(完整word版)山东省高中数学(新课标人教A版)必修三《第3章概率》高考真题
山东省高中数学(新课标人教A版)必修三《3.1.1 随机事件的概率》教案

第三章概率3.1 随机事件的概率3.1.1 随机事件的概率教学目标:1.通过在抛硬币等试验获取数据,了解随机事件、必然事件、不可能事件的概念.2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.教学重点:理解随机事件发生的不确定性和频率的稳定性.教学难点:理解频率与概率的关系.教学方法:讲授法课时安排1课时教学过程一、导入新课:在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.(故事略)在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.二、新课讲解:1、提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.注:以上3问初中已经学习了.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?观察:(1)掷一枚硬币,出现正面;(2)某人射击一次,中靶;(3)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.2、活动做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法 具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表:姓名 试验次数 正面朝上总次数 正面朝上的比例思考:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步 由组长把本小组同学的试验结果统计一下,填入下表.组次 试验总次数 正面朝上总次数 正面朝上的比例思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步 把全班实验结果收集起来,也用条形图表示.思考:这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.思考:如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A 为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数A n 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.三、课堂练习:教材113页练习:1、2、3四、课堂小结:本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A 的概率),这个常数越接近于1,事件A 发生的概率就越大,也就是事件A 发生的可能性就越大.反之,概率越接近于0,事件A 发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.五、课后作业:全优设计板书设计:教学反思:。
最新高中数学(人教版A版必修三)配套课件:3.1.1随机事件的概率

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( B )
A.必然事件
B.随机事件
C.不可能事件
D.无法确定
解析 正面向上恰有5次的事件可能发生,也可能不发生,即该事件为
随机事件.
解析答案
1 2345
2.下列说法正确的是( C ) A.任一事件的概率总在(0,1)内 B.不可能事件的概率不一定为0 C.必然事件的概率一定为1 D.以上均不对 解析 任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的 概率为1.
事件A出现的次数nA
答案
知识点三 概率 思考 一枚质地均匀的硬币,抛掷10次,100次,1 000次,正面向上的频 率与0.5相比,有什么变化? 答案 随着抛掷的次数增加,正面向上的次数与总次数之比会逐渐接近
0.5. (1)含义:概率是度量随机事件发生的可能性大小 的量. (2)与频率联系:对于给定的随机事件A,事件A发生的 频率fn(A) 随着试验 次数的增加稳定于 概率P(A) ,因此可以用 频率fn(A) 来估计 概率P(A) .
解析答案
类型三 用频率估计概率
例3 李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这
门课3年来的考试成绩分布: 经济学院一年级的学生王小慧下 学期将选修李老师的高等数学课, 用已有的信息估计她得以下分数 的概率(结果保留到小数点后三位). (1)90分以上;(2)60分~69分; (3)60分以上.
