全国卷理科数学-第18题-概率(精选)
【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。
2021年高考全国乙卷数学(理科)试题及答案解析

2021年普通高等学校招生全国统一考试数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1.设2(z+z−)+3(z−z−)=4+6i,则z=()A. 1−2iB. 1+2iC. 1+iD. 1−i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. ⌀B. SC. TD. Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A. p∧qB. ¬p∧qC. p∧¬qD. ¬(p∨q)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A. f(x−1)−1B. f(x−1)+1C. f(x+1)−1D. f(x+1)+15.在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. π2B. π3C. π4D. π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,则f(x)=()A. sin(x2−7π12) B. sin(x2+π12) C. sin(2x−7π12) D. sin(2x+π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A. 79B. 2332C. 932D. 299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=()A. B.C. D.10.设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A. [√22,1) B. [12,1) C. (0,√22] D. (0,12]12.设a=2ln1.01,b=ln1.02,c=√1.04−1,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、单空题(本大题共4小题,共20.0分)13.已知双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则C的焦距为______ .14.已知向量a⃗=(1,3),b⃗ =(3,4),若(a⃗−λb⃗ )⊥b⃗ ,则λ=______ .15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,则b=______ .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ (写出符合要求的一组答案即可).三、解答题(本大题共7小题,共82.0分)17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x−和y−,样本方差分别记为s12和s22.(1)求x−,y−,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−−x−≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不2√s12+s2210认为有显著提高).18.如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A−PM−B的正弦值.19.记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2Sn +1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.20.己知函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.21.已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB为C的两条切线,A,B是切点,求△PAB面积的最大值.22.在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.(1)写出⊙C的一个参数方程;(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.已知函数f(x)=|x−a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>−a,求a的取值范围.答案解析1.【答案】C【解析】解:设z =a +bi ,a ,b 是实数, 则z −=a −bi ,则由2(z +z −)+3(z −z −)=4+6i , 得2×2a +3×2bi =4+6i , 得4a +6bi =4+6i , 得{4a =46b =6,得a =1,b =1, 即z =1+i , 故选:C .利用待定系数法设出z =a +bi ,a ,b 是实数,根据条件建立方程进行求解即可. 本题主要考查复数的基本运算,利用待定系数法建立方程是解决本题的关键,是基础题.2.