理数混合运算.
一 内容感知
知识探究一
1.边长为3cm的正方形的面积是多少?
2.棱长为3cm的正方体的体积是多少?
新知小结二
一个运算中,含有有理数的加、减、乘、除、乘方等多 种运算,称为有理数的混合运算.
做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号、中括号、 大括号依次进行.
巩固练习三
巩固练习二
3.计算
(1)(-1)8Βιβλιοθήκη (2)(-1)7(4) 34
(5)(-2)3
(7)(-0.1)3 (8)(-10)4
(3)(-3)3 (6)(-2)4 (9)(-10)5
例1.计算
例题讲解
例题讲解
例2.观察下列三行数,回答下列问题. -2,4,-8,16,-32,64,…; ① 0,6,-6,18,-30,66,…; ② -1,2,-4,8,-16,32,….; ③ (1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关系?
人教版数学七年级上册1.5.1《乘方(1)》教案

人教版数学七年级上册1.5.1《乘方(1)》教案一. 教材分析《乘方(1)》是人教版数学七年级上册的教学内容,主要让学生初步理解乘方的概念,掌握有理数的乘方运算法则,为后续学习更高级的数学知识打下基础。
本节课的内容包括乘方的定义、乘方的计算方法以及乘方在实际问题中的应用。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,具备一定的逻辑思维能力,但对于乘方的概念和运算法则还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出乘方的概念,并通过大量的练习让学生熟练掌握乘方的计算方法。
三. 教学目标1.理解乘方的概念,掌握有理数的乘方运算法则。
2.能够运用乘方解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.乘方的概念和乘方的计算方法。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置疑问,引导学生主动探究乘方的概念和运算法则;通过案例分析,让学生了解乘方在实际问题中的应用;通过小组合作学习,培养学生团队合作精神和沟通能力。
六. 教学准备1.教学PPT课件。
2.相关案例素材。
3.练习题。
七. 教学过程1.导入(5分钟)创设问题情境,让学生观察以下算式:2^3 = 2 × 2 × 2 = 83^2 = 3 × 3 = 9提问:这两个算式有什么特点?引出乘方的概念。
2.呈现(10分钟)介绍乘方的定义和乘方的计算方法,通过PPT课件展示,让学生清晰地了解乘方的概念和运算法则。
3.操练(10分钟)让学生独立完成以下练习题,检验学生对乘方概念和运算法则的掌握情况:(1)计算23和32。
(2)计算(-2)3和(-3)2。
(3)计算2^4 ÷ 2^2。
4.巩固(10分钟)让学生分组讨论,分析以下算式:(1)5^3 ÷ 5^2 = 5^(3-2) = 5^1 = 5(2)(-2)^3 × (-2)^2 = (-2)^(3+2) = (-2)^5引导学生总结乘方的运算法则。
人教版数学七年级上册1.5.1《乘方》教案1

人教版数学七年级上册1.5.1《乘方》教案1一. 教材分析《乘方》是人教版数学七年级上册第一章第五节的第一课时,本节课主要让学生掌握乘方的概念,理解乘方的意义,学会进行乘方的运算。
教材通过引入“幂”的概念,让学生理解乘方的意义,并通过例题和练习,使学生掌握乘方的运算方法。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法,对乘法运算有一定的理解。
但是,乘方作为乘法的推广,学生可能难以理解其本质。
因此,在教学过程中,需要通过具体例题和实际操作,让学生深入理解乘方的意义。
三. 教学目标1.理解乘方的概念,掌握乘方的运算方法。
2.能够运用乘方解决实际问题。
3.培养学生的逻辑思维能力。
四. 教学重难点1.乘方的概念。
2.乘方的运算方法。
五. 教学方法采用讲授法、例题解析法、小组讨论法、练习法等教学方法,通过生动有趣的例题和实际操作,引导学生理解乘方的概念,掌握乘方的运算方法。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数的乘法,引导学生思考:乘法可以表示为几个相同因数的乘积,那么,几个相同因数的乘积可以表示为什么呢?从而引入乘方的概念。
2.呈现(15分钟)PPT呈现乘方的定义和乘方的运算方法,让学生直观地了解乘方的意义。
通过例题解析,让学生学会进行乘方的运算。
例题1:计算2^3。
解析:2^3表示2乘以自己3次,即2×2×2=8。
例题2:计算3^4。
解析:3^4表示3乘以自己4次,即3×3×3×3=81。
3.操练(10分钟)让学生在课堂上进行乘方的运算练习,教师巡回指导,及时纠正学生的错误。
4.巩固(10分钟)让学生完成一些乘方的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:乘方可以表示几个相同因数的乘积,那么,几个相同因数的除法可以表示为什么呢?让学生自己探索并得出答案。
6.小结(5分钟)对本节课的知识进行小结,强调乘方的概念和运算方法。
人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)

