空间向量数量积运算第一课时练习题含详细答案

合集下载

空间向量的数量积与向量积练习题

空间向量的数量积与向量积练习题

空间向量的数量积与向量积练习题在学习空间向量的数量积与向量积时,我们需要通过练习题来提高自己的理解和运用能力。

下面,我们将给出一些关于空间向量数量积与向量积的练习题,希望能够帮助大家更好地掌握这一知识点。

练习一:计算给定向量的数量积已知向量A = (-3, 2, 1) ,向量B = (4, -1, 5),求向量A与向量B的数量积。

解答:根据数量积的定义,向量A与向量B的数量积为:A·B = AX * BX + AY * BY + AZ * BZ。

将向量A与向量B的坐标代入公式中,得到:A·B = (-3) * 4 + 2 * (-1) + 1 * 5 = -12 - 2 + 5 = -9。

练习二:计算给定向量的向量积已知向量A = (1, 2, -3) ,向量B = (4, -1, 2),求向量A与向量B的向量积。

解答:根据向量积的定义,向量A与向量B的向量积为:A × B = (AY * BZ - AZ * BY , AZ * BX - AX * BZ , AX * BY - AY * BX)。

将向量A与向量B的坐标代入公式中,得到:A ×B = (2 * 2 - (-3) * (-1) , (-3) * 4 - 1 * 2 , 1 * (-1) - 2 * 4) = (4 - 3, -12 - 2, -1 - 8) = (1, -14, -9)。

练习三:判断两个向量的数量积与向量积的关系已知向量A = (1, -2, 3) ,向量B = (2, 4, 6),求向量A与向量B的数量积与向量积,并判断两者之间的关系。

解答:首先,计算向量A与向量B的数量积:A·B = (1) * 2 + (-2) * 4 + 3 * 6 = 2 - 8 + 18 = 12。

然后,计算向量A与向量B的向量积:A ×B = (-2 * 6 - 3 * 4, 3 * 2 - 1 * 6, 1 * 4 - (-2) * 2) = (-12 - 12, 6 - 6, 4 + 4) = (-24, 0, 8)。

1.1.3 空间向量的数量积运算(学生版)

1.1.3 空间向量的数量积运算(学生版)

1.1.3 空间向量的数量积运算一、单选题1.在棱长为1的正方体1111ABCD A B C D -中,设AB =a ,AD =b ,1AA =c ,则()⋅+a b c 的值为( )A .1B .0C .1-D .2-2.已知,a b 均为单位向量,它们的夹角为π3,那么|3|+=a b ( )ABCD .43.三棱锥A ­BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB CD ⋅等于( )A .-2B .2C .-D .4.在正方体1111ABCD A B C D -中,有下列命题:①221()3AA AD AB AB ++=;②()11110AC A B A A ⋅-=;③1AD 与1A B 的夹角为60. 其中正确命题的个数是( )A .0个B .1个C .2个D .3个5.已知四面体A­BCD 的所有棱长都是2,点E,F 分别是AD,DC 的中点,则EF BA ⋅=( )A .1B .­1CD .6.已知正四面体ABCD 的棱长为2,则AB CD ⋅=( )A .­2B .0C .2D .47.三棱锥A BCD -中,2AB AC AD ===,90BAD ∠=︒,90BAC ∠=︒,则AB CD ⋅等于( )A .0B .2C .-D .8.若空间四边形OABC 的四个面均为等边三角形,则cos ,OA BC 的值为( )A .12B .2C .12-D .09.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE AF ⋅的值为( )A .2aB .212a C .214a D 2 10.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角a <,b >为( )A .30°B .45°C .60°D .以上都不对11.在正方体1111ABCD A B C D -中,下列结论错误的是( )A .221111111()3A A A D A B A B ++= B .1111()0AC A B A A ⋅-= C .向量1AD 与1A B 的夹角是120D .正方体1111ABCD A B C D -的体积为1||AB AA AD ⋅⋅12.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A B C D二、填空题13.如图,在长方体1111ABCD A B C D -中,设11AD AA ==,2AB =,则1AC AC ⋅=_____.14.如图所示,在空间四边形ABCD 中,90BCD ∠=︒,3CD =,4BC =,M ,N 分别为AB ,AD 的中点,则MN DC ⋅=________________.15.四棱柱1111ABCD A B C D -中,11160,1A AB A AD DAB A A AB AD ∠=∠=∠=︒===,则1AC =__________.16.已知|a |=|b |=|c |=1,a +b +c =0,则a ·c +b ·c +a ·b =_____.17.已知:如图,在60︒的二面角的棱上有A B 、两点,直线AC BD 、分别在这个二面用的两个半平面内,且都垂直AB ,已知4,6,8AB AC BD ===,则CD =__________.18.在平行六面体(即六个面都是平行四边形的四棱柱)1111ABCD A B C D -中,1AB =,1AD =,11AA =,又1160BAD A AD A AB ∠=∠=∠=︒,则1C AB ∠的余弦值是________.三、解答题19.在平行四边形ABCD 中,AD=4,CD=3,∠D=60°,PA ⊥平面ABCD ,PA=6,求PC 的长.20.如图所示,已知P 是ABC △所在平面外一点,,,PA PC PB PC PA PB ⊥⊥⊥,求证:P 在平面ABC 上的射影H 是ABC △的垂心.21.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E 为D 1C 1的中点,试求11AC DE 与所成角的余弦值.22.如图,在平行四边形ABCD 中,2AB =,AC =90ACD ∠=︒,沿着它的对角线AC 将ACD△折起,使AB 与CD 成60︒角,求此时B ,D 之间的距离.。