【答案】C【解析】解:当n 是偶数时,设n =2k ,则s =2n +1=4k +1, 当n 是奇数时,设n =2k +1,则s =2n +1=4k +3,k ∈Z , 则T ⊊S , 则S ∩T =T , 故选:C .分别讨论当n 是偶数、奇数时的集合元素情况,结合集合的基本运算进行判断即可. 本题主要考查集合的基本运算,利用分类讨论思想结合交集定义是解决本题的关键,是基础题.3.【答案】A【解析】解:对于命题p :∃x ∈R ,sinx <1,当x =0时,sinx =0<1,故命题p 为真命题,¬p 为假命题; 对于命题q :∀x ∈R ,e |x|≥1,因为|x|≥0,又函数y =e x 为单调递增函数,故e |x|≥e 0=1, 故命题q 为真命题,¬q 为假命题,所以p ∧q 为真命题,¬p ∧q 为假命题,p ∧¬q 为假命题,¬(p ∨q)为假命题,故选:A.先分别判断命题p和命题q的真假,然后由简单的复合命题的真假判断法则进行判断,即可得到答案.本题考查了命题真假的判断,解题的关键是掌握全称命题和存在性命题真假的判断方法,考查了逻辑推理能力,属于基础题.4.【答案】B【解析】解:因为f(x)=1−x1+x =−(x+1)+21+x=−1+2x+1,所以函数f(x)的对称中心为(−1,−1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x−1)+1,该函数的对称中心为(0,0),故函数y=f(x−1)+1为奇函数.故选:B.先根据函数f(x)的解析式,得到f(x)的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案.本题考查了函数奇偶性和函数的图象变换,解题的关键是确定f(x)的对称中心,考查了逻辑推理能力,属于基础题.5.【答案】D【解析】解:∵AD1//BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD−A1B1C1D1的棱长为2,则PB1=PC1=12√22+22=√2,BC1=√22+22=2√2,BP=√22+(√2)2=√6,∴cos∠PBC1=PB2+BC12−PC122×PB×BC1=6+8−22×√6×2√2=√32,∴∠PBC1=π6,∴直线PB与AD1所成的角为π6.故选:D.由AD1//BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.6.【答案】C【解析】解:5名志愿者选2个1组,有C 52种方法,然后4组进行全排列,有A 44种, 共有C 52A 44=240种,故选:C .5分先选2人一组,然后4组全排列即可.本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.7.【答案】B【解析】解:∵把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变, 再把所得曲线向右平移π3个单位长度,得到函数y =sin(x −π4)的图像, ∴把函数y =sin(x −π4)的图像,向左平移π3个单位长度, 得到y =sin(x +π3−π4)=sin(x +π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变, 可得f(x)=sin(12x +π12)的图像. 故选:B .由题意利用函数y =Asin(ωx +φ)的图像变换规律,得出结论. 本题主要考查函数y =Asin(ωx +φ)的图像变换规律,属基础题.8.【答案】B【解析】解:由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积=12×34×34=932, 1−932=2332. 故选:B .由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积,结合几何概型即可得出结论.本题考查了线性规划知识、三角形的面积、几何概型、对立事件的概率计算公式,考查了推理能力与计算能力,属于基础题.9.【答案】A【解析】解:DEAB =EHAH,FGBA=CGCA,故EHAH =CGCA,即EHAE+EH=CGAE+EG+GC,解得:AE=EH⋅EGCG−EH,AH=AE+EH,故:AB=DE⋅AHEH =DE(AE+EH)EH=DE⋅EGCG−EH+DE.故选:A.根据相似三角形的性质、比例的性质、直角三角形的边角关系即可得出.本题考查了相似三角形的性质、比例的性质、直角三角形的边角关系,考查了推理能力与计算能力,属于基础题.10.【答案】D【解析】解:令f(x)=0,解得x=a或x=b,即x=a及x=b是f(x)的两个零点,当a>0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a<b;当a<0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.分a>0及a<0,结合三次函数的性质及题意,通过图象发现a,b的大小关系,进而得出答案.本题考查三次函数的图象及性质,考查导数知识的运用,考查数形结合思想,属于中档题.11.