成绩 90分以上 80分~89分 70分~79分 60分~69分 50分~59分 50分以下
人数 43 182 260 90 62 8
反思与感悟
解析答案
跟踪训练3 某射手在同一条件下进行射击,结果如下表所示:
人教版高中数学必修三第三章概率选修2-3概率-高考题(3)

选修2-3概率-高考题 (3)一、选择题1.下列说法中,正确的是A .不可能事件发生的概率为B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【答案】A【逐步提示】本题考查了概率的意义和事件发生的概率,根据概率的意义和事件发生的概率,依次判断各个选项是否正确.【详细解答】解: A.不可能事件发生的概率为0,所以A 选项正确;B.随机事件发生的概率在0与1之间,所以B 选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C 选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D 选项错误,故选择 A. 【解后反思】概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为P (A )=p ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P (A )=1;不可能发生事件的概率P (A )=0.【关键词】不可能事件;随机事件;概率的意义;2.(2016甘肃省天水市,3,4分)下列事件中,必然事件是()A .抛掷1枚骰子,出现6点向上B .两条直线被第三条直线所截,同位角相等C .366人中至少有2个人的生日相同D .实数的绝对值是非负数【答案】D【逐步提示】本题考查事件的分类,解题的关键是认识到在一定条件下,有些事件必然会发生,这样的事件称为必然事件;在一定条件下,可能发生也可能不发生的事件称为随机事件,只有分清各种事件才能做出正确的判断.【详细解答】解:抛掷1枚骰子,可能出现6点向上,也可能出现其它点数向上,所以A 中事件是随机事件.只有两条平行直线被第三条直线所截,同位角才一定相等,所以B 中事件是随机事件.由于闰年有366天,有可能出现这366人的生日一人占一天的情况,所以C 中事件不是必然事件.对于D ,由于正实数的绝对值是正数,0的绝对值是0,负实数的绝对值是正数,所以实数的绝对值一定是非负数,属于必然事件.故选择D .【解后反思】对于B 中事件,由于阅读不细致、认真,易受思维定势的影响误认为是两条平行直线被第三条直线所截,从而认定同位角必定相等而错误地判断为必然事件.另外,本题难点在于对C 中事件的认识,可以按照“一个萝卜一个坑”的现实原理加强理解.【关键词】必然事件;随机事件.3.(2016广东省广州市,4,3分)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是()A .101B .91C .31D .21【答案】A【逐步提示】所设密码最后那个数字是0-9这十个数字中的一个,即共有10种可能,密码数字只有1种,据此可根据概率的计算公式求解结果.【详细解答】解:根据题意可知,密码锁所设密码的最后那个数字是0-9这十个数字中的一个,因此,一次就能打开该密码锁的概率是101,故选择A .【解后反思】(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,事件A包含其中的m 种结果,那么事件A 发生的概率nm A P )(.(2)求较复杂随机事件的概率时,常用画树状图或列表法不重不漏地列出所有等可能结果.【关键词】概率的计算公式4.(2016广东茂名,4,3分)下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片【答案】B【逐步提示】本题考查了必然事件的概念,解题的关键是正确区分必然事件与不可能事件、随机事件.事先能肯定它一定会发生的事件称为必然事件.事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.而不确定事件(即随机事件)是在一定条件下,可能发生也可能不发生的事件.【详细解答】解:三角形是由三条不在同一直线上的线段首尾顺次相接组成的,两条线段不能组成一个三角形,选项A中的事件属于不可能事件;一年有365天或366天,由于400>365,400>366,因此400人中必有两个人的生日在同一天,选项B中的事件属于必然事件;根据自然规律,早上的太阳从东方升起,选项C中的事件属于不可能事件;打开电视机,它不一定正在播放动画片,选项D中的事件属于随机事件. 故选择 B .【解后反思】事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.【关键词】不可能事件;必然事件;随机事件5.(2016湖北宜昌,6,3分)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组【答案】D【逐步提示】本题考查了用频率估计概率,解题的关键是根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详细解答】解:甲组实验了10次,乙组实验了50次,丙组实验了100次,丁组实验了200次,实验次数多的频率往往接近事件发生的概率,故选择 D .