人教版七年级上册数学知识点总结归纳(最新最全)

合集下载

七年级上册人教版数学知识点

七年级上册人教版数学知识点

七年级上册人教版数学知识点七年级上册人教版数学知识点概述一、数与代数1. 有理数的运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小- 绝对值的概念和性质- 有理数的近似和有效数字2. 整式的加减- 单项式和多项式的定义- 合并同类项- 去括号法则- 因式分解的初步概念3. 一元一次方程- 方程的概念和方程的解- 解一元一次方程的基本步骤- 应用题的解决方法二、几何1. 图形的初步认识- 点、线、面、体的概念- 直线、射线、线段的特点- 角的概念和分类(如:锐角、直角、钝角)2. 相交线与平行线- 相交线的性质- 平行线的定义和性质- 平行公理及其推论3. 平面图形的认识- 四边形的种类和特点(如:正方形、长方形、平行四边形)- 面积的计算方法(长方形、正方形、三角形)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 绘制和解读条形统计图和折线统计图2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件发生的可能性计算四、解题方法和策略1. 逻辑思维的培养- 理解问题,分析条件- 明确目标,制定解题步骤- 检查和验证答案的正确性2. 题目类型的识别- 应用题、证明题、计算题的解题技巧- 常见题型的解题模板和方法以上是七年级上册人教版数学的主要知识点概述。

这些知识点构成了学生数学学习的基础,对于培养学生的逻辑思维能力、解决实际问题的能力以及为后续学习打下坚实的基础至关重要。

教师和家长应引导学生通过练习和实际应用来巩固和深化这些知识点,从而提高学生的数学素养。

完整版)人教版七年级数学上册知识点归纳

完整版)人教版七年级数学上册知识点归纳

完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。

有些数既不是正数也不是负数,它们被称为零。

在同一个问题中,用正数和负数表示的量具有相反的意义。

需要注意的是,-a不一定是负数,+a也不一定是正数。

自然数指的是正整数和零的集合,也就是我们常说的自然数。

我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。

1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。

正整数和负整数统称为整数。

有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。

我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。

一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。

两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。

相反数指的是只有符号不同的两个数,它们互为相反数。

a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。

绝对值是数a到原点的距离,用|a|表示。

一个正数的绝对值是其本身,一个负数的绝对值是其相反数。

的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。

如果a>0,则|a|=a,如果a<0,则|a|=-a。

有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。

需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。

1.3 有理数的加减法有理数的加减法可以用数轴来表示。

当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。

同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

新人教版七年级数学上册知识点汇总

新人教版七年级数学上册知识点汇总

新人教版七年级数学上册知识点汇总第一章有理数一、知识框架:本章主要介绍了有理数的相关概念和运算法则,包括正数与负数、有理数、数轴、相反数、绝对值、比大小、倒数、加法法则、加法运算律、减法法则、乘法法则和乘法运算律等。

二、知识概念:1.正数与负数:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数。

2.有理数:⑴凡能写成 p/q (p、q为整数,且p≠0)形式的数,都是有理数。

正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数。

⑵有理数的分类:正有理数:正整数、正分数负有理数:负整数、负分数零:03.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

4.相反数:⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵相反数的和为0,即a+b=0,则a、b互为相反数。

5.绝对值:⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

注意:绝对值的意义是数轴上表示某数的点离原点的距离;⑵绝对值可表示为:a=|a| (a≥0)a=|a|或a=-a (a<0)绝对值的问题经常分类讨论。

6.有理数比大小:⑴正数大于0,0大于负数,正数大于负数;⑵两个负数比较,绝对值大的反而小。

7.倒数:乘积为1的两个数互为倒数。

注意:0没有倒数;若a≠0,则a的倒数是1/a;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。

8.有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝值;⑶一个数与0相加,仍得这个数。

9.有理数加法的运算律:⑴加法的交换律:a+b=b+a;⑵加法的结合律:(a+b)+c=a+(b+c)。

10.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

人教版七年级数学上册知识点归纳

人教版七年级数学上册知识点归纳

第一章有理数1.1 正数和负数(1)大于0的数叫做数;小于0的数叫做数;既不是正数,也不是负数;(2)在同一个问题中,分别用正数和负数表示;(3)和统称为自然数;(4)a 0 ⇔ a是正数; a 0 ⇔ a是非负数;a 0 ⇔ a是负数; a 0 ⇔ a是非正数.1.2 有理数(1)、、统称为整数;、统称为分数;和统称为有理数;(2)有理数的分类:有理数有理数(3)规定了、和的一条直线叫做数轴;(即数轴的三要素)(4)一般地,当a是正数时,则数轴上表示数a的点在原点的,距离原点个单位长度;表示数-a的点在原点的,距离原点个单位长度;(5)一般地,设a是正数,则在数轴上与原点的距离为a的点有个,它们分别在的左右,表示-a和a,我们称这两个点关于对称;(6)称为互为相反数;一般地,a的相反数是;特别地,0的相反数是;(7)相反数的几何意义:数轴上表示相反数的两个点关于原点;(8)a、b互为⇔ a+b= ;(即相反数之和为0)(9)a 、b 互为 ⇔1-=b a 或1-=ab ;(即相反数之 为-1) (10)a 、b 互为 ⇔ |a| |b|;(即相反数的绝对值相等)(11)一般地,在数轴上 叫做a 的绝对值;(|a| 0)(12)一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 ;绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (13)01>⇔=a a a ; 01<⇔-=a a a;(14)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从 到 的顺序。