高中数学人教A版选择性必修第一册1.1.2空间向量的数量积运算 课时分层练习题含答案解析

高中数学人教A版选择性必修第一册1.1.2空间向量的数量积运算  课时分层练习题含答案解析

1.1.2 空间向量的数量积运算基础练习一、单选题1.四边形ABCD 为矩形,SA ⊥平面ABCD ,连接AC ,BD ,SB ,SC ,SD ,下列各组运算中,不一定为零的是( )A .SC BD ⋅B .DA SB ⋅C .SD AB ⋅ D .SA CD ⋅【答案】A【分析】根据题意,若空间非零向量的数量积为0,则这两个向量必然互相垂直.据此依次分析选项,判定所给的向量是否垂直,即可得答案.【详解】根据题意,依次分析选项:对于A :若SC 与BD 垂直,又SA 与BD 垂直,则平面SAC 与BD 垂直,则AC 与BD 垂直,与AC 与BD 不一定垂直矛盾,所以SC 与BD 不一定垂直,即向量SC 、BD 不一定垂直,则向量SC 、BD 的数量积不一定为0; 对于B :根据题意,有SA ⊥平面ABCD ,则SA AD ⊥,又由AD AB ⊥,则有AD ⊥平面SAB ,进而有AD SB ⊥,即向量DA 、SB uu r 一定垂直,则向量DA 、SB uu r 的数量积一定为0;对于C :根据题意,有SA ⊥平面ABCD ,则SA AB ⊥,又由AD AB ⊥,则有AB ⊥平面SAD ,进而有AB SD ⊥,即向量SD 、AB 一定垂直,则向量SD 、AB 的数量积一定为0; 对于D :根据题意,有SA ⊥平面ABCD ,则S A C D ⊥,即向量SA 、CD 一定垂直,则向量SA 、CD 的数量积一定为0.2.已知,a b 均为空间单位向量,它们的夹角为60°,那么3a b +r r 等于( )A B C D .4【答案】C 【分析】结合向量夹角,先求解23a b +, 再求解3a b +r r . 【详解】222(3)93613a b a a b b a b =+=++⋅=+.3.(2022·江苏·高二课时练习)在正方体ABCD A B C D ''''-中,棱长为2,点M 为棱DD '上一点,则AM BM ⋅的最小值为( )A .1B .2C .3D .4【答案】D【分析】以1,,DA DC DD 分别为x 轴,y 轴,z 轴建立空间直角坐标系,求得,AM BM ,结合向量的数量积的运算,即可求解.【详解】如图所示,以1,,DA DC DD 分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则(2,0,0),(2,2,0)A B ,设(0,0,)M a ,所以(2,0,),(2,2,)AM a BM a =-=--,则2(2,0,)(2,2,)4AM BM a a a ⋅=-⋅--=+,当0a =时,,AM BM 的最小值为4.4.(2022·江苏宿迁·高二期末)四面体ABCD 中,2,90,2===∠=︒⋅=-AB AC AD BAD AB CD ,则BAC ∠=( )A .30°B .45︒C .60︒D .90︒ 【答案】C【分析】根据空间向量数量积的运算律及定义计算可得;【详解】解:因为CD AD AC =-,90BAD ∠=︒,所以0AB AD ⋅=uu u r uuu r所以()2A AC AC B CD AB AD AB AD AB ⋅=⋅=⋅-⋅--=,所以2AB AC ⋅=,又2AB AC ==,所以cos 2A C B AB AC BA A C ⋅∠==⋅,所以1cos 2BAC ∠=,因为()0,BAC π∠∈,所以60BAC ∠=︒; 5.(2022·全国·高二)两个不同平面α,β的法向量分别为非零向量1n u r ,2n u u r ,两条不同直线a ,b 的方向向量分别为非零向量1v ,2v ,则下列叙述不正确的是( )A .αβ⊥的充要条件为120n n ⋅=B .a b ⊥r r 的充要条件为120v v ⋅=C .αβ∥的充要条件为存在实数λ使得21n n λ=D .a α∥的充要条件为110v n ⋅=【答案】D【分析】依据面面垂直的定义及向量数量积的几何意义判断选项A ;依据线线垂直的定义及向量数量积的几何意义判断选项B ;依据面面平行的定义及数乘向量的几何意义判断选项C ;依据线面平行的定义及向量数量积的几何意义判断选项D.【详解】选项A :αβ⊥⇔12n n ⊥⇔120n n ⋅=.判断正确;选项B :a b ⊥⇔12v v ⊥⇔120v v ⋅=.判断正确;选项C :αβ⇔∥21//n n ⇔存在实数λ使得21n n λ=.判断正确;选项D :若a α∥,则有110v n ⋅=;若110v n ⋅=,则有a α∥或a α⊂,则a α∥是110v n ⋅=的充分不必要条件.判断错误.二、多选题6.(2022·全国·高二)已知四面体ABCD 中,AB ,AC ,AD 两两互相垂直,则下列结论中,一定成立的是( )A .||||AB AC AD AB AC AD ++=+-B .2222||||||||AB AC AD AB AC AD ++=++C .()0AB AC AD BC ++⋅=D .AB CD AC BD AD BC ⋅=⋅=⋅【答案】ABD【分析】根据题意在一个长方体内部作出四面体ABCD ,从图形上把各个向量对应的有向线段表示出来,对四个选项进行判断即可. 【详解】由题可知,可做如图所示的长方体,设,,AC a AD b AB c ===.2,AB AC AD AE AD AE EF AF AF a ++=+=+==2,AB AC AD AE AD DE DE a +-=-==A 正确;22222222||||||AB AC AD AF a b c AB AC AD ++==++=++,故B 正确;∵AD ⊥平面ACEB ,∴AD BC ⊥,0AD BC ⋅=,∴()()AB AC AD BC AE AD BC AE BC ++⋅=+⋅=⋅,但无法判断AE 和BC 是否垂直,故C 不一定正确;由图易知,,AB CD AC BD AD BC ⊥⊥⊥,故AB CD AC BD AD BC ⋅=⋅=⋅=0,故D 正确. 7.(2022·全国·高二课时练习)设a ,b 为空间中的任意两个非零向量,下列各式中正确的有( )A .22a a =B .a b b a a a ⋅=⋅C .()222a b a b ⋅=⋅D .()2222a b a a b b -=-⋅+ 【答案】AD【分析】根据空间向量数量积的定义与运算律一一判断即可;【详解】解:对于A :22cos 0a a a a a a =⋅=⋅=,故A 正确; 对于B :因为向量不能做除法,即b a 无意义,故B 错误; 对于C :()()22222o ,cos ,c s a b a b a b a b a b ⋅⋅=⋅=,故C 错误; 对于D :()()()2222a ba b a b a a b b -=-⋅-=-⋅+,故D 正确; 三、填空题 8.(2022·全国·高二课时练习)空间向量的数量积运算符合向量加法的分配律,即()a b c ⋅+=_______.【答案】a b a c ⋅+⋅ 【分析】根据空间向量的数量积运算法则,即可求解.【详解】根据空间向量的数量积运算符合向量加法的分配律,可得()a b c a b a c ⋅+=⋅+⋅. 9.已知空间向量a 与b 满足1a =,且2a b ⋅=,若a 与b 的夹角为3π,则b =________. 【答案】4【分析】利用空间向量数量积的定义进行求解即可.【详解】因为1a =,a 与b 的夹角为3π, 所以由12cos212432a b a b b b π⋅=⇒⋅⋅=⇒⋅⋅=⇒=, 故答案为:410.(2022·江苏宿迁·高二期末)已知点(1,1,0)(1,3,2)A B -、,与向量AB 不共线的向量(,,)a x y z =在AB 上的投影向量为(1,1,1),请你给出a 的一个坐标为_______.【答案】(1,2,0)(答案不唯一)【分析】先求得向量AB 的坐标,再依据题给条件列方程去求向量a 的坐标即可解决.【详解】由点(1,1,0)(1,3,2)A B -、,可得()=2,2,2AB ,又向量(,,)a x y z =在AB 上的投影向量为(1,1,1), 则2222222(2,2,2)(2,2,2)(1,1,1)2226a AB x y z x y z AB AB ⋅++++⋅=⋅==++ 则13x y z ++=,又向量AB 与向量a 不共线,则222x y z ==不成立 则可令1,2,0x y z ===,即(1,2,0)a =,11.(2022·四川省成都市新都一中高二期中(理))如图,在平行六面体中,2AB =,1AD =,14AA =,90DAB ∠=︒,1160DAA BAA ∠=∠=︒,点M 为棱1CC 的中点,则线段AM 的长为______.【分析】利用向量数量积求得向量AM 的模,即可求得线段AM 的长【详解】112AM AB BC CM AB AD AA =++=++则222211=+2++AM AB AD AA AB AD AA AB AD AB AA AD AA ⎛⎫=++++⋅⋅⋅ ⎪=即线段AM 12.(2022·全国·高二)已知空间四边形ABCD 的每条边和对角线的长都等于1,点E ,F 分别是BC ,AD 的中点,则AE CF ⋅的值为_________.【答案】12- 【分析】如图,在正三棱锥中,以,,BC BD BA 为基底,12AE BC BA =-,1122CF BA BD BC =+-,利用向量数量积性质进行计算即可得解.【详解】根据题意ABCD 为正四面体,,,BC BD BA 两两成60角, 所以12AE BE BA BC BA =-=-, 1122CF BF BC BA BD BC =-=+-, 所以111()()222AE CF BC BA BA BD BC ⋅=-⋅+- 11111111114242222222=⨯+⨯---⨯+=-. 四、解答题13.如图,在长方体1111ABCD A B C D -中.(1)写出直线11A C 的一个方向向量;(2)写出平面11BCC B 的一个法向量;(3)写出与AB ,AC 共面的两个向量.【答案】(1)AC ,(2)AB ,(3)AD ,BD【分析】(1)(2)(3)根据直线方向向量、平面法向量、共面向量的定义可得.(1)易知11AC A C ∥,所以向量AC 为直线11A C 的一个方向向量.(2)在长方体1111ABCD A B C D -中,AB ⊥平面11BCC B ,所以AB 是平面11BCC B 的一个法向量.(3)由共面向量的定义可知AD ,BD 都是与AB ,AC 共面的向量.14.(2022·全国·高二课时练习)已知三个平面两两垂直且交于点O ,若空间一点P 到三个平面的距离分别为2,3,6,则线段OP 的长度为多少?【答案】7【分析】利用向量表达出OP OA OB OC =++,求出OP 的平方,进而求出线段OP 的长度.【详解】构造以OP 为对角线的长方体,则OP OA OB OC =++,且,,OA OB OC 两两垂直,且2,3,6OA OB OC ===,故22222493649OP OA OB OC OA OB OC =++=++=++=,所以7OP =. 15.(2022·全国·高二课时练习)已知,a b 是空间向量,根据下列各条件分别求,a b 〈〉:(1)||||a b a b -⋅=;(2)||||||a b a b ==-;(3)||||||a b a b ==+;(4)||||a b a b +=-.【答案】(1),πa b 〈〉=,(2)π,3a b 〈〉=,(3)2π,3a b 〈〉=,(4)π,2a b 〈〉= 【分析】(1)利用空面向量的余弦夹角公式进行求解;(2)根据向量数量积的运算法则计算出1cos ,2a b 〈〉=,进而求出夹角;(3)根据向量数量积的运算法则计算出1cos ,2a b 〈〉=-,进而求出夹角;(4)根据向量数量积运算法则计算出0a b ⋅=,得到夹角.(1)cos ,1||||a b a b a b ⋅=-〈〉=,[],0,πa b 〈〉∈,故,πa b 〈〉= (2)因为||||||a b a b ==-,所以222||cos ,2a b a b a a b b -=-⋅〈+〉,故1cos ,2a b 〈〉=,因为[],0,πa b 〈〉∈,所以π,3a b 〈〉=。