.
解:(1) (-4)3=(-4)×(-4)×(-4)=-64;
(2) (-2)4=(-2)×(-2)×(-2)×(-2)=16;
(3) 2 3 3= 2 3 2 3 2 3 =2 8 7.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数. 正数的任何正整数次幂都是正数,0的任何正 整数次幂都是0.
- 1 (当n为奇数时)
(9)(-1)n=
1
(当.n为偶数时).
1.求几个相同因数的积的运算,叫做乘方.
a 幂
n 指数
2.乘方的符号法则: 底数 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)零的正整数次幂都是零
3.注意:
an与an 二者的区别及相互关系;
人教版七年级数学上册1.5有理数的乘方1.乘 方第1课时 乘 方

13.视察下列算式并总结规律:31=3,32=9,33=27,34=81,35 =243,36=729,37=2187,38=6561,….用你发现的规律写出3999 的末尾数字是( D ) A.1 B.3 C.9 D.7
14.视察下列各式: 13=12, 13+23=32, 13+23+33=62, 13+23+33+43=102, … 猜想13+23+33+…+103=_5_5_2_.
9.(1)(2017·湖州模拟)计算:23×(12)2=__2__; (2)一个数的平方等于它本身,这个数是__1_或__0___.
10.计算:
(1)(-5)2; (2)-(-23)3; 解:25 解:287 (3)(-10)4; (4)(-131)3. 解:10000 解:-6247
11.下列结论:①-(-2)2=4;②-5÷15×5=-5;③232=94;④(-3)2×(- 13)=3;⑤-33=9.其中错误的个数为( D ) A.2 个 B.3 个 C.4 个 D.5 个 12.若 a 为有理数,则下列各式:①(-a)2=a2;②(-a)2=-a2;③(-a)3 =a3;④|-a3|=a3.其中一定成立的有( A ) A.1 个 B.2 个 C.3 个 D.4 个
解:由题意,得26=64(根).因为28=256,所以当对折成256根面条时, 对折了8次
18.(阿凡题:1069926)若|a-1|与(b+2)2互为相反数,试求a202X+(a+b)2015的 值. 解:由题意得|a-1|+(b+2)2=0,所以a-1=0,且b+2=0.所以a=1,b=-2. 所以a202X+(a+b)2015=1202X+[1+(-2)]2015=1202X+(-1)2015=1+(-1)=0
6.计算(-18)+(-1)9的值是( C ) A.0 B.2 C.-2 D.不能确定 7.下列各组数中,相等的一组是( C ) A.23与32 B.23与(-2)3 C.32与(-3)2 D.-23与-32 8.下列说法错误的是( C ) A.-52是5的平方的相反数 B.0的任何正整数次幂都是0 C.任何有理数的偶数次幂都是正数 D.任何有理数的平方是非负数
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计

七年级学生在学习有理数乘方这一章节之前,已经掌握了有理数的加减乘除运算,具备了一定的数学基础。但在乘方概念的理解和运用上,学生可能存在一定的困难。因此,在教学过程中,需要关注以下几点:
1.学生对乘方概念的理解程度,部分学生可能难以从本质上理解乘方的含义,需要通过具体实例和形象比喻来帮、叠加的过程,让学生直观地感受乘方的意义。同时,引导学生思考:“乘方与之前学过的乘法有什么关系?它们之间的区别是什么?”
(二)讲授新知
1.乘方的定义:讲解乘方的定义,即一个数自乘若干次,可以表示为a^n(a为底数,n为指数)。强调乘方的意义,以及正整数、负整数和零的乘方的表示方法。
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的概念,掌握有理数乘方的表示方法和运算规则。
2.能够正确计算正整数、负整数和零的乘方,并熟练运用乘方解决实际问题。
3.学会运用乘方的性质,简化有理数的运算过程,提高运算效率。
4.开放性探究题目:
-布置一道开放性探究题目,如:“探究乘方的分配律和结合律在生活中的应用”,鼓励学生主动探索、发现数学规律。
5.课后小结:
-要求学生撰写课后小结,总结本节课所学乘方知识,以及自己在学习过程中的收获和困惑。
6.阅读拓展:
-推荐阅读与乘方相关的数学故事或数学家传记,激发学生学习数学的兴趣,培养学生的数学素养。
2.学生在乘方运算过程中可能出现的错误,如符号处理不当、计算顺序混乱等,教师需引导学生总结错误原因,提高运算准确性。
3.学生在解决实际问题时,可能不知道如何运用乘方知识,需要教师设计贴近生活的例题,引导学生将乘方知识应用于实际问题中。
人教版数学七年级上册精品教学设计《1.5.1 第1课时 乘方》