【答案】C【解析】解:点B的坐标为(0,b),因为C上的任意一点P都满足|PB|≤2b,所以点P的轨迹可以看成以B为圆心,2b为半径的圆与椭圆至多只有一个交点,即{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,消去x,可得b2−a2 b2y2−2by+a2−3b2=0,∴△=4b2−4⋅b2−a2b2⋅(a2−3b2)≤0,整理可得4b4−4a2b2+a4≤0,即(a2−2b2)2≤0,解得a2=2b2,∴e=√1−b2a2=√22,故e的范围为(0,√22],故选:C.由题意可得{x2a2+y2b2=1x2+(y−b)2=4b2至多一个解,根据判别式即可得到a与b的关系式,再求出离心率的取值范围.本题考查了椭圆的方程和性质,考查了运算求解能力和转化与化归思想,属于中档题.12.【答案】B【解析】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,令√1+4 x=t,则1<t<√5∴x= t2−14,∴g(t)=2ln(t2+34)−t+1=2ln(t2+3)−t+1−2ln4,∴g′(t)=4tt2+3−1=4t−t2−3t2+3=−(t−1)(t−3)t2+3>0,∴g(t)在(1,√5)上单调递增,∴g(t)>g(1)=2ln4−1+2ln4=0,∴f(x)>0,∴a>c,同理令ℎ(x)=ln(1+2x)−(√1+4 x−1),再令√1+4 x=t,则1<t<√5∴x= t2−14,∴φ(t)=ln(t2+12)−t+1=ln(t2+1)−t+1−ln2,∴φ′(t)=2tt2+1−1=−(t−1)2t2+1<0,∴φ(t)在(1,√5)上单调递减,∴φ(t)<φ(1)=ln2−1+1−ln2=0,∴ℎ(x)<0,∴c>b,∴a>c>b.故选:B.构造函数f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,ℎ(x)=ln(1+2x)−(√1+4 x−1),利用导数和函数的单调性即可判断.本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题.13.【答案】4【解析】解:根据题意,双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则有√3=√m,解可得m=3,则双曲线的方程为x23−y2=1,则c=√3+1=2,其焦距2c=4;故答案为:4.根据题意,由双曲线的性质可得√3=√m,解可得m的值,即可得双曲线的标准方程,据此计算c的值,即可得答案.本题考查双曲线的几何性质,涉及双曲线的渐近线方程的分析,属于基础题.14.【答案】35【解析】解:因为向量a⃗=(1,3),b⃗ =(3,4),则a⃗−λb⃗ =(1−3λ,3−4λ),又(a⃗−λb⃗ )⊥b⃗ ,所以(a⃗−λb⃗ )⋅b⃗ =3(1−3λ)+4(3−4λ)=15−25λ=0,解得λ=35.故答案为:35.利用向量的坐标运算求得a⃗−λb⃗ =(1−3λ,3−4λ),再由(a⃗−λb⃗ )⊥b⃗ ,可得(a⃗−λb⃗ )⋅b⃗ =0,即可求解λ的值.本题主要考查数量积的坐标运算,向量垂直的充要条件,考查方程思想与运算求解能力,属于基础题.15.【答案】2√2【解析】解:∵△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,∴12acsinB=√3⇒12ac×√32=√3⇒ac=4⇒a2+c2=12,又cosB=a2+c2−b22ac ⇒12=12−b28⇒b=2√2,(负值舍)故答案为:2√2.由题意和三角形的面积公式以及余弦定理得关于b的方程,解方程可得.本题考查三角形的面积公式以及余弦定理的应用,属基础题.16.【答案】②⑤或③④【解析】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.17.【答案】解:(1)由题中的数据可得,x−=110×(9.8+10.3+10.0+10.2+9.9+9.8+ 10.0+10.1+10.2+9.7)=10,y−=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3,s12=110×[(9.8−10)2+(10.3−10)2+(10−10)2+(10.2−10)2+(9.9−10)2 +(9.8−10)2+(10−10)2+(10.1−10)2+(10.2−10)2+(9.7−10)2]=0.036;s22=110×[(10.1−10.3)2+(10.4−10.3)2+(10.1−10.3)2+(10.0−10.3)2+(10.1−10.3)2+(10.3−10.3)2+(10.6−10.3)2+(10.5−10.3)2+(10.4−10.3)2+(10.5−10.3)2]=0.04;(2)y−−x−=10.3−10=0.3,2√s12+s2210=2√0.036+0.0410=2√0.0076≈0.174,所以y−−x−>2√s12+s2210,故新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】(1)利用平均数和方差的计算公式进行计算即可;(2)比较y−−x−与2√s12+s2210的大小,即可判断得到答案.