蚁群算法蚂蚁算法中英文对照外文翻译文献
有关蚁群算法,人工蜂群算法,粒子群算法的外国文献

有关蚁群算法,人工蜂群算法,粒子群算法的外国文献蚁群算法是一种新型模拟进化算法,目前运用这种方法已成功解决了旅行商问题、二次分配问题等组合优化问题,但是蚁群算法的离散性使得它无法直接应用于求解连续空间优化问题.本文采用混沌蚁群算法,通过对自变量进行十进制编码)使离散的蚁群优化策略能够应用于连续空间的优化问题,并利用混沌搜索)避免陷人局部最优点.对多元线性回归问题的回归系数进行优化,结果表明蚁群算法应用于回归分析是可行的。
粒子群算法,也称粒子群优化算法或鸟群觅食算法,缩写为PSO,是近年来由xxx和xxx等开发的一种新的进化算法。
PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质。
人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。
用蚁群算法在刀库索引位置的优化配置外文翻译、英汉互译、中英对照

Optimal allocation of index positions on tool magazines using an ant colony algorithmAbstract Generation of optimal index positions of cutting tools is an important task to reduce the non-machining time of CNC machines and for achievement of optimal process plans. The present work proposes an application of an ant colony algorithm, as a global search technique, for a quick identification of optimal or near optimal index positions of cutting tools to be used on the tool magazines of CNC machines for executing a certain set of manufacturing operations. Minimisation of total indexing time is taken as the objective function.Keywords Indexing time . Automatic tool change .CNC machine . Optimization . Ant colony algorithm1 IntroductionIn today’s manufacturing environment, several industries are adapting flexible manufacturing systems (FMS) to meet the ever-changing competitive market requirements. CNC machines are widely used in FMS due to their high flexibility in processing a wide range of operations of various parts and compatibility to be operated under a computer controlled system. The overall efficiency of the system increases when CNC machines are utilized to their maximum extent. So to improve the utilization, there is a need to allocate the positions of cutting tools optimally on the tool magazines.The cutting tools on CNC machines can be changed or positioned automatically when the cutting tools are called within the part program. To do this turrets are used in CNC lathe machines and automatic tool changers (ATC) in CNC milling machines. The present model can be used either for the ATC magazines or turrets on CNC machines.The indexing time is defined as the time elapsed in which a turret magazine/ATC moves between the two neighbouring tool stations or pockets. Bi-directional indexing of the tool magazine is always preferred over uni-directional indexing to reduce the non-machining time of the machine. In this the magazine rotates in both directions to select automatically the nearer path between the current station and target station. The present work considers bi-directional movement of the magazine. In bidirectional indexing, the difference between the index numbers of current station and target station is calculated in such a way that its value is smaller than or equal to half of the magazine capacity.Dereli et al. [1] formulated the present problem as a “traveling salesman problem” (TSP), which is NP complete. They applied genetic algorithms (GA) to solve the problem. Dorigo et al. [2, 3] introduced the ant colony algorithm (ACA) for solving the NP-complete problems. ACA can find the superior solution to other methods such as genetic algorithms, simulated annealing and evolutionary programming for large-sized