【解后反思】在一次试验中,若共有n次等可能的结果,其中事件A包含m个等可能的结果,则事件A的概率为P(A)=mn.随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.为了说明这种规律,我们把这个常数称为这个随机事件的概率.它从数量上反映了随机事件发生的可能性的大小,而频率在大量重复试验的前提下可近似地作为这个事件的概率.【关键词】概率公式;用频率估计概率6(2016湖南常德,5,3分)下列说法正确的是A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机取出一个球,一定是红球.B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨.C.某地发行一种福利彩票,中奖概率是千分之一.那么,买这种彩票1000张,一定会中奖.D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上.【答案】D【逐步提示】本题考查的是概率的含义.概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能.【详细解答】解:选项A、“取到红球”是随机事件,且可能性较大,但不是必然事件,所以从中随机取出一个球,不一定是红球,所以A选项错误;选项B、“明天降水概率10%”,是指下雨的可能性为10%,而不是10%的时间会下雨,所以B选项错误;选项C、“中奖概率是千分之一”是指这批彩票总体平均每1000张有一张中奖,而不是买这种彩票1000张,一定会中奖,所以C选项错误;选项D、“投掷一枚质地均匀的硬币正面朝上”是随机事件,所以第六次仍然可能正面朝上,所以D选项正确.故选D.【解后反思】事件分为确定事件和不确定事件,确定事件分为必然事件和不可能事件;也就是说一定发生的事件是必然事件,一定不会发生的事件是不可能事件;可能发生,也可能不发生的事件是不确定事件;必然事件发生的概率是1,不可能发生的事件发生的概率是0,不确定事件发生的概率大于零小于1,偶然事件0到1之间【关键词】概率的含义;随机事件;7.(2016湖南湘西,15,4分)在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其它差别,从这个袋子中随机摸出一个球,摸到红球的概率为A .43B .41C .21D .1【答案】A【逐步提示】本题考查了概率的定义,熟悉定义是解题的关键.口袋中共8个球,其中有6个红球,根据概率定义解题即可.【详细解答】解:P(摸到红球)=86=43,故答案为43.故选择 A .【解后反思】一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A 发生的概率计算公式为P(A)=A 事件可能发生的结果数所有等可能结果的总数.【关键词】摸球;简单事件的概率二、填空题1.(2016福建福州,15,4分)已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选取一个点,在反比例函数y =x1图象上的概率是.【答案】12【逐步提示】本题考查了概率的计算和反比例函数的性质,解题的关键是掌握等可能事件概率的计算公式.先判断四个点的坐标是否在反比例函数y =x1图象上,再用在反比例函数y =x1图象上点的个数除以点的总数即为在反比例函数y =x1图象上的概率.【详细解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y =x1图象上,∴在反比例函数y =x1图象上的概率是2÷4=12,故答案为12.【解后反思】此类问题容易出错的地方是不能正确判断所关注事件可能出现的结果数,以及所有等可能出现的结果数.等可能性事件的概率的计算公式:P(A)=n m,其中m 是总的结果数,n 是该事件成立包含的结果数.【关键词】反比函数的图像;概率的计算公式;2.(2016贵州省毕节市,18,5分)掷两枚质地均匀的骰子,其点数之和大于10的概率为_________.【答案】112【逐步提示】本题考查了求简单随机事件的概率,解题的关键掌握用列表法或画树状图的方法进行计算.本题用列表法更方便,表中也可只用两种符号来表示点数之和大于10和不大于10,这样能一目了然,不易出错.【详细解答】解:设点数之和小于或等于10用○表示,大于10用√表示不,列表如下:1 2 3 4 5 6 1 ○○○○○○2 ○○○○○○3 ○○○○○○4 ○○○○○○5 ○○○○○√6○○○○√√由表可知,掷两枚骰子,共有36种等可能的情况出现,其中点数之和大于10的结果共有3种,所以P (点数之和大于10)=336=112,故答案为112.【解后反思】此类问题的易错点是没有列表或画树状图,只凭想象列举出所有可能的结果,造成丢掉一些情况,如把(1,2)和(2,1)当作一种情况,从而致错.【关键词】求概率的方法;3.(2016河南省,12,3分)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________.