高中数学必修三《随机事件的概率》优秀教学设计

合集下载

《随机事件的概率》教案

《随机事件的概率》教案

《随机事件的概率》教案1教学目标1.通过试验,形成对随机亊件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.2.了解频数、频率的概念.3.了解概率的定义,会应用概率公式求简单事件的概率.数学思考与问题解决让学生经历猜想试验-收集数据-分析结果的探索过程.在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.情感与态度在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论,需经过大量重复的试验,让学生从中体验到科学的探究态度.通过概率意义教学,渗透辩证思想教育.重点难点重点1.对随机事件发生可能性大小的定性分析.2.概率的意义.难点1.理解大量重复试验的必要性.2.在具体情境中了解概率的意义.教学设计一、情境引入课件显示教材第63页“大家谈谈”中的第2题.提出问题:(1)“今天有雨”是必然事件还是随机事件?(2)“很可能要下雨”是什么意思?学生畅所欲言,只要合理即可.引出课题:今天我们就来研究可能性大小的问题.设计意图:采用现实情境引入,学生一下被实际情境所吸引,积极思考,发表意见.由此引出今天研究的内容,使学生在现实生活的经验基础上分析并体会可能性有大小乏分.二、新知探究1.摸球试验:一个袋子中有大小相同的5个球,其中3个红球,2个黄球,从中任意摸出一个球,记事件A=“摸到红球”,B=“摸到黄球”.2.提出问题:(1)你认为事件A 和B 哪个发生的可能性大?(2)4名同学一组,轮流从袋子中摸球,记下颜色后放回袋子中,重复20次试验,记录事件A 和B 发生的次数.(3)汇总全班各小组的试验结果,统计摸到红球和黄球的次数,计算摸到红球和黄球的次数占试验总次数的百分比,将结果填入下表中.(投影显示教材第64页表格)设计意图:让学生养成动脑筋、想办法的学习习惯,明白小组合作的优势.(4)事件A 和B 发生的次数所占的百分比大小有什么规律吗?(5)用哪两个数值可以刻画事件A 和B 发生的可能性大小?设计意图:通过这两个问题,引出频数、频率的概念.设总共做n 次重复试验,而事件A 发生了m 次,则称事件A 发生的次数m 为频数,称比值m n 为A 发生的频率.提问:通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大必须怎么做?先让学生回答,回答时教师注意纠正学生的不准确用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验.设计意图:本小节是教学难点,这个结论由学生得出,体现了自主学习的理念,有利于学生思维的发展.3.概率定义.上述摸球试验中,任意摸出一个球,有5种可能结果,摸到毎个球的可能性大小相同.可以用15刻画摸到每个球的可能性大小.于是用35|刻画摸到红球的可能性大小,用25刻画摸到黄球的可能性的大小.用一个数刻画随机事件A 发生的可能性大小,称这个数为事件A 的概率.一般记作P (A ). 一般地,如果一个试验有n 个等可能的结果,而事件A 包含其中k 个结果,则P (A )=.事件包含的可能结果数所有可能结果总数k A n 对任何一个事件A ,它的概率P (A )满足0<P (A )<1,必然事件的概率是1,不可能事件的概率是0.教师活动:参与分析定义、公式,并讲解求概率的方法.学生活动:参与分析定义、公式,从中认识概率的意义和运算公式.[说明]概率的意义较难理解,教师分析,学生参与探讨,问题可明.三、新知应用1.