NP-complete problems with minimum computational time. So, ACA hasbeen extended to solve the present problem.2 MethodologyDetermination of the optimal sequence of manufacturing operations is a prerequisite for the present problem. This sequence is usually determined based on minimum total set-up cost. The authors [4] suggested an application of ACA to find the optimal sequence of operations. Once the sequence of operations is determined, the following approach can be used to get the optimal arrangement of the tools on the magazine.Step 1 Initially a set of cutting tools required to execute the fixed (optimal) sequence of the manufacturing operations is assigned. Each operation is assigned a single cutting tool. Each tool is characterized by a certain number. For example, let the sequence of manufacturing operations{M1-M4-M3-M2-M6-M8-M9-M5-M7-M10} be assigned to the set of cutting tools {T8-T1-T6-T4-T3-T7-T8-T2-T6-T5}. The set of tools can be decoded as {8-1-6-4-3-7-8-2-6-5}. Here the manufacturing operation M1 requires cutting tool 8, M4 requires 1 and so on. In total there are eight different tools and thus eight factorial ways of tool sequences possible on the tool magazine.Step 2 ACA is applied as the optimization tool to find the best tool sequence that corresponds to the minimum total indexing time. For every sequence that is generated by the algorithm the same sequence of indexpositions (numbers) is assigned. For example, let the sequence of tools {4-6-7-8-2-5-3-1} be generated and hence assigned to the indexing positions {1-2-3-4-5-6-7-8} in the sequential order, i.e. tool 4 is assigned to the 1st position, tool 6 to the 2nd position and so on.Step 3 The differences between the index numbers of subsequent cutting tools are calculated and then totaled to determine the total number of unit rotations for each sequence of cutting tools. Absolute differences are to be taken while calculating the number of unit rotations required from current tool to target tool. This following section describes an example in detail.The first two operations M1 and M4 in the pre-assumed fixed sequence of operations require the cutting tools 8 and 1, respectively. The tool sequence generated by the algorithm is {4-6-7-8-2-5-3-1}. In this sequence tools 8 and 1 are placed in the 4th and 8th indexing positions of the turret/ ATC. Hence the total number of unit rotations required to reach from current tool 8 to target tool 1 is | 4-8 |= 4. Similarly the total number of unit rotations required for the entire sequence is | 4-8 |+| 8-2 |+| 2-1 |+| 1-7 |+| 7-3 |+| 3-4 |+|4-5 |+| 5-2 |+| 2-6 |=30.Step 4 Minimization of total indexing time is taken as the objective function. The value of the objective function is calculated by multiplying the total number of unit rotations with the catalogue value of turret/ATC index time. If an index time of 4 s is assumed then the total index timerequired for the tool sequence becomes 120 s.Step 5 As the number of iterations increases ACA converges to the optimal solution.3 Allocation policyThe following are the three cases where the total number of available positions can be related with the total number of cutting tools employed.Case 1 The number of index