即左边的数 右边的数;(①正数 0,0 负数,正数 负数;②两个负数,其 大的反而小;)1.3 有理数的加减法(1)有理数的加法法则:① 两数相加,取 符号,并把 相加; ② 两数相加,取 符号,并用 减去 ;互为相反数的两个数相加为 ;③一个数与0相加 ;(2)有理数加法的运算律:①加法 律:a+b= ; ②加法 律:(a+b)+c=(3)有理数的减法法则:减去一个数,等于 ;即:a-b=a+( );1.4 有理数的乘除法(1)有理数的乘法法则:①两数相乘,同号得 ,异号得 ,并把 相乘;②任何数与 相乘均为0;(2)倒数:在有理数中仍然成立,即 的两个数互为倒数;(3)积的符号与负因数个数之间的关系:几个不是0的数相乘,当负因数的个数为 数时,积是正数;当负因数的个数为 数时,积是负数;几个数相乘时,当有因数是0时,积为 ;(4)有理数的乘法运算律:①乘法 律:ab= ; ②乘法 律:(ab)c= ; ③乘法 律: a(b+c)= ;(5)有理数的除法法则:除以一个 的数,等于乘以其 ;即:)0(1≠⨯=÷b ba b a (6)两数相除,同号得 ,异号得 ,并把 相除;0除以任一 的数,都得 ;1.5 有理数的乘方(1)乘方: 的运算叫做乘方,乘方的结果叫做 ;(在na 中,a 是 ,n 是 )(2)有理数的乘方运算法则:①负数的 次幂是负数,负数的 次幂是正数;②正数的 次幂是正数;③0的 次幂是0;(3)有理数的混合运算顺序:①先 ,再 ,最后 ;②同级运算,从 到 ;③如有 ,先做 的运算,按 , , 的顺序进行;(4)科学记数法:把一个大于10的数记成 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法;(5)近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数 哪一位.(6)有效数字:从左边 的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.第二章 整式的加减2.1 整式(1)单项式:表示 的式子;(单独一个 或一个 也是单项式)(2)单项式的系数:单项式中的 ;(3)单项式的次数:一个单项式中,所有字母的;(4)多项式:几个的和;(5)多项式的项:叫做多项式的项;(6)多项式的次数:多项式里的次数;(7)常数项:不含的项;(8)整式:与统称为整式;2.2整式的加减(1)同类项:所含相同,并且也相同的项;(几个也是同类项)(2)叫做合并同类项;(3)合并同类项后,所得项的系数是,且字母部分;(4)去(添)括号:①若括号外的因数是数,去括号后原括号内各项的符号与原来的符号相同;②若括号外的因数是数,去括号后原括号内各项的符号与原来的符号相反;不变,都变;(5)一般地,几个整式相加减,如果有括号就先,然后再;第三章一元一次方程3.1 从算式到方程(1)方程:含的叫做方程;(2)一元一次方程:只含一个且都是1的方程叫做一元一次方程;标准式:ax+b=0(x是未知数,a、b是已知数,且a≠0);(3)方程的解:使方程等号左右两边的的值;(4)等式的性质1:等式两边,结果仍相等;如果a=b,那么;等式的性质2:等式两边,或,结果仍相等;如果a=b,那么;如果a=b,c 0,那么;3.2、3.3解一元一次方程——合并同类项与移项、去括号与去分母(1)一元一次方程解法的一般步骤:----------两边同乘()----------注意符号变化()----------注意要变号()--------合并后注意符号()---------等式两边x的系数()3.4实际问题与一元一次方程(1)“表示同一个量的两个不同的式子相等”是一个基本的相等关系;“工作量=人均效率×人数×时间”是计算工作量的常用数量关系式;(2)列一元一次方程解应用题:①读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.②画图分析法: 多用于“行程问题”仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.(3)列方程常用公式1)行程问题:距离=速度×时间;(2)工程问题: 工作量=工效×工时;工程问题常用等量关系: 先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系: 顺水路程=逆水路程(4)商品利润问题: 售价=定价 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润(5)配套问题:(6)分配问题:第四章 图形认识初步4.1多姿多彩的图形(1)几何图形:把从实物中抽象出的各种图形称为几何图形;(2)立体图形:各部分 同一平面内的几何图形;(如长方体、正方体、圆柱、圆锥、球等)(3)平面图形:各部分 同一平面的几何图形;(如线段、三角形、长方形、圆等)(4)立体图形与平面图形互相联系,立体图形中某些部分是平面图形;(如长方体的侧面是长方形)(5)立体图形的三视图:主视图(从 面看)、左视图(从 面看)、俯视图(从 面看)(6)展开图:有些立体图形是由一些 围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图;(7) 简称为体;(8)包围着体的是 ;(面有 和 两种)(9)面和面相交的地方形成 ;线和线相交的地方形成 ;(10) 动成线、 动成面、 动成体;(11)几何图形都是由、、、组成的,是构成图形的基本元素;4.2 直线、射线、线段(1)一个关于直线的基本事实:经过两点一条直线;简述为:;(2)直线的表示方法:①用一个字母表示直线(如直线l)②用一条直线上的来表示这条直线(如直线AB)射线和线段的表示方法类似;(3)两条直线相交:当两条不同的直线有一个,我们就称这两条直线,这个公共点叫做它们的。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