课件显示教材第64页例题.引导学生自己完成.设计意图:培养学生自主学习习惯,激发学生的学习积极性.2.练习:教材第65页练习.在例题学习的基础上,趁热打铁,熟练概率公式的应用.要求学丰尽量独立完成,有困难者,可小组探讨.四、课堂小结1.问题:本节课你有什么收获?2.你学到哪些具体知识?五、布置作业必做题:教材第65〜66页A组第1〜5题,B组第1题.选做题:B组第2题.《随机事件的概率》教案2教学目标知识与技能1.进一步理解概率的意义.2.会通过对某一事件概率的计算来判断游戏的公平性.数学思考与问题解决使学生经历合作交流的过程,在此过程中积累经验,加深对概念的理解.情感与态度由游戏的公平性,感受理论和实践的关系,体会数学来源于实践,又指导生活实践.重点难点重点:利用概率的计算判断游戏的公平性.难点:对于游戏规则的设定.教学设计一、创设情境同学们,下周一我们班要和(二)班进行广播体操比赛,我们班是愿意第一个出场呢,还是(二)班做完咱们再做?(学生回答)其实,谁第一个出场,学校是有规则的,并且规则是公平的.你知道规则是什么吗?学校的规则是这样的,将一枚质地均匀的硬币抛出,落地之后如果正面朝上,则(一)班第一个出场;如果反面朝上,则第一个出场的是(二)班.(规则公平)同学们,如果是将一枚质地均匀的硬币抛掷两次,如果都是正面朝上,我们(一)班第一个出场;如果一个正面朝上,一个反面朝上,(二)班就第一个出场,现在的规则还公平吗?二、大家谈谈1.小组内同学进行交流,大家踊跃发表看法,教师适时将教材第66页“甲、乙两同学的观点”展示出来,再重点讨论这两种方法正确与否.2.指导学生进行将一枚硬币投掷两次的试验,进行验证.小组内一人掷硬币,一个人记结果,其余的同学观察、体会.3.教师总结:甲同学的观点只是停留在日常生活中的经验,没有进行深入的思考、分析,更没有进行试验验证,这个结果是不正确的.乙同学没有停留在日常生活经验的表面,而是对之进行试验验证,试验的结果证明了日常生活的经验和实际的数学规则是有差距的,乙同学的结果是正确的,最值得同学们学习的是乙同学的做法,能够对于数学上的问题进行深入的思考,并进行试验验证,这才是学好数学最重要的品质.而对于我们本节所要讨论的游戏规则公平问题:实际上,在机会游戏中,有两个事件A和B,如果规定A发生,甲胜发生,乙胜,那么当事件A和B的概率相等时,游戏就是公平的.否则,就不公平.三、—起探究教材第67页“一起探究”:(把掷两次硬币的结果列举出来)我们刚才已经通过掷硬币的试验了解到了掷两次硬币共有四种结果,每种结果出现的机会是均等的.具体结果:所以,P(两次正面朝上)=14,P(—次正面朝上,一次反面朝上)=12,P(两次反面朝上)=14.因此如果按“两次正面朝上和一次正面朝上,一次反面朝上”来制订游戏规则显然是不公平的,那么我们该怎样修改游戏规则,使其成为一个公平的游戏?(学生小组内讨论) 学生答案只要是合理的,就应予以肯定、表扬.四、做一做1.学生小组合作,做教材第67页“做一做因此试验共有9种结果,P(两数之和为奇数)=49,P(两数之和为偶数)=59.教师总结,给出正确的答案.重点讲清(讨论):“所有可能出现的结果”“每种出现的结果机会是否均等”,特别是对于“1+2=3”和“2+1=3”是否看为同一种结果,明确它们的不同之处,和“试验共有多少种等可能结果”的区别,这也是解决本节开头甲同学观点错误的关键.2.学生独立做教材第67页例2.3.教材第68页练习第1、2题.学生独立做完之后,指定学生讲述答案,最后教师总结,及时点评.五、课堂小结本节课你最大的收获是什么?(请同学们谈一谈本节课最大的收获)六、布置作业必做题:教材第68〜69页A组第1,4题.选做题:教材第69页B组第1、2題.。