本题考查了样本特征数的计算,解题的关键是掌握平均数与方差的计算公式,考查了运算能力,属于基础题.18.【答案】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM⊥PD,又AM⊥PB,PB∩PD=P,PB,PD⊂平面PBD ,所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM ⊥BD , 所以∠ABD +∠DAM =90°,又∠DAM +∠MAB =90°, 则有∠ADB =∠MAB ,所以Rt △DAB∽Rt △ABM , 则ADAB =BABM ,所以12BC 2=1,解得BC =√2;(2)因为DA ,DC ,DP 两两垂直,故以点D 为坐标原点建立空间直角坐标系如图所示, 则A(√2,0,0),B(√2,1,0),M(√22,1,0),P(0,0,1),所以AP⃗⃗⃗⃗⃗ =(−√2,0,1),AM ⃗⃗⃗⃗⃗⃗ =(−√22,1,0),BM ⃗⃗⃗⃗⃗⃗ =(−√22,0,0),BP ⃗⃗⃗⃗⃗ =(−√2,−1,1), 设平面AMP 的法向量为n⃗ =(x,y,z), 则有{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−√2x +z =0−√22x +y =0, 令x =√2,则y =1,z =2,故n ⃗ =(√2,1,2), 设平面BMP 的法向量为m⃗⃗⃗ =(p,q,r), 则有{m ⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,即{−√22p =0−√2p −q +r =0, 令q =1,则r =1,故m ⃗⃗⃗ =(0,1,1), 所以|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ ||m ⃗⃗⃗ |=3√7×√2=3√1414, 设二面角A −PM −B 的平面角为α,则sinα=√1−cos 2α=√1−cos 2<n ⃗ ,m ⃗⃗⃗ >=√1−(3√1414)2=√7014,所以二面角A −PM −B 的正弦值为√7014.【解析】(1)连结BD ,利用线面垂直的性质定理证明AM ⊥PD ,从而可以证明AM ⊥平面PBD ,得到AM ⊥BD ,证明Rt △DAB∽Rt △ABM ,即可得到BC 的长度; (2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.19.【答案】解:(1)证明:当n =1时,b 1=S 1,由2b 1+1b 1=1,解得b 1=32,当n ≥2时,b nbn−1=S n ,代入2S n+1b n=2,消去S n ,可得2 b n−1b n+1b n=2,所以b b −b n−1=12,所以{b n }是以32为首项,12为公差的等差数列. (2)由题意,得a 1=S 1=b 1=32, 由(1),可得b n =32+(n −1)×12=n+22,由2S n+1b n=2,可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1= n+2n+1−n+1n=−1n(n+1),显然a 1不满足该式,所以a n ={32,n =1−1n(n+1),n ≥2.【解析】(1)由题意当n =1时,b 1=S 1,代入已知等式可得b 1的值,当n ≥2时,将b nb n−1=S n ,代入2S n+1b n=2,可得b b −b n−1=12,进一步得到数列{b n }是等差数列;(2)由a 1=S 1=b 1=32,可得b n =n+22,代入已知等式可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1=−1n(n+1),进一步得到数列{a n }的通项公式.本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.20.【答案】(1)解:由题意,f(x)的定义域为(−∞,a),令g(x)=xf(x),则g(x)=xln(a −x),x ∈(−∞,a), 则g′(x)=ln(a −x)+x ⋅−1a−x =ln(a −x)+−xa−x ,因为x =0是函数y =xf(x)的极值点,则有g′(x)=0,即lna =0,所以a =1, 当a =1时,g′(x)=ln(1−x)+−x1−x =ln(1−x)+−11−x +1,且g′(0)=0, 因为g′′(x)=−11−x +−1(1−x)2=x−2(1−x)2<0, 则g′(x)在(−∞,1)上单调递减, 所以当x ∈(−∞,a)时,g′(x)>0, 当x ∈(0,1)时,g′(x)<0,所以a =1时,x =0时函数y =xf(x)的一个极大值. 综上所述,a =1;(2)证明:由(1)可知,xf(x)=xln(1−x),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x∈(−∞,0)时,xln(1−x)<0,当x∈(0,1)时,xln(1−x)<0,所以需证明x+ln(1−x)>xln(1−x),即x+(1−x)ln(1−x)>0,令ℎ(x)=x+(1−x)ln(1−x),则ℎ′(x)=(1−x)⋅−11−x+1−ln(1−x),所以ℎ′(0)=0,当x∈(−∞,0)时,ℎ′(x)<0,当x∈(0,1)时,ℎ′(x)>0,所以x=0为ℎ(x)的极小值点,所以ℎ(x)>ℎ(0)=0,即x+ln(1−x)>xln(1−x),故x+ln(1−x)xln(1−x)<1,所以x+f(x)xf(x)<1.