positions is equal to the number of cutting toolsCase 2 The number of index positions is greater than the number of cutting tools (a) without duplication of tools, (b) with duplication tools Case 3 The number of index positions is smaller than the number of cutting toolsIf the problem falls into case 1, duplication of cutting tools in the tooling set is not required as the second set-up always increases the non-machining time of the machine.Table 1 List of features and their abbreviationsIn case 2, the effect of duplication of cutting tools should be tested carefully. Most of the times the duplication of tooling is too expensive. Case 3 leads to finding the cutting tools to be used in the second set-up. However, other subphases are possible in cases 2(b) and 3. The duplicated tools may be used in such a way that no unloaded index is left on ATC or some indexing positions are left unloaded.Table 2 Operations assigned to the features4 Ant colony algorithmThe ant colony algorithm (ACA) is a population-based optimization approach that has been applied successfully to solve different combinatorial problems like traveling salesman problems [2, 3], quadratic assignment problems [5, 6], and job shop scheduling problems [7]. This algorithm is inspired by the foraging behaviour of real life ant colonies in which individual ants deposit a substance called pheromone on the path while moving from one point to another. The paths with higher pheromone would be more likely to be selected by the other ants resultingin further amplification of current pheromone trails. Because of this nature, after some time ants will select the shortest path. The algorithm as applicable to the present problem is described in the following section.It is assumed that there is ‘k’ number of ants and each ant corresponds to a particular node. The number of ants is taken as equal to the number of nodes required to execute the fixed set of manufacturing operations. The task of eachant is to generate a feasible solution by adding a new cutting\ tool at a time to the current one, till all operations are completed. An ant ‘k’ situated in state ‘r’ moves to state ‘s’ using the following state transition rule:Table 3 Cutting tools assigned to optimal sequence of operationsWhere τ (r, s) is called a pheromone level. τ (r, s)’s are changed at run time and are intended to indicate how useful it is to make move ‘s’ when in state ‘r’. η(r, s) is a heuristic function, which evaluates the utility of move ‘s’ when at ‘r’. In the present work, it is the inverse of the number of unit rotations required to move from ‘r’ to ‘s’.Parameter ‘β’ weighs the relative importance of the heuristic function. ‘q’ is a value chosen randomly with uniform probability in [0,1], and ‘q0’ e0 q0 1T is a parameter. The smaller the ‘q0’, the higher the probability to make a random choice. In short ‘q0’ determines the relative importance of exploitation versus exploration in Eq. 1.Jk(r) represents the number of states still to be visited by the ‘k’ antwhen at ‘r’.S is a random variable selected according to the distribution given by Eq. 2, which gives the probability with which an ant in operation ‘r’ chooses ‘s’ to move to.This state transition rule