1.1.2 空间向量的数量积运算(基础知识+基本题型)(含解析)(人教A版2019选择性必修第一册)

1.1.2 空间向量的数量积运算(基础知识+基本题型)(含解析)(人教A版2019选择性必修第一册)

1.1.2 空间向量的数量积运算(基础知识+基本题型)知识点一 空间向量的夹角 1.概念如图3.1-26,已知两个非零向量,a b ,在空间任取一点O ,作 OA a =,OB b =,则么AOB ∠叫做向量,a b 的夹角,记,a b <>.2.范围[],0,a b π<>∈. 3.特别地,如果,2a b π<>=,那么向量,a b 互相垂直,记作a b ⊥.对空间两个向量的夹角的理解,应注意以下几点:(1)由概念,知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故,0a b <>=(或π)//a b ⇔(,a b 为非零向量).(2)零向量与其他向量之间不定义夹角,并约定0与任何向量a 都是共线的,即0∥a .两非零向量的夹角是唯一确定的.(3)对空间任意两个向量,a b ,有;①,,,a b a b b a <>=<-->=<-->;②,,,a b a b a b π<->=<->=-<>;③AB AC BACA AB AC π<>=<>=-<>....拓展若两个向量,a b 所在直线为异面直线,两异面直线所成的角为θ, (1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>. 知识点二 空间向量的数量积定义已知两个非零向量,a b ,则||||cos ,a b a b <>叫做向量,a b 的数量积,记作a b ⋅,即||||cos ,a b a b a b ⋅=<>.零向量与任意向量的数量积为0,即00a ⋅=.几何意义向量,a b 的数量积等于a 的长度||a 与b 在a 的方向上的投影||cos ,b a b <>的乘积或等于b 的长度||b 与a 在b 的方向上的投影||cos ,a a b <>的乘积.运算律()()a b a b λλ⋅=⋅a b b a ⋅=⋅(交换律)()a b c a b a c ⋅+=⋅+⋅(分配律)1. 对于空间向量的数量积,我们可以从以下几个方面理解:(1)向量,a b 的数量积记为a b ⋅.而不能表示为a b ⨯或ab ;(2)向量的数量积的结果为实数,而不是向量,其符号由夹角θ的余弦值的符号决定:当θ为锐角时,a b ⋅>0,但当a b ⋅>0时, θ也可能为0;当θ为钝角时.a b ⋅<0,但当a b ⋅<0时,θ也可能为π:(3)当θ≠0时, a b ⋅=0不能推出b 一定是零向量,这是因为对于任一个与a 垂直的非零向量b .都有a b ⋅=0.2. 在考向量数量积的运算律时,要准确区分两向量的数量积与向量的数乘 、实数与实数的乘积之问的差异.(1)向量的数量积的运算不满足消去律,即a b ⋅=b c ⋅推不出a c =, (2)向量数量积的运算不满足结合律,即()a b c ⋅⋅不一定等于()a b c ⋅ . (3)向量数量积的运算不满足除法,即对于向量a b ⋅,若a b ⋅=k ,不能得到k a b =(或kb a=).例如,当非零向量a b ⋅垂直时,a b ⋅=0,但0a b=显然是不正确的.知识点三 空间向量数量积的性质若,a b 是非零向量,e 是与b 方向相同的单位向量,θ为a 与e 夹角,则: (l) cos e a a e a θ⋅=⋅=. (2) 0a b a b ⊥⇔⋅=(3)若a 与b 同向,则a b a b ⋅=;若a 与b 反向,则a b a b ⋅=-.特别地,2=a a a a a a ⋅=⋅或. (4)若θ为a 与b 的夹角.则cos =a b a bθ⋅.(5)a b a b ⋅≤. 拓展空间向量数量积的性质可以看作数量积的定义的.引申和拓展,空间向量数量积与向量的模和夹角有关,更多的是以它为工具解决立体几何中与夹角和距离有关的问题.例如.(1)求空间中两点间的距离或线段的长度,可以理解为求解为求相应线段所对应的向量的模. (2)求空间中两条直线的夹角(特别是两条异面直线所成的角),即求这两条直线所对应的两个向量的夹角或其补角.(3)证明线线垂直问题时,可以通过计算两条直线所对应的两向量的数量积为零来说明这两条直线垂直.考点一 空间向量数量积的运算问题例1 已知向量,a b 之间的夹角为30,且a =3,b =4,求22,,,(2)()a b a b a b a b ⋅+⋅-.解:0cos ,34cos3063a b a b a b ⋅==⨯⨯=,229a a a a =⋅==,2216b b b b =⋅==22(2)()2963326323a b a b a a b b +⋅-=+⋅-=+-=-总结:有关向量数量积的运算应注意的问题:⑴要与数乘运算区分开,数乘运算的结果仍是向量,向量的数量积为实数. ⑵书写规范:不能写成a b ⨯,也不能写成ab . ⑶向量数量积运算不满足结合律,也不满足消去律.(4)向量数量积与实数运算有很多是相同的,如平方差公式、完全平方公式、多项式展开法则等,但也有很多区别,要注意总结.考点二 利用向量的数量积求角例2如图3.1—30.在正方体1111ABCD A B C D -中,求向量1BC 与AC 的夹角的大小.解:方法1:因为11AD BC =,所以1CAD ∠的大小就等于1,BC AC因为△1CAD 为等边三角形,所以0160CAD ∠=,所以1BC 与AC 的夹角的大小为60︒. 方法2.设正方体的棱长为1,()()()()111BCAC BCCC AB BC AD AA AB AD ⋅=+⋅+=+⋅+ 222110001AD AB AD AA AB AA AD AD AD =⋅++⋅+⋅=+++==又因为12,2BC AC ==,所以cos 11111,222BC AC BC AC BC AC⋅===⨯⋅, 因为[]1,0,BC AC π∈,所以1BC 与AC 的夹角的大小为60︒.求两个向量的夹角有两种方法:⑴结合图形,平移向量,利用空间向量的夹角定义来求,但要注意向量夹角的范围;⑵先求a b ⋅,再利用公式cos ,a b a b a b⋅<>=,求cos ,a b <>,最后确定,a b <>.考点三 利用向量的数量积求距离例 3 已知线段AB 在平面α内,线段AC α⊥,线段BD AB ⊥,且与α所成的角是30︒,如果,AB a AC BD b ===,求C ,D 间的距离.解:如图,由AC α⊥,知AC AB ⊥,过点D 作'DD α⊥于点'D ,连接'BD ,则'30,,120DBD CA BD ∠=︒=︒,所以22||()CD CD CD CA AB BD ==++2||CA =+22222222||||2222cos120AB BD CA AB CA BD AB BD b a b b a b ++++=+++︒=+故22CD a b =+.总结:(1)线段长度的计算通常有两种方法:一是构建三角形,解三角形;二是向量法,计算相应向量的模,此时常需将待求向量转化为关系明确的向量(一般向几何体的棱上转化).(2)应牢记并能熟练地考公式2222||()||||||222a b c a b c a b c a c a b b c ++=++=+++++.考点四 利用向量的数量积证明垂直例4 如图,在四面体O ABC -中,M,N,P,Q 分别为BC ,AC ,OA ,OB 的中点,若AB OC =,求证:PM QN ⊥.分析:欲证PM QN ⊥,只要证明0PM QN =,需将PM QN 用其他向量表示后再进行计算. 证明:如图3.1-34,连接OM ,设,,OA a OB b OC c ===.因为P ,M 分别为OA ,BC 的中点,所以111()[()]222PM OM OP b c a b a c =-=+-=-+.同理,连接ON ,所以111()[()]222QN a c b b a c =+-=--+.所以22111[()]{[()]}(||||)224PM QN b a c b a c b a c =-+⋅--+=---.又因为AB OC =,所以||||b a c -=所以0PM QN =,所以PM QN ⊥,即PM QN ⊥.。