【解析】(1)确定函数f(x)的定义域,令g(x)=xf(x),由极值的定义得到g′(x)=0,求出a的值,然后进行证明,即可得到a的值;(2)将问题转化为证明x+ln(1−x)xln(1−x)<1,进一步转化为证明x+ln(1−x)>xln(1−x),令ℎ(x)=x+(1−x)ln(1−x),利用导数研究ℎ(x)的单调性,证明ℎ(x)>ℎ(0),即可证明.本题考查了导数的综合应用,主要考查了利用导数研究函数的极值问题,利用导数证明不等式问题,此类问题经常构造函数,转化为证明函数的取值范围问题,考查了逻辑推理能力与化简运算能力,属于难题.21.【答案】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2−4ky−4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=−4b,∴P(2k,−b),∵|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√16k 2+16b ,d p→AB =2√k 2+1,∴S △PAB =12|AB|d =4(k 2+b)32①,又点P(2k,−b)在圆M :x 2+(y +4)2=1上,故k 2=1−(b−4)24,代入①得,S △PAB =4(−b 2+12b−154)32,而y p =−b ∈[−5,−3],∴当b =5时,(S △PAB )max =20√5.【解析】(1)由点F 到圆M 上的点最小值为4建立关于p 的方程,解出即可; (2)对y =14x 2求导,由导数的几何意义可得出直线PA 及PB 的方程,进而得到点P 的坐标,再将AB 的方程与抛物线方程联立,可得P(2k,−b),|AB|以及点P 到直线AB 的距离,进而表示出△PAB 的面积,再求出其最小值即可.本题考查圆锥曲线的综合运用,考查直线与抛物线的位置关系,考查运算求解能力,属于中档题.22.【答案】解:(1)⊙C 的圆心为C(2,1),半径为1,则⊙C 的标准方程为(x −2)2+(y −1)2=1, ⊙C 的一个参数方程为{x =2+cosθy =1+sinθ(θ为参数).(2)由题意可知两条切线方程斜率存在,设切线方程为y −1=k(x −4),即kx −y −4k +1=0, 圆心C(2,1)到切线的距离d =√k 2+1=1,解得k =±√33,所以切线方程为y =±√33(x −4)+1,因为x =ρcosθ,y =ρsinθ,所以这两条切线的极坐标方程为ρsinθ=±√33(ρcosθ−4)+1.【解析】(1)求出⊙C 的标准方程,即可求得⊙C 的参数方程;(2)求出直角坐标系中的切线方程,再由x =ρcosθ,y =ρsinθ即可求解这两条切线的极坐标方程.本题主要考查圆的参数方程,普通方程与极坐标方程的转化,考查运算求解能力,属于基础题.23.【答案】解:(1)当a=1时,f(x)=|x−1|+|x+3|={−2x−2,x≤−3 4,−3<x<12x+2,x≥1,∵f(x)≥6,∴{x≤−3−2x−2≥6或{−3<x<1 4≥6或{x≥12x+2≥6,∴x≤−4或x≥2,∴不等式的解集为(−∞,−4]∪[2,+∞).(2)f(x)=|x−a|+|x+3|≥|x−a−x−3|=|a+3|,若f(x)>−a,则|a+3|>−a,两边平方可得a2+6a+9>a2,解得a>−32,即a的取值范围是(−32,+∞).【解析】(1)将a=1代入f(x)中,根据f(x)≥6,利用零点分段法解不等式即可;(2)利用绝对值三角不等式可得f(x)≥|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围.本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.。
2023年高考全国甲卷数学(理)真题

年普通高等学校招生全国统一考试(全国甲卷)2023理科数学一、选择题1. 设集合{31,},{32,}A xx k k Z B x x k k Z ∣∣,U 为整数集,()A B U ð( ) A. {|3,}x x k k ZB. {31,}x x k k Z ∣ C {32,}x x k k Z ∣D. 2. 若复数 i 1i 2,R a a a ,则 a ( )A. -1B. 0 ·C. 1D. 23. 执行下面的程序框遇,输出的B ( )A. 21B. 34C. 55D. 894.向量||||1,||a b c 0a b c ,则cos ,a c b c ( )A 15 B. 25 C. 25 D. 455. 已知正项等比数列 n a 中,11,n a S 为 n a 前n 项和,5354S S ,则4S ( )A. 7B. 9C. 15D. 306. 