will favour transitions towards nodes connected by short edges with high amount of trail.4.1 Local updating ruleWhile building a solution, ants change their trails by applying the following local updating rule:Where τ0 represents the initial pheromone value.4.2 Global updating ruleGlobal trail updating provides a higher amount of trail to shorter solutions. In a sense this is similar to a reinforcement learning scheme in which better solutions get a higher reinforcement.Once all ants have completed their solutions, edges (r, s) belonging to the shortest solution made by an ant have their trail changed by applying the following global updating rule.Where Lbest-iter is the best solution obtained in an iteration that has the minimum total indexing time. ‘α’ is the pheromone decay parameter, which is a value in between 0 and 1. The parameter values [3] are set as β=2, q0=0.9, and..4.3 Local search mechanismMany ant systems are hybrid algorithms employing some kind of local optimization techniques such as 2-opt technique, tabu search, simulated annealing etc. Once each ant has constructed a solution, a local search mechanism is used to further improve the solution to its localoptimum and finally the pheromone levels are updated based on its solution. This integration significantly increases the effectiveness and efficiency of ant colony algorithms. In the present work, the 2-opt technique is used as the local search.Fig. 3 Convergence of ACA5 Case studyThe example part taken for the present work is shown in Fig. 1. It contains 18 features. The features and their abbreviations are listed in Table 1. The operations required to execute the features are exhibited in Table 2. The preassumed fixed sequence of operations and the assignment of a cutting tool to each operation are shown in Table 3. The maximum number of cutting tools and the indexing time of ATC are taken as 28 and 0.69 s, respectively. The objective lies in finding the positions of cutting tools on the tool magazine for completing the sequence of operations: M1-M2-M3-M4-M5-M6-M7-M8-M9-M10-M11-M12-M13-M14-M15-M16-M17-M18-M19-M20-M21-M22-M23-M24-M25-M26-M27. The corresponding tools required to perform the above operations in the sequential order are T1-T1-T2-T3-T4-T2-T2-T2-T2-T5-T6-T5-T7-T5-T5-T8-T9-T5-T10-T5-T11-T5-T12-T5-T13-T5-T14.The total number of different tools required here are 14and hence there are 14 (!) ways of sequencing the cutting tools.The problem described here falls into case 2(a) where the total number of index positions is greater than the number of cutting tools without duplication of tools. ACA is applied to get the set of positions of cutting tools that results in the minimum total indexing time to complete the above stated fixed sequence of operations.execution time has been reduced to 14 s. It is observed that ACA gets the optimal solution in quicker time than GA. Figure 3 exhibits the convergence of ACA. The best solution obtained in each iteration is plotted against the iteration number. The optimal solution is obtained in the 10th iteration. To ensure the optimal solution, the graph is extended for a maximum of 18 iterations.7 ConclusionSince the present problem can be modeled as a traveling