人教版数学七年级上册精品教学设计《1.5.1 第1课时乘方》一. 教材分析本节课的主题是乘方,这是人教版数学七年级上册的教学内容。
乘方是指数与数的乘积,例如2的3次方表示为2^3,即2×2×2。
乘方在数学中具有广泛的应用,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数的概念也有了一定的了解。
但是,对于乘方的概念和运算法则,学生可能还较为陌生。
因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握乘方的意义和运用。
三. 教学目标1.了解乘方的概念,掌握乘方的运算法则。
2.培养学生运用乘方解决实际问题的能力。
3.培养学生逻辑思维和抽象思维能力。
四. 教学重难点1.乘方的概念和运算法则。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题情境,引导学生主动探究乘方的意义和运算法则;通过案例分析,让学生了解乘方在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.课件:制作乘方的概念、运算法则和应用案例的课件。
2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。
3.黑板:用于板书关键点和总结。
七. 教学过程1.导入(5分钟)利用一个实际问题引入乘方的概念,如:“小明的年龄是小红的两倍,小红6岁,求小明的年龄。
”让学生思考并解答,引出乘方的意义。
2.呈现(15分钟)通过课件展示乘方的概念、运算法则和例子,让学生了解乘方的基本知识。
3.操练(15分钟)让学生进行乘方的计算练习,教师巡回指导,及时纠正学生的错误。
4.巩固(5分钟)通过一些实际问题,让学生运用乘方进行计算,巩固所学知识。
5.拓展(10分钟)引导学生思考乘方的应用,如在科学计算、工程设计等领域中的应用,让学生了解乘方的重要性。
6.小结(5分钟)教师总结本节课的主要内容,强调乘方的概念和运算法则。
人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。
教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。
本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。
但乘方作为一个新的概念,需要学生从新的角度去理解。
学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。
三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.乘方的意义和运算规则。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.实例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。
2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。
例如,2的3次方表示2乘以自己3次,即2×2×2=8。
3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。
可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。
4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。
例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.-1 B.1 C.-2017 D.2017
B 2.(2016·黔西南州)计算-42 的结果等于( )
A.-8 B.-16 C.16 D.8
3.(2002·泰州)下面一组规律排列的数:1,2,
C 4,8,16,…,第2002个数应是( )
读作:5的4次方(或5的4次幂)
在
3
5
中,底数是
-3
,指数是___5_
.
读作: -3的5次方(或-3的5次幂)
练习1
(1)在23中表底示数:是3个2 2,相指乘数是 3 .
(2)在
(-
-1 3
)2中表底示数:是2个13-,指-13数相是乘2
.
(3)在8中表底示数:是1个88 相,乘指数是 1 .
0呢?
有理数的乘方运算法则
正数的任何次幂都是_正__数. 负数的奇次幂是_负__数. 负数的偶次幂是_正__数. 0的任何正整数次幂都是_0__.
练习2
课本P42练习第2题,计算:
(1)(-1)10 ; (2)(-1)7 ; (3)83 ; (4) (5)3; (5)0.13 ; (6) ( 1)4 ; (7) (10)4 ; (8) (10)5
(4)(-3)5中表底示数:是5个-3-3,相指乘数是 5 .
(5)-35 中表底示数:是5个33相乘,的指积数的是相反5数.
(6)在
(
-3 5
)2
3 中表底示数:是2个5
,-35指相数乘是
2.
注意:当乘方的底数是负数或分数时, 要加括号. 这也是辨认底数的方法哦~
议一议
1.你能否比较23 ,32 与2×3的区别?
A.22002 B.22002 -1 C.22001 D.以上答案都不对
课后作业 课本:P47,习题1.5,第1题 同步:P28-29
乘方精神:每天改变一点点,并坚 持不懈,未来的你一定不同凡响!
1100 = 1 1.1100 ≈ 13780.6 1.2100 ≈ 82817974.5 1.3100 ≈ 247933500000
例2 根据乘方的意义计算:
(1) (4)3
(2) (-2)4
(3)
-
2 3
3
解:1原式 (-4)(-4)(-4)=-64
2原式 (-2)(-2)(-2)(-2)=16
3原式
2 3
2 3
2 3
8 27
例3 根据乘方的意义计算:
(1) 02 (2) 03 (3) 04
思考
正数的奇次幂和偶次幂分别是什么数? 负数的奇次幂和偶次幂分别是什么数?
2.你能否比较 32 与 ( 3)2 的区别? 44
3.你能否比较 24与 (2)4 的区别?
二、有理数的乘方的运算
例1 根据乘方的意义计算:
(1) 42 (2) 24 (3) (2)3 3
解:(1)原式 4 4=16
2原式 2 2 2 2=16
3原式 2 2 2 = 8
3 3 3 27
微视频《乘方》
第一章 有理数
1.5.1 乘方
一、有理数的乘方的意义
概念
一般地,n个相同的因数a 相乘,即
a a a a 记作:an
n个a
读作:a的n次方
也可读作:a的n次幂
求n个相同因数的积的运算,叫做乘
方,乘方的结果叫做 幂 .
a 幂
n 指数
底数
如:在 54 中,底数是 5 ,指数是__4__.
2
总结:五种已学的运算及其结果
运算 加 减 乘 除 乘方
运算结果 和 差 积 商 幂
一、乘方的意义
a•a•… • a =an
n个a
an:a是底数,n是指数, an是幂
二、乘方的运算法则 (1)正数的任何次幂都是正数
(2)负数的奇次幂是负数,负数的偶 次幂是正数
(3)零的正整数次幂都是零
中考链接
谢谢!