有60人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A. 0.8B. 0.4C. 0.2D. 0.1..7. “22sin sin 1 ”是“sin cos 0 ”的( )A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充要条件D. 既不是充分条件也不是必要条件 8. 已知双曲线22221(0,0)x y a b a b22(2)(3)1x y 交于A ,B 两点,则||AB ( ) A. 15B.C.D. 59. 有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务选择种数为( )A. 120B. 60C. 40D. 3010. 已知 f x 为函数πcos 26y x向左平移π6个单位所得函数,则 y f x 与1122y x 的交点个数为( )A. 1B. 2C. 3D. 411. 在四棱锥P ABCD 中,底面ABCD 为正方形,4,3,45AB PC PD PCA ,则PBC 的面积为( )A.B.C.D. 12. 己知椭圆22196x y ,12,F F 两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ,则||PO ( ) A. 25B. 2C. 35D. 2二、填空题13. 若2π(1)sin 2y x ax x为偶函数,则 a ________. 14. 设x ,y 满足约束条件2333231x y x y x y,设32z x y ,则z 的最大值为____________. 15. 在正方体1111ABCD A B C D 中,E ,F 分别为CD ,11A B 的中点,则以EF 为直径的球面与正方体每条的为棱的交点总数为____________.16. 在ABC 中,2AB ,60,BAC BCD 为BC 上一点,AD 为BAC 的平分线,则AD_________. 三、解答题17. 已知数列 n a 中,21a ,设n S 为 n a 前n 项和,2n n S na .(1)求 n a 的通项公式;(2)求数列12n n a的前n 项和n T . 18. 在三棱柱111ABC A B C -中,12AA ,1A C 底面ABC ,90ACB ,1A 到平面11BCC B 的距离为1.(1)求证:1AC AC ;(2)若直线1AA 与1BB 距离为2,求1AB 与平面11BCC B 所成角的正弦值.19. 为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X ,求X 的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g ):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.214.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i )求40只小鼠体重的中位数m ,并完成下面2×2列联表:(ii )根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用. 参考数据:20. 已知直线210x y 与抛物线2:2(0)C y px p 交于,A B 两点,且||AB . (1)求p ;(2)设C 的焦点为F ,M ,N 为C 上两点,0MF NF ,求MNF 面积的最小值. 21. 已知3sin π(),0,cos 2x f x ax x x(1)若8a ,讨论()f x 的单调性;(2)若()sin 2f x x 恒成立,求a 的取值范围.四、选做题22. 已知(2,1)P ,直线2cos :1sin x t l y t(t 为参数), 为l 倾斜角,l 与x 轴,y 轴正半轴交于A ,B 两点,||||4PA PB .(1)求 的值;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.23. 已知()2||, 0 f x x a a a .(1)求不等式 f x x 的解集;(2)若曲线 y f x 与x 轴所围成的图形的面积为2,求a .的2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D【9题答案】【答案】B【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】B二、填空题【13题答案】【答案】2【14题答案】【答案】15【15题答案】【答案】12【16题答案】【答案】2三、解答题【17题答案】【答案】(1)1n a n(2) 1222n n T n【18题答案】【答案】(1)证明见解析(2)13【19题答案】【答案】(1)分布列见解析,()1E X (2)(i )23.4m ;列联表见解析,(ii )能【20题答案】【答案】(1)2p(2)12 【21题答案】【答案】(1)答案见解析.(2)(,3]四、选做题【22题答案】【答案】(1)3π4(2)cos sin 30 【23题答案】【答案】(1),33aa(2)3第8页/共8页。
2010年高考数学全国卷Ⅱ理科第18题的解法研究

- l-l i m
=
31 k+
3+ 3
]
)
= ‘J“ 卜r ‘ J + l等 j i I a r
一
=
2
>3 .