【答案】41【逐步提示】本题考查的是用列表法或画树状图法求概率,解题的关键是合理选择方法求概率.思路:选择树状图或列表法解题,通过分析看出,小明和小亮任意分在各组的可能情况为16种,两次抽出卡片所标数字不同占4种,则利用公式可求出事件的概率.【详细解答】解:列表得:设分A 、B 、C 、D 四个组AB C D A (A ,A )(A ,B )(A ,C )(A ,D )B (B ,A )(B ,B )(B ,C )(B ,D )C (C ,A )(C ,B )(C ,C )(C ,D )D(D ,A )(D ,B )(D ,C )(D ,D )所有等可能的情况有16种,其中小明和小亮分在同一组的情况有4种,则P=41164,故答案为41.【解后反思】此类问题容易出错的地方是抽象不出基本概型,事件发生的可能情况列举不出来.一般方法规律是用数值来刻画事件发生的可能性大小,这个数值就是概率.一般地,如果一个实验有n 个等可能的结果,而事件A 包含其中m 个结果,我们可计算概率P(A)=m n=A 事件包含的可能结果数所有可能结果数.运用列举法(包括列表、画树状图)计算简单事件发生的概率的能力,有利于提高学生的数学意识、应用数学的能力和数学素养.【关键词】求概率方法——树状图法和列表法4.(2016湖南省郴州市,13,3分)同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.【答案】14【逐步提示】本题考查的是概率问题,解题的关键是弄清事件发生的所有可能的情况,然后看事件发生的概率.抛两枚硬币有四种情况:即(正正)(正反)(反反)(反正),然后判断两个反面朝上的概率就可以了.【详细解答】解:设两枚硬币分别为甲、乙:共有四种结果:(正正)(正反)(反正)(反反)∴14P 两个反面朝上=.反面硬币甲硬币乙开始正面反面正面正面反面【解后反思】此类问题容易出错的地方是列举所有可能性事件时重复或遗漏.(1)运用公式P(A)=nm 求简单事件发生的概率,在确定各种事件等可能性的基础上,关键是求事件所有可能的结果种数n 和使事件A 发生的结果种数m.(2)求简单随机事件的概率有两种方法.①在做了大量试验的基础上,可以用频率的近似地估计概率;②可以用列表或画树状图,列举出所有可能事件,再求概率.(3)列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.【关键词】概率;树状图;.6(2016湖南省怀化市,14,4分)一个不透明的袋子,装了除颜色不同,其它没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是______________.【答案】716【逐步提示】在等可能的条件下,袋共有球3+4+7+2=16个,其中黑色球7个,从袋子中随机摸出一个球,摸到黑色球的概率是黑色球数:总球数.【详细解答】解:P黑色球=73472=716,故答案为716.【解后反思】此题考查概率,难度不大,解题的关键是掌握概率的计算公式.【关键词】概率的计算公式7.(2016湖南省湘潭市,12,3分)从2015年12月26日起,一艘载满湘潭历史和文化的“航船——湘潭市规划展示馆、博物馆和党史馆(以下简称‘三馆’)”正式起航,市民可以免费到三馆参观.听说这个好消息,小张同学准备星期天去参观其中一个馆,假设参观者选择每一个馆参观的机会均等,则小张同学选择参观博物馆的概率为.【答案】13【逐步提示】本题考查了概率的计算,解题的关键是知道某事件发生的概率等于该事件出现的可能次数与所有可能次数之间的比.因此先确定参观博物馆的可能次数和参观三个馆总数,再根据概率公式计算即可.【详细解答】解:∵共有3个馆,参观博物馆的可能性为1,∴小张同学选择参观博物馆的概率为13,故答案为13.【解后反思】掌握此类问题,需熟练掌握以下知识:(1)公式法:P(A)=nm,其中n 为所有事件的总数,m 为事件A 发生的总次数;(2)列举(列表或画树状图)法的一般步骤为:①判断使用列表或画树状图方法:列表法一般适用于两步计算;画树状图法适合于两步及两步以上求概率;②不重不漏的列举出所有事件出现的可能结果,并判定每种事件发生的可能性是否相等;③确定所有可能出现的结果数n 及所求事件A 出现的结果m ;④用公式P(A)=nm ,求事件A 发生的概率.【关键词】概率初步8.(2016年湖南省湘潭市,12,3分)从2015年12月26日起,一艘载满湘潭历史和文化的“航船——湘潭市规划展示馆、博物馆和党史馆(以下简称‘三馆’)”正式起航,市民可以免费到三馆参观。
(完整版)高中数学第三章第1节随机事件的概率(理)知识精讲人教新课标A版必修3

选项 B ,由于射击 10 次,中 8 次,能说明击中靶心的概率为 0.8,选项 B 的说法正确。
选项 C,由直线方程我们可以知道这是直线的点斜式方程,过定点(- 观的事实,因此是必然事件。故选项 C 的说法正确。
1, 0),这是客
选项 D ,根据先后抛掷两枚硬币,共出现四种情况:两面都正,两面都反,一个正面一
用心 爱心 专心
射击次数 n
10
20
50
100
200
500
击中靶心次数 m
8
19
44
92
178
455
m
击中靶心的频率
n
( 1)填写表中击中靶心的频率;
( 2)这个射手射击一次,击中靶心的概率约是多少?