《随机事件的概率》教学设计说明

《随机事件的概率》教学设计说明

《随机事件的概率》教学设计说明第一篇:《随机事件的概率》教学设计说明《随机事件的概率》教学设计说明教材:北师大版高中《数学》必修3第三章第一节第一课时授课教师: **市第**中学 ***一、教学内容的本质、地位与作用《随机事件的概率》是北师大版数学《必修3》第三章第一节的内容,是学生学习《概率》的入门课,也是学习后续知识的基础,现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科.新教材在教学内容的编排上,采用了模块化、螺旋上升的方式.学生在初中阶段已经接触过随机事件、不可能事件、必然事件的概念,高中数学必修三第一章刚刚学习了统计内容,了解了频数、频率等概念,因此本节课是对已学内容的深化和延伸;同时,本节课对于后面学习的古典概型、几何概型以及选修2-3离散型随机变量的分布列等内容又是一个铺垫,具有承上启下的地位.本节课就知识的应用价值上来看:概率反映了随机事件发生的可能性大小,为人们做出正确决策提供依据.就内容的人文价值上来看:研究概率涉及了必然与偶然的辨证统一关系,是培养学生应用意识和思维能力的良好载体.二、教学目标分析(1)通过生活实例让学生进一步认识日常生活中的随机现象,理解必然事件、随机事件、不可能事件的概念,了解随机事件发生的不确定性及其频率的稳定性,从而更好的理解概率的统计定义.(2)让学生经历抛掷硬币试验的过程,由此激发学生的学习兴趣和求知欲,通过抛硬币试验,学生获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;同时让学生明确概率与频率的区别和联系,掌握利用频率估计概率的思想方法.(3)让学生亲历试验过程,培养学生观察、动手和总结的能力,以及同学之间的交流合作能力;强化辨证思维,通过数学史渗透,培育学生刻苦严谨的科学精神;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受必然性与偶然性的辩证统一.基于以上教学内容分析和教学目标分析,确定本节课的教学重点是:通过抛掷硬币了解概率的统计定义、明确其与频率的区别和联系.三、教学问题诊断现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,并且学习的信心不足,对数学存在或多或少的恐惧感.但学生在日常生活中,对于概率已经有一些模糊的认识,同时学生思维比较灵活,有较强的动手操作能力和较好的实验基础,根据学生的心理特征和认知规律,我采用以教师为主导,学生为主体的探究式教学方法,力求引导学生从以下几个角度来认识随机事件的概率.1.频率是随机的,试验前并不能确定,频率反映了随机事件发生的频繁程度,通过分组试验,每一组所做的80次试验中得到的频率不尽相同,而概率是一个客观存在的常数,与试验无关.2.概率反映的是大量重复试验下频率的稳定性,学生常会错误理解抛两次硬币一定是一正一反.3.出现个别频率偏离概率较大的情形是很正常的,这是随机现象的特性.在概率的教学中,对一些学生容易产生误解的地方,可以采用试验的办法帮助学生理解,比如随机事件的概率能否为0和1的问题,都可以通过试验来解决.通过对随机事件概率的学习,学生充分体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力也得到了一定的锻炼.基于以上分析,确定本节课的教学难点是:掌握利用频率估计概率的方法,体会随机事件发生的随机性和规律性.四、教法特点及预期效果分析(1)教法特点抛硬币试验是本节课的精华,唯有亲历随机过程,体会其随机性与规律性,才能真正理解概率概念,才能真正让学生体会频率稳定于概率的过程.课堂教学中不好处理的就是数据的统计分析,以及如何呈现出大量重复试验下频率的稳定性,根据本节课教材内容的特点和学生的认知情况,为了更直观、形象地突出重点,突破难点,利用flash 动画,快速、准确的计算各组的频率,绘制出频率折线图,并能方便快速的画出累积的频率折线图.另外通过动态的演示,观察大量重复试验下的频率呈现出的规律性,让教学更直观、更生动.(2)预期效果希望通过这节课的教学,能使学生感受到随机现象在生活中是广泛存在的,并时刻影响着我们的生活,在大量纷繁杂乱的偶然现象背后,隐藏着必然的规律,而概率就是这种偶然中的一种必然;能使学生在紧张而活泼的教学环节中,亲历随机性和规律性的统一过程;能使学生初步理解随机性,并感受利用统计方法处理随机性中的规律性——随机性是表象,规律性才是我们研究的主题.第二篇:随机事件教学设计说明《25.1.1随机事件》教案说明江西省高安中学陈国庆一、教材分析1、教材地位与作用《义务教育课程标准》将“统计与概率”作为义务教育阶段数学课程学习的四个领域之一,本课《随机事件》是义务教育课程标准实验教科书人教版九年级上册第二十五章第一节第一课时,主要研究事件的分类。

