UC3842开关电源电路图

合集下载

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

UC3842电路图

UC3842电路图

UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.72/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

2 UC3842 组成的开关电源电路图2 是由UC3842 构成的开关电源电路,220V 市电由C1、L1 滤除电磁干扰,负温度系数的热敏电阻Rt1 限流,再经VC 整流、C2 滤波,电阻R1、电位器RP1 降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

④脚和⑧脚外接的R6、C8 决定了振荡频率,其振荡频率的最大值可达500KHz。

R5、C6用于改善增益和频率特性。

⑥脚输出的方波信号经R7、R8 分压后驱动MOSFEF 功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。

电阻R10 用于电流检测,经R9、C9 滤滤后送入UC3842 的③脚形成电流反馈环. 所以由UC3842 构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842 的③脚电压高于1V 时振荡器停振,保护功率管不至于过流而损坏。

一文解析UC3842组成的开关电源电路

一文解析UC3842组成的开关电源电路

一文解析UC3842组成的开关电源电路
本文主要讲了UC3842组成的开关电源电路、电路的调试以及几种3842充电器电路图,下面随小编来看看吧。

 UC3842组成的开关电源电路
 图2是由UC3842构成的开关电源电路,220V市电由C1、L1滤除电磁干扰,负温度系数的热敏电阻Rt1限流,再经VC整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842的供电端(⑦脚),为UC3842提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842提供正常工作电压,另一方面经R3、R4分压加到误差放大器的反相输入端②脚,为UC3842提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

④脚和⑧脚外接的R6、C8决定了振荡频率,其振荡频率的最大值可达500KHz。

R5、C6用于改善增益和频率特性。

⑥脚输出的方波信号经R7、R8分压后驱动MOSFEF功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。

电阻R10用于电流检测,经R9、C9滤滤后送入UC3842的③脚形成电流反馈环。

所以由UC3842构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842的③脚电压高于1V时振荡器停振,保护功率管不至于过流而损坏。

 图2 UC3842构成的开关电源
 电路的调试
 此电路的调试需要注意:一是调节电位器RP1使电路起振,起振电流在1mA左右;二是起振后变压器③④绕组提供的直流电压应能使电路正常工。

uc3842反激式开关电源

uc3842反激式开关电源

uc3842反激式开关电源
高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。

传统的开关电源控制电路普遍为电压型拓扑,只有输出电压单闭控制环路,系统响应慢,线性调整率精度偏低。

随着PWM 技术的飞速发展产生的电流型模式拓扑很快被大家认同和广泛应用。

电流型控制系统是电压电流双闭环系统,一个是检测输出电压的电压外环,一个是检测开关管电流且具有逐周期限流功能的电流内环,具有更好的电压调整率和负载调整率,稳定性和动态特性也得到明显改善。

UC3842是一款单电源供电,带电流正向补偿,单路调制输出的高性能固定频率电流型控制集成芯片。

为了充分了解反激式开关电源的工作原理,本文中没有使用那种集成mos管的芯片,而是使用UC38XX芯片自己设计外围电路,自己来计算变压器参数,这样灵舌性较大的同时,能更好的看到各个点的波形。

方便分析。

甚至反馈环路都在一个电路里设计了两个不同的反馈方式,但需要注意的是,不能同时焊上去。

下面先来看看原理图吧。

图一原理图
如图1所示,原理图中既有辅助绕组电压反馈,又有TL431加光耦。

当然这两部分电路不会同时焊上去,为了以后以后的比实验。

需要说明。

UC3842的工作原理及3842在开关电源中的应用

UC3842的工作原理及3842在开关电源中的应用

UC3842的工作原理及3842在开关电源中的应用2008/11/20 02:55电流控制型脉宽调制器UC3842工作原理及应用UC3842是美国Unitrode公司(该公司现已被TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。

1 UC3842 内部工作原理简介图1 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

图1 UC3842 内部原理框图2 UC3842 组成的开关电源电路图2 是由UC3842 构成的开关电源电路,220V 市电由C1、L1 滤除电磁干扰,负温度系数的热敏电阻R t1限流,再经VC 整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

384X系列电路的案例电路图

384X系列电路的案例电路图

uc3842开关电源电路图用UC3842做的开关电源的典型电路见图1。

过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。

当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。

这被称为“打嗝”式(hiccup)保护。

在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms 到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。

由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。

仔细调整这个电阻的数值,一般都可以达到满意的保护。

使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。

图2、3、4是常见的电路。

图2采取拉低第1脚的方法关闭电源。

图3采用断开振荡回路的方法。

图4采取抬高第2脚,进而使第1脚降低的方法。

在这3个电路里R3电阻即使不要,仍能很好保护。

注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。

在过载或短路保护时,它也起延时保护的左右。

在灯泡、马达等启动电流大的场合,C4的取值也要大一点。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题:1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦;2. 在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。