【思路分析】
题意分析: 本题考查事件的频率这一基本概念,及频率与概率的关系的运用。
解题思路: 事件 A 出现的频数 nA 与试验次数 n 的比值即为事件 A 的频率,当事件 A
个反面, 一个反面一个正面, 那么出现两枚硬币都是反面的概率为 故答案为 D 。
1/4。选项 D 的说法错误。
【题后思考】 通过这几个选项, 我们充分认识到概率的基本概念及其性质的重要性,
因
此要熟练理解和掌握这些概念和性质。
例 6: 下列说法:( 1)频率反映的是事件发生的频繁程度,概率反映的是事件发生的可能
性的大小;( 2)做 n 次随机试验,事件 A 发生的频率 m 就是事件的概率; ( 3)百分率是频 n
率,但不是概率; (4)频率是不能脱离具体的 n 次试验的实验值,而概率是具有确定性的不
依赖于试验次数的理论值; ( 5)频率是概率的近似值,概率是频率的稳定值。 其中正确的是
高中数学(人教A版必修三)备课资料:第3章+第1节+随机

例2 盒中装有4个白球5个黑球,从中任意的 取出一个球。
(1)“取出的是黄球”是什么事件?概率是多
少?
是不可能事件,概率是0
(2)“取出的是白球”是什么事件?概率是多
少?
是随机事件,概率是4/9
(3)“取出的是白球或者是黑球”是什么事件? 概率是多少?
是必然事件,概率是1
例3 某射击手在同一条件下进行射击,结果如下表所示:
射击次数n
10 20 50 100 200 500
击中靶心次数m 8 19 44 92 178 455
击中靶心的频率 0.80 0.95 0.88 0.92 0.89 0.91
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是什么?
解(2)由于频率稳定在常数0.90,所以这个射 手射击一次,击中靶心的概率约是0.90。
两人各买1张彩票,均中奖
事件的表示:以后我们用A、B、C等大写字母表示随 机事件和确定事件,简称事件.
例1.判断哪些事件是随机事件,哪些是必然事件, 哪些是不可能事件?
事件A:抛一颗骰子两次,向上的面的数字之和
大于12.
不可能事件
事件B:抛一石块,下落
必然事件
事件C:打开电视机,正在播放新闻 随机事件
注意点:
1.随机事件A的概率范围
必然事件与不可能事件可看作随机事件的两种特殊情况.
因此,随机事件发生的概率都满足:0≤P(A)≤1
2.频率与概率的关系
(1)联系:随着试验次数的增加, 频率会在概率 的附近摆动,并趋于稳定. 在实际问题中,若事件的概率未知,常 用频率作为它的估计值.
(2)区别: 频率本身是随机的,在试验前不能确 定,做同样次数或不同次数的重复试 验得到的事件的频率都可能不同. 而概率是一个确定数,是客观存在的, 与每次试验无关.