3.1.3 空间向量的数量积运算(一)

3.1.3 空间向量的数量积运算(一)

a、 b a b cos a , b 叫做 a 、 b 的数量积,记作 a b 即 a的数量积 已 知 空 间 两 个 非 零 向 量
, 则 .
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
课堂练习
1. 已 知 a 2 2 , b 2 2 ,a b

2
,
则a 与b
135 的夹角大小为_____.
0, b 0
2.判断真假: 1)若 a b 0 , 则 a
2) (a b ) c a (b c ) 2 2 2 3) p q ( p q) 2 2 4) p q p q p q
(4)空间向量的数量积满足的运算律
⑴、⑵是显然成立的 思考:你能证明分配律成立吗?
另外 a b a 及a b 0 ¿ c ¿ b c a 0或 b 0
练习运算
数量积不满足结合律即 (a b ) c a ( b c ) 注意:
A'
B'
D C
4 3 5 2 ( 0 1 0 7 .5 )
2 2 2
A B
85 | A C |
85
空间向量的数量积运算(一)
引 入 数量积运 算定义 课堂练习
思考1数量 积的性质
思考2数量 积的运算律
空间向量的数量积运算(一)
F

S
W= |F| |s| cos
根据功的计算,我们定义了平面两向量的 数量积运算.一旦定义出来,我们发现这种运 算非常有用,它能解决有关长度和角度问题.

课时作业1:3.1.3 空间向量的数量积运算

课时作业1:3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算一、基础过关1.若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的( )A .充分不必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件答案 A解析 a·b =|a||b |cos 〈a ,b 〉=|a||b |⇔cos 〈a ,b 〉=1⇔〈a ,b 〉=0,当a 与b 反向时,不能成立.2.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |等于( ) A.97B .97 C.61 D .61 答案 C解析 |2a -3b |2=4a 2-12a·b +9b 2=4×22-12×2×3×cos 60°+9×32=61,∴|2a -3b |=61.3.已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a 等于( )A .12B .8+13C .4D .13 答案 D解析 (2a -b )·a =2a 2-b ·a =2|a |2-|a ||b |cos 120°=2×4-2×5×(-12)=13. 4.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角为( )A .60°B .30°C .135°D .45° 答案 D解析 ∵a -b 与a 垂直,∴(a -b )·a =0,∴a ·a -a ·b =|a |2-|a |·|b |·cos 〈a ,b 〉=1-1·2·cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22. ∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=45°.5.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.答案 18 解析 将|a -b |=7化为(a -b )2=7,求得a ·b =12,再由a ·b =|a ||b |cos 〈a ,b 〉求得cos 〈a ,b 〉=18. 6.已知向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为π3,则|a +b |=________. 答案 7解析 |a +b |2=a 2+2a·b +b 2=1+2×1×2×cos π3+22=7, ∴|a +b |=7.7.如图所示,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.求证:CC 1⊥BD .证明 设CB →=a ,CD →=b ,CC 1→=c ,则|a |=|b |.∵BD →=CD →-CB →=b -a ,∴BD →·CC 1→=(b -a )·c =b·c -a·c=|b||c |cos 60°-|a||c |cos 60°=0,∴CC 1→⊥BD →,即CC 1⊥BD .二、能力提升8.向量a 、b 满足|a |=|b |=1,a ·b =-12,则|a +2b |等于( ) A. 2B. 3C. 5D.7答案 B9.已知a 、b 是异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成的角是( )A .30°B .45°C .60°D .90° 答案 C解析 AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=AC →·CD →+CD →2+DB →·CD →=0+12+0=1,又|AB →|=2,|CD →|=1.∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=12×1=12. ∴a 与b 所成的角是60°.10.已知在平行六面体ABCDA 1B 1C 1D 1中,同一顶点为端点的三条棱长都等于1,且彼此的夹角都是60°,则此平行六面体的对角线AC 1的长为( )A. 3B .2 C. 5 D. 6答案 D解析 ∵AC 1→=AB →+AD →+AA 1→∴AC 1→2=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA 1→2+2AB →·AD →+2AB →·AA 1→+2AD →·AA 1→=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|AC 1→|= 6.11.如图所示,在四棱锥P —ABCD 中,P A ⊥平面ABCD ,AB ⊥BC ,AB ⊥AD ,且P A =AB =BC =12AD =1,求PB 与CD 所成的角.解 由题意知|PB →|=2,|CD →|=2,PB →=P A →+AB →,DC →=DA →+AB →+BC →,∵P A ⊥平面ABCD ,∴P A →·DA →=P A →·AB →=P A →·BC →=0,∵AB ⊥AD ,∴AB →·DA →=0,∵AB ⊥BC ,∴AB →·BC →=0,∴PB →·DC →=(P A →+AB →)·(DA →+AB →+BC →)=AB →2=|AB →|2=1,又∵|PB →|=2,|CD →|=2,∴cos 〈PB →,DC →〉=PB →·DC →|PB →||DC →|=12×2=12,∴〈PB →,DC →〉=60°,∴PB 与CD 所成的角为60°.12.已知四面体OABC 的所有棱长均为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →);(3)|OA →+OB →+OC →|.解 (1)OA →·OB →=|OA →|·|OB →|·cos ∠AOB=1×1×cos 60°=12. (2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1.(3)|OA →+OB →+OC →|=(OA →+OB →+OC →)2=12+12+12+(2×1×1×cos 60°)×3= 6.三、探究与拓展13.在棱长为1的正方体ABCD -A ′B ′C ′D ′中,E ,F 分别是D ′D ,DB 的中点,G在棱CD 上,CG =14CD ,H 为C ′G 的中点. (1)求EF ,C ′G 所成角的余弦值;(2)求FH 的长.解 设AB →=a ,AD →=b ,AA ′→=c ,则a ·b =b ·c =c ·a =0,|a |2=a 2=1,|b |2=b 2=1,|c |2=c 2=1.(1)∵EF →=ED →+DF →=-12c +12(a -b ) =12(a -b -c ), C ′G →=C ′C →+CG →=-c -14a , ∴EF →·C ′G →=12(a -b -c )·(-c -14a ) =12(-14a 2+c 2)=38, |EF →|2=14(a -b -c )2=14(a 2+b 2+c 2)=34,|C ′G →|2=(-c -14a )2=c 2+116a 2=1716, ∴|EF →|=32,|C ′G →|=174, cos 〈EF →,C ′G →〉=EF →·C ′G →|EF →||C ′G →|=5117, 所以EF ,C ′G 所成角的余弦值为5117. (2)∵FH →=FB →+BC →+CC ′→+C ′H → =12(a -b )+b +c +12C ′G → =12(a -b )+b +c +12(-c -14a ) =38a +12b +12c , ∴|FH →|2=(38a +12b +12c )2 =964a 2+14b 2+14c 2=4164, ∴FH 的长为418.。