salesman problem, the present work deals with the development of an ACA-based system for the optimization of turret index positions of cutting tools to be used on the turret or ATC magazine of the CNC machine tools. Even asmall saving in the total turret indexing time will cause a significant increase in machining time in high-volume production. This leads to increased utilization of CNC machine tools and hence the overall efficiency of the system.References1. Dereli T, Filiz H (2000) Allocating optimal index positions ontool magazines using genetic algorithms. Robotics Auton Syst33:155–1672. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimisation by a colony of cooperating agents. IEEE TransSyst Man Cybern 26(1):29–413. Dorigo M, Gambardella LM (1997) Ant colony system: A cooperative learning approach to the traveling salesman problem.IEEE Trans Evol Comput 1(1)53–664. Krishna AG, Rao KM (2004) Optimisation of operationssequence in CAPP using ant colony algorithm. Int J Adv Manuf Technol (in press)5. Gambardella LM, Taillard ED, Dorigo M (1999) Ant coloniesfor the QAP. J Oper Res Soc 50:167–1766. Stutzle T, Dorigo M (1999) ACO algorithms for the quadratic assignment problems. In: Corne D, Dorigo M, Glover F (eds)New ideas in optimization. McGraw-Hill, New York7. Colorni A, Dorigo M, Maniezzo V, Trubian M (1994) Ant system for job-shop scheduling. Belg J Oper Res Stat Comput Sci 34(1):39–53用蚁群算法在刀库索引位置的优化配置摘要:生成最优的索引位置切割工具是一个重要的任务,以减少非加工时间数控机床和成就的最佳工艺计划.目前的工作提出了蚂蚁的应用蚁群算法,作为一个全球性的搜索技术,为迅速确定的最优或接近最优的索引位置刀具上使用数控刀库机器执行一组特定的制造业务。
群蚁算法翻译

离散优化求解工业布局问题的蚁群算法Y. Hani *, L. Amodeo, F. Yalaoui, H. ChenISTIT-OSI, (CNRS 2732) Universite´ de Technologie de Troyes, 12 rue Marie Curie BP2060, 10010 Troyes cedex, France Received 26 August 2005; accepted 6October 2006 Available online 12 January 2007摘要本文提出了一个与局部搜索相结合的被用于布局问题中的混合蚁群优化算法--ACO_GLS。
ACO_GLS被适用于工业中的情况,其被法国的铁路系统设施(SNCF)用在列车的维修中。
结果表明,与实际布局相比,这种实现有近20%的改善。
由于问题建模为一个二次分配问题LEM(QAP),我们将我们的方法与一些可以解决此问题的最佳启发式方法做了比较。
实验结果表明,在小型实例中,ACO_GLS算法表现更好,而对于大型实例,其计算结果依旧令人满意。
关键词:布局问题;二次分配问题;蚁群优化;局部搜索1.介绍设施布局问题(FLP)是一个发现机器的很好的配置,在一个给定的设备以优化生产流程的同时最小化总成本的设备或其他资源。
它对一个制造系统的性能具有重要意义。
设施布局问题在很多方面都有应用,如厂房组织的应用,新的生产建设单位,或设备分配。
一个完整的布局描述的问题可以从(Kusiak和Heragu,1987)中找到。
布局问题是众所周知的NP-难度(Sahni and Gonzales, 1976),可以在许多经典的理论研究中发现。
然而,只有少数工业布局案例在文献中被解决。
应用遗传算法,希克斯(2006)提出了一个遗传算法,用于如何在一个制造单元中最小化物质运动并将其应用到资本主义工业生产的实际问题中, Lee等人(2005)提出了一种解决多楼层设施的布局问题,包括墙壁和通道的内部结构的遗传算法。
蚂蚁算法和蚁群算法

蚂蚁算法(Ant Colony Algorithm)和蚁群算法(Ant Colony Optimization)是启发式优化算法,灵感来源于蚂蚁在觅食和建立路径时的行为。
这两种算法都基于模拟蚂蚁的行为,通过模拟蚂蚁的集体智慧来解决组合优化问题。
蚂蚁算法和蚁群算法的基本原理类似,但应用领域和具体实现方式可能有所不同。
下面是对两者的简要介绍:蚂蚁算法:蚂蚁算法主要用于解决图论中的最短路径问题,例如旅行商问题(Traveling Salesman Problem,TSP)。
其基本思想是通过模拟蚂蚁在环境中寻找食物的行为,蚂蚁会通过信息素的释放和感知来寻找最优路径。
蚂蚁算法的核心概念是信息素和启发式规则。
信息素(Pheromone):蚂蚁在路径上释放的一种化学物质,用于传递信息和标记路径的好坏程度。
路径上的信息素浓度受到蚂蚁数量和路径距离的影响。
启发式规则(Heuristic Rule):蚂蚁根据局部信息和启发式规则进行决策。
启发式规则可能包括路径距离、路径上的信息素浓度等信息。
蚂蚁算法通过模拟多个蚂蚁的行为,在搜索过程中不断调整路径上的信息素浓度,从而找到较优的解决方案。
蚁群算法:蚁群算法是一种更通用的优化算法,广泛应用于组合优化问题。
除了解决最短路径问题外,蚁群算法还可应用于调度问题、资源分配、网络路由等领域。
蚁群算法的基本原理与蚂蚁算法类似,也是通过模拟蚂蚁的集体行为来求解问题。
在蚁群算法中,蚂蚁在解决问题的过程中通过信息素和启发式规则进行路径选择,但与蚂蚁算法不同的是,蚁群算法将信息素更新机制和启发式规则的权重设置进行了改进。
蚁群算法通常包含以下关键步骤:初始化:初始化蚂蚁的位置和路径。
路径选择:根据信息素和启发式规则进行路径选择。
信息素更新:蚂蚁在路径上释放信息素,信息素浓度受路径质量和全局最优解的影响。