(完整word版)高中数学新教材人教版目录

高中数学目录必修一第一章1.1 会合与会合的表示方法1.1.1 会合的观点1.1.2 会合的表示方法第二章2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单一性2.1.4 函数的奇偶性2.1.5 用计算机作函数图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质与图像2.2.2 二次函数的性质与图像2.3 函数的应用( 1)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.4 函数的应用( 2)必修二第一章立体几何初步1.1 空间几何体1.1.1 组成空间几何体的基本元素1.1.2 棱柱棱锥棱台的构造特点1.1.3 圆柱圆锥圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱棱锥棱台和球的表面积1.1.7 柱锥台和球的体积1.2 点线面之间的地点关系1.2.1 平面的基天性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面分析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的观点与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的地点关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的地点关系2.3.4 圆与圆的地点关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点距离公式必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的观点1.1.2 程序框图1.1.3 算法的三种基本逻辑构造和框图表示1.2 基本算法语句1.2.1 赋值输入输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法事例第二章统计2.1 随机抽样2.1.1 简单的随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的采集2.2 用样本预计整体2.2.1 用样本的频次散布预计整体的散布2.2.2 用样本的数字特点预计整体的数字特点2.3 变量的有关性2.3.1 变量间的互相关系2.3.2 两个变量的线性有关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本领件空间3.1.3 频次与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用必修四第一章基本的初等函数(2)1.1 随意角的观点与弧度制1.1.1 角的观点的推行1.1.2 弧度制和弧度制与角度制的换算1.2 随意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 引诱公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的观点2.1.2 向量的加法2.1.3 向量的减法2.1.4 数乘向量2.1.5 向量共线的条件和轴上向量坐标运算2.2 向量的分解和向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数目积2.3.1 向量数目积的物理背景与定义2.3.2 向量数目积的运算律2.3.3 向量数目积的坐标运算与胸怀公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦余弦和正切3.3 三角函数的积化和差与和差化积必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n 项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实质应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面地区3.5.2 简单线性规划选修 2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联络词1.2.1 且与或1.2.2 非(否认)1.3 充足条件必需条件与命题的四种形式1.3.1 推出与充足条件必需条件1.3.2 命题的四种形式第二章圆锥曲线方程2.1 曲线方程2.1.1 曲线与方程的观点2.1.2 由曲线求它的方程由方程研究曲线性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与几何体3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数目积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其胸怀3.2.5 距离(选学)选修 2-2第一章导数及其应用1.1 导数1.1.1 函数的均匀变化率1.1.2 刹时速度与导数1.1.3 导数的几何1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法例1.3 导数的应用1.3.1 利用导数判断函数的单一性1.3.2 利用导数研究函数的极值1.3.3 导数的实质应用1.4 定积分与微积分的基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与剖析法2.2.2 反证法2.3 数学概括法2.3.1 数学概括法2.3.2 数学概括法应用举例第三章数系的扩大与复数3.1 数系的扩大与复数的观点3.1.1 实数系3.1.2 复数的观点3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法选修 2-3第一章计数原理1.1 基本计数原理1.2 摆列与组合1.2.1 摆列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 失散型随机变量及其散布列2.1.1 失散型随机变量2.1.2 失散型随机变量的散布列2.1.3 超几何散布2.2 条件概率与实践的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项散布2.3 随机变量的数字特点2.3.1 失散型随机变量的数学希望2.3.2 失散型随机变量的方差2.4 正态散布第三章统计事例3.1 独立性查验3.2 回归剖析选修 4-4第一章坐标系1.1 直角坐标系平面上的伸缩变换1.1.1 直角坐标系1.1.2 平面上的伸缩变换1.2 极坐标系1.2.1 平面上点的极坐标1.2.2 极坐标与直角坐标的关系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.4.1 圆心在极轴上且过极点的圆1.4.2 圆心在点( a,∏ /2 )处且过极点的圆1.5 柱坐标系和球坐标系1.5.1 柱坐标系1.5.2 球坐标系第二章参数方程2.1 曲线的参数方程2.1.1 抛射体的运动2.1.2 曲线的参数方程2.2 直线与圆的参数方程2.2.1 直线的参数方程2.2.2 圆的参数方程2.3 圆锥曲线的参数方程2.3.1 椭圆的参数方程2.3.2 双曲线的参数方程2.3.3 抛物线的参数方程2.4 一些常有曲线的参数方程2.4.1 摆线的参数方程2.4.2 圆的渐开线的参数方程。
人教A版高中数学必修三第三章 概率3 章末高效整合牛老师

知 3 路车、6 路车在 5 分钟之内到此车站的概率分别为 0.20 和 0.60,则该乘客在
5 分钟内能乘上所需车的概率为( )
A.0.20
B.0.60
C.0.80
D.0.12
解析: (1)如图所示,用集合的观点发现 A∪B 不一定为全集,故选项 A 错误.同理可以检验出选项 B 正确,选项 C,D 错误.