随机事件的概率教学设计

随机事件的概率教学设计

随机事件的概率教学设计随机事件的概率教学设计作为一名人民教师,很有必要精心设计一份教学设计,教学设计是实现教学目标的计划性和决策性活动。

那么应当如何写教学设计呢?以下是小编帮大家整理的随机事件的概率教学设计,仅供参考,欢迎大家阅读。

一、教材分析1.教学内容《随机事件的概率》是人教版普通高中课程标准实验教科书数学必修3第一章第一节课。

本节课在教材中的地位和作用《随机事件的概率》是高中阶段学生学习《概率》的入门课,也是一堂概念课。

不仅要学习随机事件和概率的概念,而且要初步感受概率的实际意义和思考方法,将直接影响到对后续概率课程的学习.这节课不仅是全章内容的理论基础,同时也向学生指明了概率课程的研究方向就是进一步揭示随机事件的规律性。

概率是一个非常重要的数学分支,它真正直接地反映了数学来源于生活而又反过来服务生活。

同时,概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,都是学生今后的学习、工作与生活中必备的数学素养。

二、教学目标分析1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析我所面对的学生是高一的学生,具有一定的分析问题与解决问题的能力,逻辑思维也在初步形成中,但由于年龄的原因,他们思维活跃却不够冷静、严谨,因此较片面。

虽然概率来源于生活,却也要深刻地挖掘生活中的事例,学生会因为一点阻碍而产生厌学情绪,同时由于这堂课主要学习的是概念,学生会觉得枯燥而产生烦躁的心理。

高中数学必修三《随机事件的概率》优秀教学设计

高中数学必修三《随机事件的概率》优秀教学设计

§3.1.1随机事件的概率(一)一、三维目标1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解事件A出现的频率的意义和概率的概念,明确事件A发生的频率与概率的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷硬币”实验的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、教学重、难点教学重点:1.理解随机事件发生的不确定性和频率的稳定性.2.正确理解概率的意义.教学难点:1.对概率含义的正确理解.2.理解频率与概率的关系.三、教学过程(一)创设情境[观看六个事件]事件一:地球一直在运动吗?事件二:木柴燃烧能产生热量吗?事件三:一天内,在常温下给定的石头会风化吗?事件四:在标准大气压下,且温度低于零摄氏度,雪会融化吗?事件五:我抛一枚硬币,要是能出现正面就好了。

事件六:猜猜,王义夫下一枪会中十环吗?(二)新知探究提出问题11、从给定的事件分析该事件是否发生,各有什么特点?(1)“地球不停地转动”(2)“木柴燃烧,产生热量”(3)“一天内,石头风化”(4)“在标准大气压下且温度低于0℃时,雪融化”(5)“抛一枚质地均匀的硬币,出现正面”(6)“某人射击一次,中靶”2、对相关概念的学习定义:必然事件:在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.随机事件:在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.注意:事件一般用大写字母A,B,C…表示。