全局更新:周期性地更新全局最优解的信息素浓度。
终止条件:达到预设的终止条件,结束算法并输出结果。
蚁群算法的原理与应用论文

蚁群算法的原理与应用论文引言蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的优化算法。
它源于对蚂蚁在寻找食物过程中的集体智能行为的研究,通过模拟蚂蚁在寻找食物时的信息交流和路径选择,来寻求最优解。
蚁群算法具有全局搜索能力、自适应性和高效性等特点,被广泛应用于各个领域的优化问题求解中。
蚁群算法的原理蚁群算法的原理主要包括蚂蚁行为模拟、信息交流和路径选择这三个方面。
蚂蚁行为模拟蚂蚁行为模拟是蚁群算法的核心,它模拟了蚂蚁在寻找食物时的行为。
蚂蚁沿着路径前进,释放信息素,并根据信息素的浓度选择下一步的移动方向。
当蚂蚁在路径上发现食物时,会返回到蚂蚁巢穴,并释放更多的信息素,以引导其他蚂蚁找到这条路径。
信息交流蚂蚁通过释放和感知信息素来进行信息交流。
蚂蚁在路径上释放信息素,其他蚂蚁在感知到信息素后,会更有可能选择这条路径。
信息素的浓度通过挥发和新的信息素释放来更新。
路径选择在路径选择阶段,蚂蚁根据路径上的信息素浓度选择移动的方向。
信息素浓度较高的路径更有可能被选择,这样会导致信息素逐渐积累并形成路径上的正反馈。
同时,蚂蚁也会引入一定的随机因素,以增加算法的多样性和全局搜索能力。
蚁群算法的应用蚁群算法已经在各个领域得到广泛的应用,下面列举了几个常见的领域:•路径规划:蚁群算法能够用于求解最短路径和最优路径问题。
通过模拟蚂蚁寻找食物的行为,可以得到最优的路径解决方案。
•旅行商问题:蚁群算法被广泛应用于旅行商问题的求解中。
通过模拟蚂蚁的行为,找到最优的旅行路径,使得旅行商能够有效地访问多个城市。
总结蚁群算法是一种模拟蚂蚁觅食行为的优化算法,通过模拟蚂蚁的行为和信息交流,来寻找最优解。
蚁群算法具有全局搜索能力、自适应性和高效性等特点,在各个领域都得到了广泛应用。
未来,随着对蚁群算法的深入研究和改进,相信它会在更多的优化问题求解中发挥重要作用。
以上是关于蚁群算法的原理与应用的论文,希望对读者有所帮助。
多步长蚁群算法的英文

多步长蚁群算法的英文Multi-step Ant Colony Optimization (ACO)。
Multi-step Ant Colony Optimization (ACO) is a variant of the popular Ant Colony Optimization (ACO) algorithm. The aim of ACO is to find good solutions to hard combinatorial optimization problems by simulating the behaviour of ants foraging for food. In ACO, artificial ants are placed on a graph representing the problem to be solved. Each ant moves through the graph, constructing a solution as it goes. The ants use pheromones to mark the edges of the graph, which are used to guide the ants' movements. The pheromone levels are updated over time, so that ants are more likely to follow paths that have been successful in the past.Multi-step ACO is a variation of ACO that uses a multi-step approach to construct solutions. In multi-step ACO, each ant constructs a solution in a series of steps. At each step, the ant chooses the next edge to follow based on the pheromone levels and the ant's own preferences. Theant's preferences are typically based on the ant's knowledge of the problem being solved.Multi-step ACO has been shown to be more effective than ACO on a variety of problems. This is because the multi-step approach allows the ants to explore the solution space more thoroughly. Multi-step ACO has been used to solve a wide range of problems, including the Travelling Salesman Problem, the Vehicle Routing Problem, and the Graph Coloring Problem.Benefits of Multi-step ACO.Improved solution quality: Multi-step ACO has been shown to produce better solutions than ACO on a variety of problems. This is because the multi-step approach allows the ants to explore the solution space more thoroughly.Faster convergence: Multi-step ACO typically converges to a good solution more quickly than ACO. This is because the multi-step approach allows the ants to focus their search on the most promising areas of the solution space.Reduced computational complexity: Multi-step ACO has a lower computational complexity than ACO. This is because the multi-step approach reduces the number of ants that are needed to find a good solution.Applications of Multi-step ACO.Multi-step ACO has been used to solve a wide range of problems, including:The Travelling Salesman Problem: The Travelling Salesman Problem is a classic optimization problem in