3842电源的原理维修及检测方法

3842电源的原理维修及检测方法

3842电源的原理维修及检测⽅法3842电源的原理维修及检测⽅法UC3842⼯作原理下图为UC3842 内部框图和引脚图,UC3842 采⽤固定⼯作频率脉冲宽度可控调制⽅式,共有8 个引脚,各脚功能如下:①脚是误差放⼤器的输出端,外接阻容元件⽤于改善误差放⼤器的增益和频率特性;②②脚是反馈电压输⼊端,此脚电压与误差放⼤器同相端的2.5V 基准电压进⾏⽐较,产⽣误差电压,从⽽控制脉冲宽度;③③脚为电流检测输⼊端,当检测电压超过1V时缩⼩脉冲宽度使电源处于间歇⼯作状态;④④脚为定时端,内部振荡器的⼯作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);⑤⑤脚为公共地端;⑥⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能⼒为±1A ;⑦⑦脚是直流电源供电端,具有⽋、过压锁定功能,芯⽚功耗为15mW;⑧⑧脚为5V 基准电压输出端,有50mA 的负载能⼒。

UC3842 内部原理框图UC3842是⼀种性能优异、应⽤⼴泛、结构较简单的PWM开关电源集成控制器,由于它只有⼀个输出端,所以主要⽤于⾳端控制的开关电源。

UC3842 7脚为电压输⼊端,其启动电压范围为16-34V。

在电源启动时,V CC﹤16V,输⼊电压施密物⽐较器输出为0,此时⽆基准电压产⽣,电路不⼯作;当Vcc﹥16V时输⼊电压施密特⽐较器送出⾼电平到5V蕨稳压器,产⽣5V基准电压,此电压⼀⽅⾯供销内部电路⼯作,另⼀⽅⾯通过⑧脚向外部提供参考电压。

⼀旦施密特⽐较器翻转为⾼电平(芯⽚开始⼯作以后),Vcc可以在10V-3 4V范围内变化⽽不影响电路的⼯作状态。

当Vcc低于10V时,施密特⽐较器⼜翻转为低电平,电路停⽌⼯作。

当基准稳压源有5V基准电压输出时,基准电压检测逻辑⽐较器即达出⾼电平信号到输出电路。

同时,振荡器将根据④脚外接Rt、Ct参数产⽣f=/Rt.Ct的振荡信号,此信号⼀路直接加到图腾柱电路的输⼊端,另⼀路加到PWM脉宽市制RS触发器的置位端,RS型PWN脉宽调制器的R端接电流检测⽐较器输出端。

电流型开关电源中的UC3842电压反馈电路设计

电流型开关电源中的UC3842电压反馈电路设计

电流型开关电源中的UC3842电压反馈电路设计
电路类别、实现主要功能描述
 下图所示电路属于电压反馈电路,当输出电压变化时,通过此反馈电路反馈给控制芯片,从而调节输出电压,使输出电压稳定。

电路如下图:
 2、工作原理分析
 当输出电压变化时,通过R27和R28分压,U15的反相输入端电压变化,通过和U15的同相输入端的固定电压比较,通过运放放大输出变化的电压,从而通过光耦发光二极管端的电流变化,传到光耦的三级管输出变化,再输入到控制芯片,控制芯片再调节输出电压,从而达到输出电压稳定。

 UC3842简介
 图1为UC3842PWM控制器的内部结构框图。

其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。

振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C 共同决定了振荡器的振荡频率,f=1.8/RC.反馈电压由2脚接误差放大器反相端。

1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。

3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。

UC3842PWM控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V.正因如此,可有效地防止电路在阈值电压附近工作时的振荡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、UC3842的内部结构和特点
UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。

UC3842为8脚双列直插式封装,其内部原理框图如图1所示。

主要由5.0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。

端1为COMP 端;端2为反馈端;端3为电流测定端;端4接Rt、Ct确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。