空间向量及其运算第一课时练习题含详细答案

空间向量及其运算(11月22日)一、选择题1.下列命题正确的有( )(1)若|a |=|b |,则a =b ;(2)若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 是平行四边形的充要条件;(3)若a =b ,b =c ,则a =c ;(4)向量a ,b 相等的充要条件是⎩⎪⎨⎪⎧|a |=|b |,a ∥b ;(5)|a |=|b |是向量a =b 的必要不充分条件;(6)AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1个 B .2个 C .3个D .4个2.设A ,B ,C 是空间任意三点,下列结论错误的是( ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=CB → D.AB →=-BA →3.已知空间向量AB →,BC →,CD →,AD →,则下列结论正确的是( ) A.AB →=BC →+CD → B.AB →-DC →+BC →=AD → C.AD →=AB →+BC →+DC → D.BC →=BD →-DC →4.已知空间四边形ABCD ,连接AC ,BD ,则AB →+BC →+CD →为( )A .AD →B .BD →C .AC →D .05.点D 是空间四边形OABC 的边BC 的中点,OA →=a ,OB →=b ,OC →=c ,则AD →为( )A.12(a +b )-cB.12(c +a )-bC.12(b +c )-a D .a +12(b +c ) 6.已知P 是正六边形ABCDEF 外一点,O 为ABCDEF 的中心,则PA →+PB →+PC →+PD →+PE →+PF →等于( )A.PO → B .3PO → C .6PO →D .07.设a 表示向东3 m ,b 表示向北4 m ,c 表示向上5 m ,则( )A .a -b +c 表示向东3 m ,向南4 m ,向上5 mB .a +b -c 表示向东3 m ,向北4 m ,向上5 mC .2a -b +c 表示向东3 m ,向南4 m ,向上5 mD .2(a +b +c )表示向东6 m ,向北8 m ,向上5 m8.空间四边形ABCD 中,若E 、F 、G 、H 分别为AB 、BC 、CD 、DA 边上的中点,则下列各式中成立的是( )A.EB →+BF →+EH →+GH →=0B.EB →+FC →+EH →+GE →=0 C.EF →+FG →+EH →+GH →=0 D.EF →-FB →+CG →+GH →=09、平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 和BD 的交点,若11B A =a ,11D A =b ,A A 1 = c ,则下列式子中与M B 1相等的是A AB BC CDD 1111MA.-21a + 21b +c B. 21a + 21b +c C. 21a - 21b +c D.- 21a - 21b +c10.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算的结果为向量1AC 的共有( )(1)1CC )BC AB (++ (2)C D )D A AA (1111++ (3)111C B )BB AB (++ (4)11111CB )B A AA (++ A .1个 B .2个C .3个D .4个ABCA 1C 1D 1 B 1D11.已知点G 是正方形ABCD 的中心,P 是正方形ABCD 所在平面外的一点,则PD PC PB PA +++等于( )A .4PGB .3PGC .2PGD .PG 12.在空间四边形OABC 中, OA →+AB →-CB →等于( )A .OA →B .AB →C . OC →D .AC →二、填空题1、在空间直角坐标系中,点M 的坐标是(4,5,6),则点M 关于y 轴的对称点在坐标平面xOz 上的射影的坐标为_______.2、已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =3、已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 .4、如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.选做:已知在四面体ABCD 中,PA = a ,PB = b ,PC = c ,G ∈平面ABC . 若G 为△ABC 的重心,试证明31=PG (a +b +c );小组: 组号: 姓名:__________一、选择题(本题共12小题,每题5分,共60分)题123456789101112号 答案二、填空题(共4小题,每题5分,共20分)请把正确答案填写在相应的位置上.1、__________2、___________3、_____________4、_____________ 三、解答题1.已知A(3,2,1)、B(1,0,4),求: (1)线段AB 的中点坐标和长度;(2)到A、B 两点距离相等的点P(x,y,z)的坐标满足的条件.2. 已知''''ABCD A B C D -是平行六面体. (1)化简'1223AA BC AB ++,并在图形中标出其结果; (2)设M 是底面ABCD 的中心,N 是侧面''BCC B 的对角线'BC 上的点,且':3:1BN NC =,设'MN AB AD AA αβγ=++,试求,,αβγ之值。