which a salesman must find the shortest tour that visits a set of cities. Multi-step ACO has been shown to be effective in solving the Travelling Salesman Problem, and has been used to find optimal tours for a variety of real-world problems.The Vehicle Routing Problem: The Vehicle Routing Problem is a combinatorial optimization problem in which a set of vehicles must be routed to visit a set of customers. Multi-step ACO has been shown to be effective in solvingthe Vehicle Routing Problem, and has been used to find efficient routes for a variety of real-world problems.The Graph Coloring Problem: The Graph Coloring Problem is a combinatorial optimization problem in which a set of vertices must be colored using a minimum number of colors so that no two adjacent vertices have the same color.Multi-step ACO has been shown to be effective in solving the Graph Coloring Problem, and has been used to find optimal colorings for a variety of real-world problems.Conclusion.Multi-step ACO is a powerful optimization algorithmthat has been shown to be effective on a wide range of problems. Multi-step ACO is a variant of the popular ACO algorithm, but it uses a multi-step approach to construct solutions. This multi-step approach allows the ants to explore the solution space more thoroughly, which resultsin improved solution quality, faster convergence, and reduced computational complexity.。
蚁群系统文献翻译

郑州航空工业管理学院毕业论文(设计)英文翻译2012 届网络工程专业0810073班级翻译题目蚁群系统姓名韩敏学号081007308指导教师刘双红职称讲师2012 年 5 月19日蚁群系统:一个合作学习模式解决旅行商问题的方法摘要本文介绍了蚁群系统(ACS),应用于解决旅行商问题(TSP)的分布式算法。
ACS就是一些合作代理所谓的蚂蚁合作找到TSP问题的良好解决方案。
蚂蚁通过播撒一种信息素来间接合作,在生成解决方案的同时把信息素存放在TSP 图形的边缘。
我们研究 ACS 通过运行试验了解其操作。
结果表明,ACS优于其他自然灵感的算法,如模拟退火和进化的自然启发算法计算。
我们得出结论与ACS-3-opt比较,在本地搜索过程中,优化的ACS通过一些算法来表现最优的的TSP和ATSP。
索引术语——适应行为、旅行商问题的蚁群、紧急行为。
一、导论蚂蚁算法是基于自然的比喻蚁群。
真正的蚂蚁能够找到从食物源到自己的窝[3]的最短路径,[22]不利用视觉线索[24]而通过感知信息素。
在移动的时候,蚂蚁在地上洒下信息素,并趋向于朝其他蚂蚁播撒的信息素方向移动。
在图.1我们展示了蚂蚁利用信息素找到两点之间的最短路径。
考虑图(a):蚂蚁到达一个抉择点,他们要决定向左还是向右。
因为没有线索表明哪一个是最佳选择。
他们随机选择。
可以预期,一般情况下,是一半蚂蚁左转一半蚂蚁右转。
两蚂蚁从左至右(名称开头为L)和从右至左移动(名字开头为R)。
图(b)和(c)显示在紧随其后的瞬间发生了什么,假设所有的蚂蚁以大约相同的速度移动。
虚线代表蚂蚁沉积在地面上的信息素。
由于较低的路径比上面一个短,更多的蚂蚁将平均访问,因此信息素累积更快。
经过短暂的过渡时期,两个路径信息素量的差异就足够大,从而影响进入系统的新蚂蚁的决定。
图(d)显示,从现在开始,新进入的蚂蚁在概率上更倾向于选择较短的路径,因为在决定点时,他们感知到了短路径上的有较多的信息素。
蚁群算法文献综述

1. 前言
蚁群算法(AntColonyOptimization,ACO),它由Marco Dorigo于1992年在他的博士论文“Ant system: optimization by a colony of cooperating agents”中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。其机理是:生物界中的蚂蚁在搜寻食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物信息素,使得一定范围内的其他蚂蚁能够觉察并影响其行为.当某些路径上走过的蚂蚁越来越多时,留下的这种信息素轨迹也越多,以至信息素强度增大,使后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度.蚁群算法是一种仿生类非线性优化算法,具有并行性、正反馈性和全局极小搜索能力强等特点.蚁群算法最早应用于旅行商问题(Travelling Salesman Problem)简称TSP问题,后来陆续渗透到其他领域,在很多领域已经获得了成功的应用,其中最成功的是在组合优化问题中的应用。组合优化问题分为两类:一类是静态组合优化问题,其典型代表有TSP,车间调度问题;另一类是动态组合优化问题,例如网络路由问题。本次毕业论文主要聚焦于静态组合优化问题。
蚂蚁在选择路径时,那些有更多蚂蚁曾经选择过的路径(也就是具有更高信息素密度的路径),被再次选中的可能性最大。
当t=0时,没有信息素,有30只蚂蚁分别在B和D。蚂蚁走哪条道路是完全随机的。因此,在每个点上蚂蚁将有15只经过H,另外15只经过C。
当t=1时有30只蚂蚁从A到B,它们发现指向H道路上的信息素密度是15,是由从B出发的蚂蚁留下的;指向C道路上的信息素密度是30,其中15是由B出发蚂蚁留下,另外15是从D出发经过C已经到达B的蚂蚁留下。因此,选择经过C到D的可能性就更大,从E出发到D的30只蚂蚁也面临着同样的选择,由此产生一个正反馈过程,选择经过C的蚂蚁越来越多,直到所有的蚂蚁都选择这条较近的道路。图1是著名的双桥实验的简化描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蚁群算法蚂蚁算法中英文对照外文翻译文献(文档含英文原文和中文翻译)翻译:蚁群算法起源蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID 控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