《随机事件的概率》教学设计和反思

《随机事件的概率》教学设计和反思

《随机事件的概率》教学设计和反思教学设计:教学目标:1.理解随机事件的概念和基本性质。

2.思考随机事件的分类和概率的计算方法。

3.能够通过例题计算随机事件的概率。

教学步骤:引入:1.教师出示一张扑克牌,问学生抽一张扑克牌得到黑桃的概率是多少?2.学生思考后,教师在黑板上引入随机事件和概率的概念。

概念解释:1.教师解释随机事件的概念,即在相同的条件下,可能发生也可能不发生的事件。

2.教师引入样本空间的概念,即随机事件所有可能结果的集合。

3.教师解释概率的概念,即事件发生可能性的大小。

分类讨论:1.教师解释相互独立事件的概念,即事件的发生与不发生彼此没有影响。

2.教师解释互斥事件的概念,即事件的发生与不发生不能同时出现。

3.教师引导学生思考其他类型的随机事件,并在课后让学生总结。

概率计算方法:1.教师解释计算概率的方法,即事件发生的次数与样本空间中总可能结果的比值。

2.教师引导学生通过例题进行概率计算,包括随机事件的相加法则和互斥事件的相乘法则。

练习和巩固:1.教师组织学生进行小组讨论,解答几个随机事件的概率计算题目。

2.教师进行课堂点评,让学生共同总结概率计算方法和思考过程。

反思:教学设计中采用了启发式教学法和合作学习法。

优点:1.引入阶段通过教师提问激发学生思考,主动融入学习过程。

2.在概念解释中,通过示例的方式让学生更加直观地理解概念和性质。

3.在分类讨论中,引导学生进行思考和总结,培养学生的归纳总结能力。

4.在练习和巩固中,通过小组讨论和课堂点评促进学生思考和合作。

不足:1.教学步骤中,没有具体安排概率计算的例题,可能导致学生在练习环节不够熟练。

2.反思环节的时间较短,没有足够的时间总结和巩固学习内容。

3.教学设计中没有考虑到学生的不同水平和能力差异,可能导致部分学生跟不上教学进度。

改进:1.在引入阶段增加一些具体的例子,让学生更好地理解随机事件和概率的概念。

2.在分类讨论中,引导学生发现更多类型的随机事件,并举例说明。

《随机事件的概率》教学设计与反思

《随机事件的概率》教学设计与反思

《随机事件的概率》教学设计与反思关于《随机事件的概率》教学设计与反思一.教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着一定的规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。

随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.二.学情分析求随机事件的概率,学生在初中已经接触到一些类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对随机事件的概率这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。

三.教学设计思路对于随机事件的概率,采用实验探究和理论探究,通过设置问题情景、探究以及知识的迁移,侧重于学生的思、探、究的自主学习,促使学生多动,并利用powerpoint制作课件,激发学生兴趣,争取使学生有更多自主支配的时间.四.教学目标:(1)知识与技能:使学生了解随机事件的定义和随机事件的概率;(2)过程与方法:提高学生分析问题和解决问题的能力,培养学生的数学化归思想;(3)情感与价值:使学生认识到研究随机事件的概率是现实生活的需要,树立辩证唯物主义观点.教学过程:一、情境导入:1、(出示幻灯片1)请同学们思考下列所述各事件发生的可能性(学生观察思考、感知对象??学生活动)(师生共同活动)1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的潜艇战搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.2、(出示幻灯片2)下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(应用概念判断,加强理解学生活动)3、请同学们再分别举出一些例子(理论联系实际学生动手写,然后投影)二、观察探索:由同学们自己动手做抛掷硬币的实验,观察正面朝上事件的规律性。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标:1. 知识目标:掌握随机事件的概念和基本性质,了解概率的概念和计算方法。

2. 能力目标:培养学生分析和解决实际问题的能力,提高学生的数学思维和逻辑推理能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的合作精神和团队意识。

二、教学重难点:1. 随机事件的概念和基本性质;2. 概率的概念和计算方法。

三、教学方法:1. 指导学生自主学习,通过案例分析和实例演练,提高学生的理解和记忆能力;2. 运用启发式教学法,引导学生主动探究,培养学生的独立思考能力;3. 采用讨论和思维导引的方式,激发学生的思维活跃,促进学生之间的交流和合作。

四、教学过程:第一步:导入教师可以通过举例的方式,向学生引入随机事件和概率的概念。

比如抛硬币、掷骰子等随机事件,引发学生的兴趣和好奇心,促使学生思考随机事件和概率的内涵和意义。

第二步:概念讲解1. 随机事件的概念和基本性质教师通过课件或板书,向学生介绍随机事件的定义和性质,说明随机事件是在一定条件下会发生或不发生的事件,具有不确定性和随机性。