人教版高中数学选择性必修第一册-空间向量的数量积运算-课时作业【含解析】

课时作业2空间向量的数量积运算【原卷版】时间:45分钟一、选择题1.在正方体ABCD ­A 1B 1C 1D 1中,棱长为1,则AC →·AD 1→等于()A .0B .1C.12D .-12.已知m ,n 是异面直线,且m ⊥n ,e 1,e 2分别为取自直线m ,n 上的单位向量,且a =2e 1+3e 2,b =k e 1-4e 2,a ⊥b ,则实数k 的值为()A .-6B .6C .3D .-33.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |等于()A.97B .97C.61D .614.在正方体ABCD ­A 1B 1C 1D 1中,有下列命题:①(AA 1→+AD →+AB →)2=3AB →2;②A 1C →·(A 1B 1→-A 1A →)=0;③AD 1→与A 1B →的夹角为60°.其中真命题的个数为()A .1B .2C .3D .05.已知非零向量a ,b 不平行,并且其模相等,则a +b 与a -b 之间的关系是()A .垂直B .共线C .不垂直D .以上都可能6.如图所示,在三棱锥A ­BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 的中点,则AE →·BC →等于()A .0B .1C .2D .37.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则〈a ,b 〉等于()A .30°B .45°C .60°D .90°8.(多选题)在正方体ABCD ­A 1B 1C 1D 1中,下列结论正确的是()A .四边形ABC 1D 1的面积为|AB →||BC 1→|B.AD 1→与A 1B →的夹角为60°C .(AA 1→+A 1D 1→+A 1B 1→)2=3A 1B 1→2D.A 1C →·(A 1B 1→-A 1D 1→)=0二、填空题9.已知a ,b 为两个非零空间向量,若|a |=22,|b |=22,a ·b =-2,则〈a ,b 〉=如图,在△ABC 和△AEF 中,B 是EF 的中点,AB =2,EF =4,CA =CB =3,若AB →·AE →+AC →·AF →=7,则EF →与BC →的夹角的余弦值等于11.已知空间向量a ,b ,|a |=32,|b |=5,m =a +b ,n =a +λb ,〈a ,b 〉=135°,若m ⊥n ,则λ的值为三、解答题12.如图所示,三棱柱ABC ­A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB →=a ,AC →=b,AA 1→=c .(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长.13.在空间四边形OABC 中,连接AC ,OB ,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求向量OA →与BC →所成角的余弦值.14.(多选题)下列命题中不正确的是()A .|a |-|b |<|a +b |是向量a ,b 不共线的充要条件B .在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=0C .在棱长为1的正四面体ABCD 中,AB →·BC →=12D .设A ,B ,C 三点不共线,O 为平面ABC 外一点,若OP →=13OA →+23OB →+OC →,则P ,A ,B ,C 四点共面15.等边三角形ABC 中,P 在线段AB 上,且AP →=λAB →,若CP →·AB →=PA →·PB →,则实数λ的值为16.如图,已知平行六面体ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD.(1)求证:CC 1⊥BD .(2)试求当CDCC 1的值为多少时,能使A 1C ⊥平面C 1BD?课时作业2空间向量的数量积运算【解析版】时间:45分钟一、选择题1.在正方体ABCD ­A 1B 1C 1D 1中,棱长为1,则AC →·AD 1→等于(B )A .0B .1C.12D .-1解析:AC →·AD 1→=(AB →+AD →)·(AD →+AA 1→)=AB →·AD →+AB →·AA 1→+AD →2+AD →·AA 1→=0+0+1+0=1.故选B.2.已知m ,n 是异面直线,且m ⊥n ,e 1,e 2分别为取自直线m ,n 上的单位向量,且a =2e 1+3e 2,b =k e 1-4e 2,a ⊥b ,则实数k 的值为(B )A .-6B .6C .3D .-3解析:∵m ⊥n ,∴e 1⊥e 2,即e 1·e 2=0,由a ⊥b ,得a ·b =0,∴(2e 1+3e 2)·(k e 1-4e 2)=0,∴2k -12=0,∴k =6.故选B.3.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |等于(C )A.97B .97C.61D .61解析:|2a -3b |2=4a 2-12a ·b +9b 2=4×22-12×2×3×cos60°+9×32=61,∴|2a -3b |=61.故选C.4.在正方体ABCD ­A 1B 1C 1D 1中,有下列命题:①(AA 1→+AD →+AB →)2=3AB →2;②A 1C →·(A 1B 1→-A 1A →)=0;③AD 1→与A 1B →的夹角为60°.其中真命题的个数为(B )A .1B .2C .3D .0解析:①②正确;∵AD 1→与A 1B →的夹角为120°,∴③不正确.故选B.5.已知非零向量a ,b 不平行,并且其模相等,则a +b 与a -b 之间的关系是(A )A .垂直B .共线C .不垂直D .以上都可能解析:由题意知|a |=|b |,∵(a +b )·(a -b )=|a |2-|b |2=0,∴(a +b )⊥(a -b ).故选A.6.如图所示,在三棱锥A ­BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 的中点,则AE →·BC →等于(A)A .0B .1C .2D .3解析:∵AE →·BC →=12(AB →+AC →)·(DC →-DB →)=12(DB →-DA →+DC →-DA →)·(DC →-DB →)=12(DB →-2DA →+DC →)·(DC →-DB →)=12DB →·DC →-12DB →2-DA →·DC →+DA →·DB →+12DC →2-12DC →·DB →,又易知DB →·DC →=0,DA →·DC →=0,DA →·DB →=0,|DB →|=|DC →|,∴AE →·BC →=0.故选A.7.已知向量a ,b 满足条件:|a |=2,|b |=2,且a 与2b -a 互相垂直,则〈a ,b 〉等于(B )A .30°B .45°C .60°D .90°解析:根据a ·(2b -a )=0,即2a ·b =|a |2=4,解得a ·b =2,又cos 〈a ,b 〉=a ·b |a ||b |=22×2=22,〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=45°.故选B.8.(多选题)在正方体ABCD ­A 1B 1C 1D 1中,下列结论正确的是(ACD )A .四边形ABC 1D 1的面积为|AB →||BC 1→|B.AD 1→与A 1B →的夹角为60°C .(AA 1→+A 1D 1→+A 1B 1→)2=3A 1B 1→2D.A 1C →·(A 1B 1→-A 1D 1→)=0解析:如图.由AB ⊥平面BB 1C 1C 得AB ⊥BC 1,所以四边形ABC 1D 1的面积为|AB →|·|BC 1→|,故A 正确;∵△ACD 1是等边三角形,∴∠AD 1C =60°,又∵A 1B ∥D 1C ,∴异面直线AD 1与A 1B 所成的夹角为60°,但是向量AD 1→与A 1B →的夹角为120°,故B 错误;由向量加法的运算法则可以得AA 1→+A 1D 1→+A 1B 1→=AC 1→,∵AC 1→2=3A 1B 1→2,∴(AA 1→+A 1D 1→+A 1B 1→)2=3A 1B 1→2,故C 正确;由向量运算可得A 1B 1→-A 1D 1→=D 1B 1→,∵在正方体ABCD ­A 1B 1C 1D 中,D 1B 1⊥平面AA 1C 1C ,∴D 1B 1⊥A 1C ,∴A 1C →·D 1B 1→=0,故D 正确.故选ACD.二、填空题9.已知a ,b 为两个非零空间向量,若|a |=22,|b |=22,a ·b =-2,则〈a ,b 〉=3π4.解析:cos 〈a ,b 〉=a ·b |a ||b |=-22,∵〈a ,b 〉∈[0,π],∴〈a ,b 〉=3π4.10.如图,在△ABC 和△AEF 中,B 是EF 的中点,AB =2,EF =4,CA =CB =3,若AB →·AE →+AC →·AF →=7,则EF →与BC →的夹角的余弦值等于16.解析:由题意可得BC →2=9=(AC →-AB →)2=AC →2+AB →2-2AC →·AB →=9+4-2AC →·AB →,∴AC →·AB →=2.由AB →·AE →+AC →·AF →=7,可得AB →·(AB →+BE →)+AC →·(AB →+BF →)=AB →2+AB →·BE →+AC →·AB →+AC →·BF →=4+AB →·(-BF →)+2+AC →·BF →=6+BF →·(AC →-AB →)=6+12EF →·BC →=7.∴EF →·BC →=2,即4×3×cos 〈EF →,BC →〉=2,∴cos 〈EF →,BC →〉=16.11.已知空间向量a ,b ,|a |=32,|b |=5,m =a +b ,n =a +λb ,〈a ,b 〉=135°,若m ⊥n ,则λ的值为-310.解析:由题意知a ·b =|a ||b |cos 〈a ,b 〉=32×515,由m ⊥n ,得(a +b )·(a +λb )=0,即|a |2+λa ·b +a ·b +λ|b |2=18-15(λ+1)+25λ=0.解得λ=-310.三、解答题12.如图所示,三棱柱ABC ­A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB →=a ,AC →=b ,AA 1→=c .(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长.解:(1)MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c -a )+a +13(b -a )=13a +13b +13c .(2)∵(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×12=5,∴|a +b +c |=5,∴|MN →|=13|a +b +c |=53,即MN =53.13.在空间四边形OABC 中,连接AC ,OB ,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求向量OA →与BC →所成角的余弦值.解:∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=24-162,∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225.14.(多选题)下列命题中不正确的是(ACD )A .|a |-|b |<|a +b |是向量a ,b 不共线的充要条件B .在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=0C .在棱长为1的正四面体ABCD 中,AB →·BC →=12D .设A ,B ,C 三点不共线,O 为平面ABC 外一点,若OP →=13OA →+23OB →+OC →,则P ,A ,B ,C 四点共面解析:由|a |-|b |<|a +b |,知向量a ,b 可能共线,比如共线向量a ,b 的模分别是2,3,故A 错误;在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=(AC →+CB →)·CD →-CB →·AD →-AC →·BD →=AC →·(CD →-BD →)+CB →·(CD →-AD →)=AC →·CB →+CB →·CA →=0,故B 正确;AB →·BC →=|AB →||BC →|cos 〈AB →,BC →〉=1×1×cos120°=-12,故C 错误;由13+23+1=2≠1可知P ,A ,B ,C 四点不共面,故D 错误.故选ACD.15.等边三角形ABC 中,P 在线段AB 上,且AP →=λAB →,若CP →·AB →=PA →·PB →,则实数λ的值为1-22.解析:如图,CP →=-AC →+AP →=-AC →+λAB →,故CP →·AB →=(λAB →-AC →)·AB →=λ|AB →|2-|AB →||AC →|cos APA →·PB →=(-λAB →)·(1-λ)AB →=λ(λ-1)|AB →|2,设|AB →|=a (a >0),则a 2λ-12a 2=λ(λ-1)a 2,解得λ=1=1+22舍16.如图,已知平行六面体ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(1)求证:CC 1⊥BD .(2)试求当CDCC 1的值为多少时,能使A 1C ⊥平面C 1BD?解:(1)证明:设CD →=a ,CB →=b ,CC 1→=c .由题意得|a |=|b |,BD →=CD →-CB →=a -b .CD →,CB →,CC 1→两两夹角的大小相等,设为θ,于是CC 1→·BD →=c ·(a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴CC 1⊥BD .(2)要使A 1C ⊥平面C 1BD ,只需A 1C ⊥BD ,A 1C ⊥DC 1.由CA 1→·C 1D →=(CA →+AA 1→)·(CD →-CC 1→)=(a +b +c )·(a -c )=a 2-a ·c +a ·b -b ·c +c ·a -c 2=|a |2-|c |2+|a |·|b |cos θ-|b |·|c |cos θ=(|a |-|c |)(|a |+|c |+|b |cos θ)=0,得当|c |=|a |时,A 1C ⊥DC 1.而由(1)知CC 1⊥BD ,又BD ⊥AC ,CC 1∩AC =C ,∴BD ⊥平面ACC 1A 1,∴A 1C ⊥BD .综上可得,当CDCC 1=1时,A 1C ⊥平面C 1BD .。

空间向量的数量积运算(经典练习及答案详解)