2、电路结构与工作原理
图2所示为笔者在实际工作中使用的电路图。

输入电压为24V 直流电。

三路直流输出,分别为+5V/4A,+12V/0.3A和-12V/0.3A。

所有的二极管都采用快速反应二极管,核心PWM器件采用UC3842。

开关管采用快速大功率场效应管。

2.1 启动过程
首先由电源通过启动电阻R 1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。

高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。

根据同名端标识情况,此时变压器各路副边没有能量输出。

当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。

同时反馈线圈向UC3842供电。

UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V 和10V,如图3所示。

在开启之前,UC3842消耗的电流在1mA以内。

电源电压接通之后,当7端电压升至16V时UC3842开始工作,启动正常工作后,它的消耗电流约为15mA。

因为UC3842的启动电流在1mA以内,设计时参照这些参数选取R1,所以在R1上的功耗很小。

当然,若VCC端电压较小时,在R1上的压降很小,全部供电工作都可由R1降压后来完成。

但是,通常情况下,VCC端电压都比较大,这样完全通过R1来提供正常工作电压就会使R1自身功耗太大,对整个电源来说效率太低。

一般来说,随着UC3842的启动,R1的工作也就基本结束,余下的任务交给反馈绕组,由反馈绕组产生电压来为UC3842供电。

故R1的功率不必选得很大,1W、2W就足够了。

笔者认为,虽然理论上UC3842启动电流在1mA以内,但实际
应用时,按1.6~2.0mA设计则工作比较便利。

即当VCC端电压为U 伏时
2.2 稳压过程
从图2中可知,当场效应管导通时,整流电压加在变压器T初级绕组Np上的电能变成磁能储存在变压器中,在场效应管导通结束时,Np绕组中电流达到最大值Ipmax,根据法拉第电磁感应定律:
式中:E——整流电压;Lp——变压器初级绕组电感;Ton——场效应管导通时间。

在场效应管关闭瞬间,变压器次级绕组放电电流为最大值Ismax,若忽略各种损耗应为
式中:n——变压器变比,n=Np/Ns,Np、Ns为变压器初、次级绕组匝数。

高频变压器在场效应管导通期间初级绕组储存的能量与场效应管关闭期间次级绕组释放的能量相等:
式中:Ls——变压器次级绕组电感;Uo——输出电压;Toff——场效应管关闭时间。

上式说明,输出电压Uo与Ton成正比,与匝比n及Toff成反比。

比如,由于电源电压变化或负载变化而引起输出电压降低时,反馈线圈的输出电压则会变低,从而使2端电压变低,则脉宽调制器会相应的增大输出PWM波形的占空比,使大功率晶体管导通的时间变长;反之,当电源电压变化或负载变化而引起输出电压升高时,则脉宽调制器会相应的减小PWM输出脉冲波形的占空比,使大功率晶体管导通的时间变短,从而维持输出电压为一恒定值。

UC3842为固定工作频率脉宽调制方式,输出电压或负载变化时仅调整占空比,控制场效应管的导通时间。

反馈电压输入2脚,此脚电压与内部2.5V基准进行比较,产生控制电压,从而控制脉冲宽度;输出脉冲的频率由4脚外接定时电阻Rt及定时电容Ct决定,f
的单位取kΩ,Ct取μF。

3脚为电感电流传感器端,当取样超过1V时,缩小导通脉宽,使电源处于间隙工作状态;6脚,输出端,内部为图腾柱式,上升、下降时间仅50ns,驱动能力为±1A;7脚,供电输入,起振后工作电压为10~13V,低于10V停止工作,功耗为15mW;8脚,内部基准5V(50mA)。

2.3 过流保护原理
当负载电流超过额定值或短路时,场效应管电流增加,R9上的电压反馈至3脚(电压大于1V),通过内部电流放大器使导通宽度变
窄,输出电压下降,直至使UC3842停止工作,没有触发脉冲输出,使场效应管截止,达到保护功率管的目的。

短路现象消失后,电源自动恢复正常工作。

2.4 过压保护原理
当因某种原因使输出电压过高时,由反馈绕组形成的电压也高,从而使2脚的电压过高,内部保护电路起动,使6脚输出脉冲高电平时间变短,或不输出高电平使开关管截止。

2.5 开关管保护电路
由D3、R10、C1及R11、C14、D4构成,消除由变压器漏感产生的反峰电压,从而使开关工作电压不至于太高而毁坏。

3、设计中的注意事项
3.1 起动电路的设计
电路如图4所示,电容C2储存的能量要能满足电源开始正常工作的需要,使得UC3842第7脚有稳定、充足的输入供给。

即电容C2的放电时间要大于UC3 842输出脉冲的高电平持续时间。

否则,电源将出现打嗝现象。

因此,电容C2的容量和质量的选取非常重要。

笔者在实际设计过程中,C2曾用100μF铝电解电容,经常发现电源打嗝;测量反馈端电压,总是太低,以至于反馈端的整流二极管都没有工作,说明反馈端电压幅度不够。

原因在于C2容量不够,不能提供足够的能量来使UC3842充分工作,因此,容量最好在100μF 以上。

3.2 反馈绕组的设计
当UC3842启动后,若反馈绕组不能提供足够的UF,电路就会不停地起动,出现打嗝现象。

另外,根据笔者的经验,若UF大于17.5V时,也会引起UC3842工作异常,导致输出脉冲占空比变小,输出电压变低。

故而反馈绕组匝数的选取及其缠绕是非常重要的,一般可按13~15V设计,使UC3842正常工作时,7脚的电压维持在13V左右。

4、结束语
UC3842是一种性能优良的电流控制型脉宽调制器。

假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。

UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。

由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。

UC3842开关电源。

相关文档
最新文档