[特别提醒] 求解几何概型问题,要特别注意基本事件的形成过程,要准确 判断所求的概率是哪个量(长度、面积、体积或角度)的比值.
正方体 ABCD-A1B1C1D1 的棱长为 a,在正方体内随机取一点 M. (1)求点 M 落在三棱锥 B1-A1BC1 内的概率; (2)求使四棱锥 M-ABCD 的体积小于16a3 的概率.
(1)第 1 次摸到黄球的基本事件有(a,c),(a,d),(b,c),(b,d), P(A)=48=12. (2)第 2 次摸到黄球的基本事件为(c,a),(c,b),(d,a),(d,b), P(B)=48=12.
2.一个盒子里装有完全相同的 10 个小球,分别标上 1,2,3,…,10 这 10 个数字,现随机地取两个小球.
2.互斥事件与对立事件的概率计算: (1)若事件 A1,A2,…,An 彼此互斥,则 P(A1∪A2∪…∪An)=P(A1)+P(A2) +…+P(An). 设事件 A 的对立事件是 A,则 P(A)=1-P(A), (2)应用互斥事件的概率加法公式解题时,一定要注意首先确定各个事件是 否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率, 可以转化为求其对立事件的概率. 求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事 件的和;二是先求其对立事件的概率,然后再应用公式 P(A)=1-P(A)求解.
山东省高中数学(新课标人教A版)必修三《3.1.1 随机事件的概率》课件

活页规范训练
【变式2】某人进行打靶练习,共射击10次,其中有2次击中10 环,有3次击中9环,有4次击中8环,有1次未中靶. (1)求此人中靶的概率; (2)若此人射击1次,则中靶的概率约为多大?击中10环的 概率约为多大?
解 (1)因为中靶的频数为 9,试验次数为 10,所以中靶的 9 频率为 =0.9.故此人中靶的概率约为 0.9. 10 (2)若此人射击 1 次,中靶的概率约为 0.9,击中 10 环的概 率约为 0.2.
活页规范训练
误区警示
忽略试验的顺序而致错
【示例】 先后抛掷两枚质地均匀的硬币,则 (1)一共可能出现多少种不同的结果? (2)出现“一枚正面,另一枚反面”的情况分几种? [错解] (1)一共可能出现“两枚正面”“两枚反面”“一枚正面, 一枚反面”,3种不同情况. (2)出现“一枚正面,一枚反面”的结果只有一种.
活页规范训练
解 由实数运算性质知①恒成立是必然事件;⑥由物理知 识知同性电荷相斥是必然事件,①⑥是必然事件.没有水 分,种子不会发芽,标准大气压下,水的温度达到50 ℃ 时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出 4也可能取不到4,电话总机在60秒可传呼15次也可不传呼 15次.②④是随机事件. 规律方法 要判定事件是何种事件,首先要看清条件,因 为三种事件都是相对于一定条件而言的.第二步再看它是 一定发生,还是不一定发生,还是一定不发生,一定发生 的是必然事件,不一定发生的是随机事件,一定不发生的 是不可能事件.