空间向量的数量积运算1.[多选]下列各命题中,正确的命题是( ) A .a ·a =|a |B .m (λa )·b =(mλ)a ·b (m ,λ∈R )C .a ·(b +c )=(b +c )·aD .a 2b =b 2a解析:选ABC ∵a ·a =|a |2,∴a ·a =|a |,故A 正确. m (λa )·b =(mλa )·b =mλa ·b =(mλ)a ·b ,故B 正确.a ·(b +c )=a ·b +a ·c ,(b +c )·a =b ·a +c ·a =a ·b +a ·c =a ·(b +c ),故C 正确.a 2·b =|a |2·b ,b 2·a =|b |2·a ,故D 不一定正确.2.已知e 1,e 2为单位向量,且e 1⊥e 2,若a =2e 1+3e 2,b =k e 1-4e 2,a ⊥b ,则实数k 的值为( )A .-6B .6C .3D .-3解析:选B 由题意可得a ·b =0,e 1·e 2=0,|e 1|=|e 2|=1,∴(2e 1+3e 2)·(k e 1-4e 2)=0,∴2k -12=0,∴k =6.3.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE ―→·AF―→的值为( ) A .a 2 B .12a 2 C .14a 2D .34a 2解析:选C AE ―→·AF ―→=12(AB ―→+AC ―→)·12AD ―→=14(AB ―→·AD ―→+AC ―→·AD ―→)=14⎝⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.4.已知正三棱柱ABC -A 1B 1C 1的各条棱的长度都为2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是( )A .2B . 3C . 5D .7解析:选C 由于EF ―→=EA ―→+AA 1―→+A 1F ―→,所以|EF ―→|=(EA ―→+AA 1―→+A 1F ―→)2=1+4+1+2×⎝ ⎛⎭⎪⎫0+0-12=5,即EF 的长是 5.5.如图,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于( )A .6 2B .6C .12D .144解析:选C 因为PC ―→=P A ―→+AB ―→+BC ―→,所以PC ―→2=P A ―→2+AB ―→2+BC ―→2+2P A ―→·AB ―→+2P A ―→·BC ―→+2AB ―→·BC ―→=36+36+36+2×36cos 60°=144,所以PC =12.6.已知|a |=13,|b |=19,|a +b |=24,则|a -b |=________. 解析:|a +b |2=a 2+2a ·b +b 2=132+2a ·b +192=242,∴2a ·b =46,|a -b |2=a 2-2a ·b +b 2=530-46=484,故|a -b |=22.答案:227.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是矩形,AB =4,AA 1=3,∠BAA 1=60°,E 为棱C 1D 1的中点,则AB ―→·AE―→=________. 解析:AE ―→=AA 1―→+AD ―→+12AB ―→,AB ―→·AE ―→=AB ―→·AA 1―→+AB ―→·AD ―→+12AB ―→2=4×3×cos 60°+0+12×42=14.答案:148.已知e 1,e 2是夹角为60°的两个单位向量,则a =e 1+e 2与b =e 1-2e 2的夹角是________.解析:a ·b =(e 1+e 2)·(e 1-2e 2)=e 21-e 1·e 2-2e 22=1-1×1×12-2=-32,|a |=a 2=(e 1+e 2)2=e 21+2e 1·e 2+e 22=1+1+1=3,|b |=b 2=(e 1-2e 2)2=e 21-4e 1·e 2+4e 22 =1-2+4= 3.∴cos 〈a ,b 〉=a ·b |a ||b |=-323=-12.∴〈a ,b 〉=120°. 答案:120°9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是C 1D 1,D 1D 的中点,正方体的棱长为1.(1)求〈CE ―→,AF ―→〉的余弦值;C 1E ―→ (2)求证:BD 1⊥EF .解:(1)AF ―→=AD ―→+DF ―→=AD ―→+12AA 1―→, CE ―→=CC 1―→+C 1E ―→=AA 1―→+12CD ―→=AA 1―→-12AB ―→. 因为AB ―→·AD ―→=0,AB ―→·AA 1―→=0,AD ―→·AA 1―→=0,所以CE ―→·AF ―→=⎝⎛⎭⎪⎫AA 1―→-12 AB ―→ ·⎝⎛⎭⎪⎫AD ―→+12 AA 1―→ =12. 又|AF ―→|=|CE ―→|=52,所以cos 〈CE ―→,AF ―→〉=25. (2)证明:因为BD 1―→=BD ―→+DD 1―→=AD ―→-AB ―→+AA 1―→, EF ―→=ED 1―→+D 1F ―→=-12(AB ―→+AA 1―→),所以BD 1―→·EF ―→=0,所以BD 1―→⊥EF ―→.即BD 1⊥EF . 10.如图,正四棱锥P -ABCD 的各棱长都为a . (1)用向量法证明:BD ⊥PC ; (2)求|AC ―→+PC―→|的值. 解:(1)证明:∵BD ―→=BC ―→+CD―→, ∴BD ―→·PC ―→=(BC ―→+CD ―→)·PC ―→=BC ―→·PC ―→+CD ―→·PC ―→ =|BC ―→||PC ―→|·cos 60°+|CD ―→||PC ―→|cos 120° =12a 2-12a 2=0. ∴BD ⊥PC .(2)∵AC ―→+PC ―→=AB ―→+BC ―→+PC―→, ∴|AC ―→+PC ―→|2=|AB ―→|2+|BC ―→|2+|PC ―→|2+2AB ―→·BC ―→+2AB ―→·PC ―→+2BC ―→·PC ―→=a 2+a 2+a 2+0+2a 2cos 60°+2a 2cos 60°=5a 2,∴|AC ―→+PC―→|=5a .1.[多选]在正方体ABCD -A 1B 1C 1D 1中,则下列命题正确的是( )A .(AA 1―→+AD ―→+AB ―→)2=3AB ―→2B .A 1C ―→·(A 1B 1―→-A 1A ―→)=0 C .AD 1―→与A 1B ―→的夹角为60° D .正方体的体积为|AB ―→·AA 1―→·AD ―→| 解析:选AB 如图所示,(AA 1―→+AD ―→+AB ―→)2=(AA 1―→+A 1D 1―→+D 1C 1―→)2=AC 1―→2=3AB ―→2; A 1C ―→·(A 1B 1―→-A 1A ―→)=A 1C ―→·AB 1―→=0;AD 1―→与A 1B ―→的夹角是D 1C ―→与D 1A ―→夹角的补角,而D 1C ―→与D 1A ―→的夹角为60°,故AD 1―→与A 1B ―→的夹角为120°;正方体的体积为|AB ―→||AA 1―→||AD ―→|.综上可知,A 、B 正确. 2.设空间上有四个互异的点A ,B ,C ,D ,已知(DB ―→+DC ―→-2DA ―→)·(AB ―→-AC―→)=0,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形解析:选B 因为DB ―→+DC ―→-2DA ―→=(DB ―→-DA ―→)+(DC ―→-DA ―→)=AB ―→+AC ―→,所以(AB ―→+AC ―→)·(AB ―→-AC ―→)=|AB ―→|2-|AC ―→|2=0,所以|AB ―→|=|AC―→|,即△ABC 是等腰三角形. 3.如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C ―→与A 1P ―→所成角的大小为________,B 1C ―→·A 1P ―→=________.解析:法一:连接A 1D ,则∠P A 1D 就是B 1C ―→与A 1P ―→所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C ―→与A 1P ―→所成角的大小为60°.因此B 1C ―→·A 1P ―→=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C ―→·A 1P ―→=(A 1A―→+)·⎝⎛⎭⎪⎫AD ―→+12AB ―→ =AD ―→2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C ―→,A 1P ―→〉=1,从而〈B 1C ―→,A 1P ―→〉=60°.答案:60° 14.在四面体OABC 中,各棱长都相等,E ,F 分别为AB ,OC 的中点,求异面直线OE 与BF 所成角的余弦值.解:取OA ―→=a ,OB ―→=b ,OC ―→=c , 且|a |=|b |=|c |=1,则a ·b =b ·c =c ·a =12. 又∵OE ―→=12(a +b ),BF ―→=12c -b , ∴OE ―→·BF ―→=12(a +b )·⎝⎛⎭⎪⎫12c -b =14a ·c +14b ·c -12a ·b -12|b |2=-12.又|OE ―→|=32,|BF ―→|=32,∴cos 〈OE ―→,BF ―→〉=OE ―→·BF ―→|OE ―→||BF―→|=-23,∵异面直线夹角的范围为⎝ ⎛⎦⎥⎤0,π2,∴异面直线OE 与BF 所成角的余弦值为23.5.如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.解:∵∠ACD =90°,∴AC ―→·CD ―→=0, 同理可得AC ―→·BA ―→=0. ∵AB 与CD 成60°角,∴〈BA ―→,CD ―→〉=60°或〈BA ―→,CD ―→〉=120°. 又BD ―→=BA ―→+AC ―→+CD―→, ∴|BD ―→|2=|BA ―→|2+|AC ―→|2+|CD ―→|2+2BA ―→·AC ―→+2BA ―→·CD ―→+2AC ―→·CD ―→=3+2×1×1×cos 〈BA ―→,CD ―→〉.∴当〈BA ―→,CD ―→〉=60°时,|BD ―→|2=4, 此时B ,D 间的距离为2;当〈BA ―→,CD ―→〉=120°时,|BD ―→|2=2, 此时B ,D 间的距离为 2.。

人教A版高中同步学案数学选择性必修第一册精品习题课件 第一章 第1课时 空间向量的数量积运算(1)

量,的夹角).在正方体 − 1 1 1 1 中,有以下四个结论,正确的有() ACD
A.|1 × | = |1 × 1 1 |
B. × = ×
C.1 1 × 1 与1 共线
D.( × ) ⋅ 1 与正方体体积数值相等
[解析] 设正方体棱长为1,
⟩ = ∘ − ⟨,⟩ = ∘ − ∘ = ∘ ,故选D.
2.已知 = 3 − 2, = + ,和是相互垂直的单位向量,则 ⋅ =() A
A.1
B.2
C.3
[解析]由条件知 ⋅ = , = = ,
所以 ⋅ = ( − ) ⋅ ( + ) = − + ⋅ = .
4
[解析]如图所示,正四面体的棱长为1,点,分别是,的中点,所以