一__ 。
即/ / , :k+1 ,不等式也成立. 时
【 点评】运用 %= 一 一
收稿 日期 :2 1 - 1 1 0 1O— 8
∈N . )
所 蚤=m L+,3 = . 以 ∞n l / 。 — 1 “ 3 i , ‘
【 点评】运用 Ⅱ= 。 及 %= 一 一 /≥ 2 ∈ I 。 S:6 。( / ,n N)求 ,
出数 列{ } 的通项公 式,再计 算1 .虽然 “ i m 解题长 度” 比解
, 3 ,n
21 0 0年高考数学全 国卷 Ⅱ理科第 l 8题如下 : 已知数列 { } 的前 /项 和 S =( 2 )・ / , n +n 3.
( ) i 1 求l m ;
法 1稍长一 点,但笔者 认为这种 解法较 为贴近 大 多数 学生 的解
题水平.
( 证 : 争+. > 2 明 争+ .+ 3 ) ’ ・
本题 短小精 悍 ,简明扼要 ,易 于读题 ,重点考查 数列 与极 限 、数 列与不等式 的综合 知识 ,特别第 ( ) 2 问证法 的多样性 ,彰 显高考命题 以 “ 能力立意”的宗 旨.因此 ,笔 者对 本题 进行解法 研究 ,仅供 参考 .
一
二 、第( 问的证法 2)
证法 1( 数学归纳法 : 当n 1 鲁 =q 6 3 不 )① = 时, O: > . ,
所 以 S一=[n一1 /一1 ]・ 。 ( )+(, ) 3一 1
=
( 一 )・ n ≥ 2 3一 ( ,n∈N., )
高考全国卷数学理科试题及答案详解

2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
2022年全国甲卷数学(理科)高考真题+答案解析

2022年普通高等学校招生全国统一考试(全国甲卷)理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则( )A . B .C .D .2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于B.讲座后问卷答题的正确率的平均数大于C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.设全集,集合,则()1z =-+1zzz =-1-+1-13-+13-70%85%{2,1,0,1,2,3}U =--{}2{1,2},430A B x x x =-=-+=∣()U A B = ðA .B .C .D .4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A .8B .12C .16D .205.函数在区间的图像大致为( )A . B .C .D .6.当时,函数取得最大值,则( )A .B . C. D .17.在长方体中,已知与平面和平面所成的角均为,则( )A .B .AB 与平面所成的角为C .D .与平面所成的角为8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在上,.“会圆术”给出的弧长的近似值s 的计算公式:.当时,( ){1,3}{0,3}{2,1}-{2,0}-()33cos x xy x -=-ππ,22⎡⎤-⎢⎥⎣⎦1x =()ln bf x a x x=+2-(2)f '=1-12-121111ABCD A B C D -1B D ABCD 11AA B B 30︒2AB AD =11AB C D 30︒1AC CB =1B D 11BB C C 45︒»AB »AB CD AB ⊥»AB 2CD s AB OA=+2,60OA AOB =∠=︒s =ABCD9.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )AB .CD10.椭圆的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线的斜率之积为,则C 的离心率为( )ABC .D .11.设函数在区间恰有三个极值点、两个零点,则的取值范围是( )A . B . C . D . 12.已知,则( )A . B . C .D .二、填空题:本题共4小题,每小题5分,共20分。
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学【含答案】

A.24B.264.已知e()e1xaxxf x=-是偶函数,则A.2-B.1-5.设O为平面坐标系的坐标原点,在区域为A,则直线OA的倾斜角不大于π4(1)证明://EF平面ADO;(2)证明:平面ADO⊥平面BEF(3)求二面角D AO C--的正弦值20.已知椭圆2222:1( Cbxaa y+=(1)求C的方程;6.D【分析】根据题意分别求出其周期,【详解】因为()sin()f x x ωϕ=+在区间30ABO = ∠,3,232OC AB BC ===显然,,CE DE E CE DE ⋂=因此平面CDE ⊥平面ABC 直线CD ⊂平面CDE ,则直线从而DCE ∠为直线CD 与平面由余弦定理得:当点,A D 位于直线PO 同侧时,设则:PA PD ⋅ =||||cos PA PD α⎛⋅ ⎝12cos cos 4παα⎛⎫=⨯- ⎪⎝⎭22⎛15.2-【分析】根据等比数列公式对24536a a a a a =化简得得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则245a a a 则24a q =,即321a q q =,则11a q =,因为910a a=2于是1//,,/2DE AB DE AB OF=平行四边形,//,EF DO EF DO=,又EF⊄所以//EF平面ADO.