原理各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐地更多的蚂蚁被吸引到这条较短的路上来。
最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。
事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样在蚁群这个集体里,复杂性的行为就会凸现出来。
这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?1、范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。
每个蚂蚁都仅仅能感知它范围内的环境信息。
环境以一定的速率让信息素消失。
3、觅食规则:在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。
否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。
蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。
为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
6、播撒信息素规则:每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。
比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。
问题:说了这么多,蚂蚁究竟是怎么找到食物的呢?在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。
首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。
这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。
这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,大部分蚂蚁会沿着信息素很快找到食物的。
但不排除会出现这样的情况:在最初的时候,一部分蚂蚁通过随机选择了同一条路径,随着这条路径上蚂蚁释放的信息素越来越多,更多的蚂蚁也选择这条路径,但这条路径并不是最优(即最短)的,所以,导致了迭代次数完成后,蚂蚁找到的不是最优解,而是次优解,这种情况下的结果可能对实际应用的意义就不大了。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。
信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。
假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。
当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。
也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。
引申跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性2、正反馈多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。
我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。
正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。
如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。
这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。
而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。
而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的特点1) 蚁群算法是一种自组织的算法。
在系统论中,自组织和它组织是组织的两个基本分类,其区别在于组织力或组织指令是来自于系统的内部还是来自于系统的外部,来自于系统内部的是自组织,来自于系统外部的是他组织。
如果系统在获得空间的、时间的或者功能结构的过程中,没有外界的特定干预,我们便说系统是自组织的。
在抽象意义上讲,自组织就是在没有外界作用下使得系统墒增加的过程(即是系统从无序到有序的变化过程)。
蚁群算法充分休现了这个过程,以蚂蚁群体优化为例子说明。
当算法开始的初期,单个的人工蚂蚁无序的寻找解,算法经过一段时间的演化,人工蚂蚁间通过信息激素的作用,自发的越来越趋向于寻找到接近最优解的一些解,这就是一个无序到有序的过程。
2) 蚁群算法是一种本质上并行的算法。
每只蚂蚁搜索的过程彼此独立,仅通过信息激素进行通信。
所以蚁群算法则可以看作是一个分布式的多agent 系统,它在问题空间的多点同时开始进行独立的解搜索,不仅增加了算法的可靠性,也使得算法具有较强的全局搜索能力。
3) 蚁群算法是一种正反馈的算法。
从真实蚂蚁的觅食过程中我们不难看出,蚂蚁能够最终找到最短路径,直接依赖于最短路径上信息激素的堆积,而信息激素的堆积却是一个正反馈的过程。
对蚁群算法来说,初始时刻在环境中存在完全相同的信息激素,给予系统一个微小扰动,使得各个边上的轨迹浓度不相同,蚂蚁构造的解就存在了优劣,算法采用的反馈方式是在较优的解经过的路径留下更多的信息激素,而更多的信息激素又吸引了更多的蚂蚁,这个正反馈的过程使得初始的不同得到不断的扩大,同时又引导整个系统向最优解的方向进化。
因此,正反馈是蚂蚁算法的重要特征,它使得算法演化过程得以进行。
(4) 蚁群算法具有较强的鲁棒性。
相对于其它算法,蚁群算法对初始路线要求不高,即蚁群算法的求解结果不依赖子初始路线的选择,而且在搜索过程中不需要进行人工的调整。
其次,蚁群算法的参数数目少,设置简单,易于蚁群算法应用到其它组合优化问题的求解。
蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,如,图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。
蚁群算法在若干领域己获得成功的应用,其中最成功的是在组合优化问题中的应用。
在网络路由处理中,网络的流量分布不断变化,网络链路或结点也会随机地失效或重新加入。
蚁群的自身催化与正向反馈机制正好符合了这类问题的求解特点,因而,蚁群算法在网络领域得到一定应用。
蚁群觅食行为所呈现出的并行与分布特性使得算法特别适合于并行化处理。
因而,实现算法的并行化执行对于大量复杂的实际应用问题的求解来说是极具潜力的。
在某群体中若存在众多无智能的个体,它们通过相互之间的简单合作所表现出来的智能行为即称为集群智能(Swarm Intelligence)。