3.1
随机事件的概率
3.1.1 随机事件的概率
【课标要求】 1.了解随机事件发生的不确定性和概率的稳定性. 2.正确理解概率的含义,理解频率与概率的区别与联系. 3.会初步列举出重复试验的结果. 【核心扫描】 1.事件概率的含义.(重点) 2.频率与概率的区别与联系.(易混点)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 概 率
本章归纳整合 高考真题
1.(2011·新课标全国高考)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( ). A.13 B.12 C.23 D.34
解析 本小题考查古典概型的计算,考查分析、解决问题的能力.因为两个同学参加兴趣小组的所有的结果是3×3=9(个),其中这两位同学参加同一兴趣小组的结果有3个,所以由古典概型的概率计算公式得所求概率为39=13.
答案 A
2.(2011·福建高考)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自 △ABE 内部的概率等于 ( ). A.14 B.13 C.12 D.23
解析 本题考查了几何概型概率的求法,题目较易,属低档题,重在考查学生的双基.这是一道几何概型的概率问题,点Q 取自△ABE 内部的概率为S △ABE S 矩形ABCD =1
2·|AB |·|AD ||AB |·|AD |=1
2.故选
C. 答案 C
3.(2011·陕西高考)甲、乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ( ). A.136 B.19 C.536 D.1
6
解析 考查学生的观察问题和解决问题的能力.最后一个景点甲有6种选法,乙有6种选
法,共有36种,他们选择相同的景点有6种,所以P =636=1
6,所以选D.
答案 D
4.(2011·江苏高考)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.
解析 本题考查了古典概型问题,古典概型与几何概型两个知识点轮换在高考试卷中出现.从1,2,3,4这四个数中一次随机取两个数,共有6种取法,其中1,2;2,4这两种取法使得一个数是另一个数的两倍,由此可得其中一个数是另一个数的两倍的概率是P =26=13.
答案 13
5.(2010·湖南高考)在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为________. 解析 考查几何概型,求出长度之比即可.[-1,2]的长度为3,[0,1]的长度为1,所以概率是13. 答案 13
6.(2011·北京高考文)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.
(1)如果X =8,求乙组同学植树棵数的平均数和方差;
(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1
n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n
的平均数)
解 本题考查概率统计的基础知识和方法,考查运算能力,分析问题、解决问题的能力. (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为:x =8+8+9+104=35
4
; 方差为:s 2=14×[⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542]=11
16
. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为
B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个:
(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),
用C 表示“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=1
4
.
7.(2011·山东高考)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
解 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.
从甲校和乙校报名的教师中各任选1名的所有可能的结果为:
(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种,从中选出两名教师性别相同的结果有:
(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种,选出的两名教师性别相同的概率为P =49.
(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:
(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种. 从中选出两名教师来自同一学校的结果有:
(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种, 选出的两名教师来自同一学校的概率为P =615=2
5
.
8.(2010·陕西高考)如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:
所用时间(分钟)
10~20
20~30
30~40
40~50
50~60
(1)
(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;
(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的
时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.
解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人,
∴用频率估计相应的概率为0.44.
(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:
(3)1212
B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.
由(2)知P(A1)=0.1+0.2+0.3=0.6,
P(A2)=0.1+0.4=0.5,P(A1)>P(A2),
∴甲应选择L1;
P(B1)=0.1+0.2+0.3+0.2=0.8,
P(B2)=0.1+0.4+0.4=0.9,
P(B2)>P(B1),
∴乙应选择L2.
9.(2011·福建高考)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(1)若所抽取的205的恰有2件,求a,
b,c的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日
用品记为y1,y2.现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.解(1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.
因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=3
20=0.15,
等级系数为5的恰有2件,所以c=2
20=0.1,从而a=0.35-b-c=0.1.
所以a=0.1,b=0.15,c=0.1.
(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能的结果为:{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2}.
记事件A表示“从日用品x1,x2,x3,y1,y2中任取两件,其等级系数相等”,则A包含的基本事件为:{x1,x2},{x1,x3},{x2,x3},{y1,y2},共4个.
又基本事件的总数为10,
故所求的概率P(A)=4
10=0.4.。