(2)法一:由(1)可知//EF(3)法一:过点O 作//OH BF 交由AO BF ⊥,得HO AO ⊥,且FH 又由(2)知,OD AO ⊥,则DOH ∠因为,D E 分别为,PB PA 的中点,因此即有11,33DG AD GE BE ==,又FH法二:平面ADO 的法向量为n平面ACO 的法向量为(30,0,1n = 所以131313cos ,1n n n n n n ⋅==+⋅因为[]13,0,πn n ∈ ,所以sin n【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.(1)()ln 2ln 2x y +-(2)存在11,22a b ==-满足题意,理由见解析1⎛⎫-;23.(1)[2,2](2)8.【分析】(1)分段去绝对值符号求解不等式作答(2)作出不等式组表示的平面区域,再求出面积作答3⎧由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -所以ABC 的面积1|2ABC S =。
专题13 概率统计解答题-【2023高考必备】2013-2022十年全国高考数学真题分类汇编

(2)若甲药、乙药在试验开始时都赋予4分, 表示“甲药的累计得分为 时,最终认为甲药比乙药更有效”的概率,则 ( ),
其中 , , .假设 , .
(i)证明: 为等比数列;
(ii)求 ,并根据 的值解释这种试验方案的合理性.
17.(2018年高考数学课标Ⅲ卷(理)·第18题)(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种生产方式,为比较两咱生产方式的效率,选取 名工人,将他们随机分成两组,每组 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位: )绘制了如下茎叶图:
附:相关系数r= , ≈1.414.
13.(2020年高考数学课标Ⅲ卷理科·第18题)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
第一种生产方式
第二种生产方式
8
6
5
5
6
8
9
9
7
6
2
7
0
1
2
2
3
4
5
6
6
8
9
8
7
7
6
5
4
3
3
2
8
1
4
4
5
2
1
1
0
0
9
0
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●
如图,面积为S的正方形ABCD中有一个不规则的图形M,可按下面方法估计M 的面积:在正方形ABCD中随机投掷n个点,若n个点中有m个点落入M中,则
M的面积的估计值为m
S
n
,假设正方形ABCD的边长为2,M的面积为1,并
向正方形ABCD中随机投掷10000个点,以X 表示落入M中的点的数目.
(I)求X的均值EX;
(II)求用以上方法估计M的面积时,M的面积的估计值与实际值之差在区间(0.03)
-0.03
,内的概率.
附表:
10000
10000
()0.250.75
k
t t t t
P k C-
=
=⨯⨯
∑
k2424242525742575
()
P k0.04030.04230.95700.9590
●
某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.
(1)求的分布列;
(2)若要求,确定的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:,
1/ 4
●
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()
2,N μσ.
(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在
()3,3μσμσ-+之外的零件数,求()1P X ≥及X 的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在()3,3μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91
10.13
10.02
9.22
10.04
10.05
9.95
经
计
算
得
16
1
19.97
16i i x x ===∑,
()1616222
11
11(16)0.2121616i i
i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸, 1,2,,16i =⋅⋅⋅.
用样本平均数x 作为μ的估计值ˆμ
,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除()3,ˆˆˆ3ˆμ
σμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量
Z
服从正态分布
()
2
,N μσ,则
(33)0.9974P Z μσμσ-<<+=,160.99740.9592=, 0.0080.09≈.
●
18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。
参考数据:
,
,
,≈2.646.
参考公式:相关系数
回归方程
中斜率和截距的最小二乘估计公式分别为:
3/ 4
D C
M
B。