= ,












故 ⋅ = ⋅ = |||| ∘ = − × = − .故答案为− .
6.[人教B版教材习题]已知,都是空间向量,且⟨,⟩ =
第一章
1.1 空间向量及其运算
1.1.2 空间向量的数量积运算
第1课时 空间向量的数量积运算(1)
A级 必备知识基础练
1.在正四面体中,与的夹角等于() D
A.30∘ B.60∘ C.150∘ D.120∘
[解析]由正四面体每个面都是正三角形可知,⟨,⟩ = ∘ ,故⟨,


= ,| | = ,且 ⊥ ,
⊥ ,由题意知, × 与 共线且方向相同,所以
( × ) ⋅ = | × | ⋅ | | = .又正方体体积为1,所以D对.
故选.
∴ |1 | =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.3空间向量的数量积运算一、选择题1.若A 、B 、C 、D 为空间四个不同的点,则下列各式为零向量的是 ( ) ①22AB BC CD DC +++ ②2233AB BC CD DA AC ++++ ③AB CA BD ++④AB CB CD AD -+-A .①②B .②③C .②④D .①④2、在空间四边形ABCD 中,若AB a =,BD b =,AC c =,则CD 等于 ( ) A .()a b c -- B .()c b a -- C .a b c -- D .()b c a --3、已知向量 a 和向量 b 的数量积为- 3,且| a |=1,| b |=2,则向量 a 和向量 b 的夹角( ) A .30° B .60° C . 120° D .150°4、已知空间向量 a , b 满足条件:( a +3 b )⊥(7 a -5 b ),且(a -4 b )⊥(7 a -2 b ),则空间向量 a , b 的夹角<a , b >( )A .等于30°B .等于45°C .等于60°D .不确定5、若a ,b 为非零向量,则a·b =|a |·|b |是a 与b 平行的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5、解析:因为a ,b 为非零向量,又a ·b =|a ||b |cos 〈a ,b 〉=|a ||b |, 所以cos 〈a ,b 〉=1.所以〈a ,b 〉=0,即a 与b 平行; 反之,若a 与b 平行,当〈a,b 〉=π时, a ·b =-|a |·|b |≠|a |·|b |,由此知应选A. 6、若a 与b 是垂直的,则a ·b 的值一定是( )A.大于0B.等于零C.小于0D.不能确定 7、在下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OC OB OA OM --=2 B.OC OB OA OM 213151++=C.0=++MC MB MAD. 0=+++OC OB OA OM 8、 a 、b 是非零向量,则〈a ,b 〉的范围是 ( )A.(0,2π)B.[0,2π]C.(0,π)D.[0,π]9、已知|a |=22,|b|=22,a . b =-2,则a 、b 所夹的角为( )A. 0B. 4πC. 2πD. 34π10.设A 、B 、C 、D 是空间不共面的四点,且满足000=•=•=•AD AB ,AD AC ,AC AB ,则∆BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定二、填空题1、在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.其中能够化简为向量BD 1→的是________. 2.已知平行六面体ABCD -A ′B ′CD ′,则下列四式中: ①AB →-CB →=AC →;②AC ′→=AB →+B ′C ′→+CC ′→;③AA ′→=CC ′→; ④AB →+BB ′→+BC →+C ′C →=AC ′→. 正确式子的序号是________.3.已知空间向量a 、b 、c 满足a +b +c =0,|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a 的值为________.4.若AB →·BE →=AB →·BC →,则AB →与CE →的位置关系为5.在空间四边形ABCD 中,A B →·C D →+B C →·A D →+C A →·B D →=________.6.已知|a |=32,|b |=4,a 与b 的夹角为135°,m =a +b ,n =a +λb ,则m ⊥n ,则λ=________.小组: 组号: 姓名:__________一、选择题(本题共10小题,每题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(共6小题,每题5分,共30分)请把正确答案填写在相应的位置上.1、__________2、___________3、_____________4、_____________5、_____________6、_____________ 三、解答题1、正方体ABCD —A 1B 1C 1D 1中,求证:BD 1⊥平面ACB 1.2、如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值.在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A ,B 两点,圆内的动点P 满足PA ,PO ,PB 成等比数列,求PA →·PB→的取值范围.答案:一、选择:1---5 CDDCA 6-----10 BCBDB10.B ;解析:过点A 的棱两两垂直,通过设棱长应用余弦定理可得三角形为锐角三角形二、填空:1、解析:①中(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→;②中(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→=BD 1→;③中(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④中(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→,所以①②正确.答案:①②2、解析:AB →-CB →=AB →+BC →=AC →,①正确;AB →+B ′C ′→+CC ′→=AB →+BC →+CC ′→=AC ′→,②正确;③正确;(AB →+BB ′→)+BC →+C ′C →=AB ′→+B ′C ′→+C ′C →=AC ′→+C ′C →=AC →,故④错误.答案:①②③ 3、解析:∵a +b +c =0,∴(a +b +c )2=0,∴a 2+b 2+c 2+2(a·b +b·c +c·a )=0,∴a·b +b·c +c·a =-32+12+422=-13.答案:-134、解析:AB →·BE →=AB →·BC →,则AB →·(BE →-BC →)=AB →·CE →=0.∴AB →⊥CE →.5、解析: 设A B →=b ,A C →=c ,A D →=d ,则C D →=d -c ,B D →=d -b ,BC →=c -b .原式=0. 6、解析: m ·n =(a +b )·(a +λb )=|a |2+λa ·b +a ·b +λ|b |2=18+λ×32×4×cos 135°+32×4×cos 135°+λ×16=6-12λ+16λ=6+4λ,∵m ⊥n ,∴6+4λ=0,∴λ=-32三、解答题:1、.证明:先证明BD 1⊥AC∵1BD = BC + CD +1DD ,AC = AB +BC ∴1BD ·AC =(BC + CD +1DD )·(AB +BC )=BC ·BC + CD ·AB =BC ·BC -AB ·AB =|BC |2-|AB |2=0∴BD 1⊥AC ,同理可证BD 1⊥AB 1,于是BD 1⊥平面ACB 1 2、解:∵BC AC AB =-,∴OA BC OA AC OA AB ⋅=⋅-⋅||||cos ,||||cos ,OA AC OA AC OA AB OA AB =⋅⋅<>-⋅⋅<>84cos13586cos12024162=⨯⨯-⨯⨯=-∴24162322cos ,855||||OA BC OA BC OA BC ⋅--<>===⨯⋅, 所以,OA 与BC 的夹角的余弦值为3225-. 附加解析 (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2.得圆O 的方程为x 2+y 2=4.(2)不妨设A (x 1,0),B (x 2,0),x 1<x 2.由x 2=4即得A (-2,0),B (2,0). 设P (x ,y ),由|PA |、|PO |、|PB |成等比数列,得(x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2. PA →·PB →=(-2-x ,-y )·(2-x ,-y ) =x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎨⎧x 2+y 2<4x 2-y 2=2.由此得y 2<1.所以PA →·PB→的取值范围为[-2,0).DCBA备选:2、棱长为a 的正四面体ABCD 中,AB BC •+AC BD •的值等于( B ) A .0B.232aC. 22aD.23a7.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →|=12 , 则△ABC 为( C )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形8.如右图,在四边形ABCD 中,4||||||=++DC BD AB ,4||||||||=⋅+⋅DC BD BD AB ,0=⋅=⋅DC BD BD AB , 则AC DC AB ⋅+)(的值为( C ) A 、2 B 、22 C 、4D 、241.如图1,a 、b 是两个空间向量,则AC →与A ′C ′→是________向量,AB →与B ′A ′→是________向量.1、答案:相等 相反1、A 是△BCD 所在平面外一点,M 、N 分别是△ABC 和△ACD 的重心.若BD =4,试求MN 的长.解析:1、连结AM 并延长与BC 相交于E ,又连结AN 并延长与CD 相交于E ,则E 、F 分别为BC 及CD 之中点. 现在MN =AE AF AM AN 3232-=- =EF AE AF 32)(32=- =)(32CE CF - =CB CD CB CD -=-(31)2121(32) =BD 31∴MN =|MN |=31|BD |=31BD =34。

相关文档
最新文档