人教初一数学上册知识点

人教初一数学上册知识点

人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。

比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。

②重要程度:在初一数学里超级重要。

它是学习后面各种计算、方程的基础。

很多数学概念和实际问题的解决都是基于有理数的运算。

③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。

④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。

2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。

单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。

②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。

③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。

④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。

二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。

②关联知识:和后面要学的无理数合起来就是实数了。

有理数的运算规则对整式运算也有启发意义。

③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。

关键点就是得牢记运算规则,多做练习。

④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。

考查方式从单纯的计算,到在应用题中的运算都有。

2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。

②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。

③重难点分析:整式的系数、次数概念容易混淆,这是难点。

七年级上册数学知识点总结人教版

七年级上册数学知识点总结人教版

七年级上册数学知识点总结人教版一、有理数正数和负数:正数:大于0的数。

负数:小于0的数,即在以前学过的0以外的数前面加上负号“-”的数。

0既不是正数也不是负数,它是正数和负数的分界。

有理数:定义:由整数和分数组成的数,包括正整数、0、负整数以及正分数和负分数。

整数:正整数、0和负整数统称为整数。

分数:正分数和负分数统称为分数。

数轴:定义:通常用一条直线上的点表示数,这条直线叫做数轴。

数轴的三要素:原点、正方向、单位长度。

原点:在直线上任取一个点表示数0,这个点叫做原点。

数的绝对值与数轴的关系:数轴上表示数a 的点与原点的距离叫做数a的绝对值。

相反数:只有符号不同的两个数叫做互为相反数。

绝对值:正数的绝对值是它本身。

负数的绝对值是它的相反数。

0的绝对值是0。

有理数的运算法则:加法:同号相加,取相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

减法:减去一个数等于加上这个数的相反数。

乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。

除法:除以一个数等于乘以这个数的倒数。

二、代数式代数式的定义:用运算符号把数或表示数的字母连结而成的式子叫做代数式。

代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果。

三、整式的加减单项式:定义:数与字母的积叫做单项式。

系数:单项式中的数字因数叫做这个单项式的系数。

次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的和叫做多项式。

多项式的排列:降幂排列:把多项式按某个字母的指数从大到小的顺序排列。

升幂排列:把多项式按某个字母的指数从小到大的顺序排列。

以上是人教版七年级上册数学的主要知识点总结,涵盖了有理数、代数式和整式的加减等内容。

在学习这些知识点时,要注意理解概念和定义,掌握运算法则和性质,多做练习以加深理解和提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=04.相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。

化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)5.绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。

)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。

)经典考题如数轴所示,化简下列各数|a|, |b| , |c| , |a-b|, |a-c| , |b+c|解:由题知道,因为a>0 ,b<0,c<0, a-b>0, a-c>0, b+c<0,所以|a|=a ,|b|=-b, |c|=-c ,|a-b|=a-b , |a-c|=a-c ,|b+c|=-(b+c)=-b-c3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。

所以,a取任何有理数,都有|a|≥0。

经典考题已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0所以|a+3|=0 ,|2b-2|=0 ,|c-1|=0即a=-3 ,b=1 ,c=1所以a+b+c=-3+1+1=-14.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

5.绝对值的化简①当a≥0时, |a|=a ;②当a≤0时, |a|=-a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

如:|a|=5,则a=土51.3 有理数的加减法1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)=-33+18-15-1+23 (省略加号和括号)=(-33-15-1)+(18+23) (把符号相同的加数相结合)=-49+41 (运用加法法则一进行运算)=-8 (运用加法法则二进行运算)Ⅱ.把和为整数的加数相结合 (凑整法)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合)=4-10+3.8 (运用加法法则进行运算)=7.8-10 (把符号相同的加数相结合,并进行运算)=-2.2 (得出结论)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法) -53-21+43-52+21-87 原式=(-53-52)+(-21+21)+(+43-87) =-1+0-81 =-181Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合) (+0.125)-(-343)+(-381)-(-1032)-(+1.25) 原式=(+81)+(+343)+(-381)+(+1032)+(-141) =81+343-381+1032-141 =(343-141)+(81-381)+1032 =221-3+1032 =-3+1361 =1061Ⅴ.把带分数拆分后再结合(先拆分后结合) -351+10116-12221+4157 原式=(-3+10-12+4)+(-51+157)+(116-221)=-1+154+2211 =-1+308+3015 -307Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ.先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)1.4有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a 1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。

相关文档
最新文档