2. 概率的概念和计算方法教师向学生介绍概率的定义和性质,说明概率是指某一随机事件发生的可能性大小。

教师还可以向学生介绍概率的计算方法,包括频率法和几何法等。

第三步:例题讲解教师结合具体的例题,向学生演示随机事件和概率的计算方法,引导学生掌握相关的解题技巧和方法。

教师可以通过课件或黑板,逐步讲解例题的解题过程,注重引导学生理清思路,抓住解题的关键点和要领。

第四步:小组讨论教师将学生分成若干小组,每个小组选择一个相关的实际问题,利用所学知识进行讨论和解答。

通过小组讨论,激发学生的思维活跃,培养学生的合作精神和团队意识,提高学生的分析和解决问题的能力。

第五步:课堂练习教师设计一些相关的练习题,供学生进行课堂练习。

通过课堂练习,检测学生对所学知识的掌握情况,加强学生对随机事件和概率的理解和应用能力。

第六步:作业布置教师布置相关的作业,巩固学生在课堂上所学到的知识。

高中数学人教版必修3随机事件的概率教学设计

高中数学人教版必修3随机事件的概率教学设计

S
的确定事件,简称为确定事件.
2.随机事件:在条件 S 下可能发生也可能不发生的事件,叫做相对于条件
S 的随机事件,简称为随机事件.
3.事件:确定事件和随机事件统称为事件, 一般用大写字母 A,B,C,……
表示.
4.分类:
不可能事件
确定事件
事件
必然事件
随机事件
学习检测 1.判断 (正确的打“√”,错误的打“×” ) (1)三角形的内角和为 180°是必然事件. ( ) (2)“抛掷硬币三次,三次正面向上”是不可能事件. ( )
随机事件 A,事件 A 发生的频率 fn(A)随着试验次数的增加稳定于概率 P(A),因

可用频率
fn(A)来估计概率
nA P(A),即 P(A)≈ n .
因此求事件 A 的概率的前提是:大量重复的试验,试验的次数越多,获得
的数据越多,这时用 nnA来表示 P(A)越精确.
学习检测
在一次掷硬币试验中,掷 30 000 次,其中有 14 984 次正面朝上,则出现正
2.解此类题目的步骤是:先利用频率的计算公式依次计算频率,然后用频 率估计概率.
频率与概率的关系习题检测
3.某射击运动员进行飞碟射击训练,七次训练的成绩记录如下:
射击次数 n 100 120 150 100 150 160 150
击中飞碟数 nA 81 95 120 81 119 127 121
(1)求各次击中飞碟的频率; (保留三位小数 )
2.理解频率与概率的联系与区别. (重点 )
【教学过程】 一、知识梳理,要点初探
教材整理 1 事件
阅读教材 P108 的内容,完成下列问题.
1.确定事件:在条件 S 下,一定会发生的事件,叫做相对于条件 S 的必然
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件的概率教学设计
1、创设情境,引出课题——三个寓言故事
1.一农夫嫌自己家的秧苗长得太慢,于是想到一个办法,把每根禾苗都拔高一截,这样就可以提前丰收了。

拔苗助长——不可能事件
2.宋国有个农夫,他的田地里有一截树桩。

一天,一只野兔撞在树桩上死了。

农夫便认为只要守在树桩旁边,一定能再捡到兔子。

守株待兔——随机事件
3.愚公家门前有两座大山挡着路,他决心从自己开始挖山,自己死后有儿子,儿子死了还有孙子,子子孙孙无穷无尽的挖,一定可以把山挖平。

愚公移山——必然事件
试分析:“从一堆牌中任意抽一张抽到红牌”这是什么事件?
(目的:让学生知道事件是有条件的)
2、温故知新、承前启后——温习随机事件概念:
⑴必然事件:在条件S下,一定会发生的事件,叫相对于条件S的~;
⑵不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的~;
⑶随机事件:在条件S下可能发生也可能不发生的事件,叫相对于S的~;
⑷确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.
讨论:下列事件分别是什么事件?(不可能事件、必然事件、随机事件)
太阳打西边出来逆水行舟,不进则退数学考试76分
飞来横祸水滴石穿异想天开
瓜熟蒂落嫦娥奔月明天下雨
竹篮打水我中奖了流水不腐
小组讨论:抽学生回答
学生甲:(不可能事件)太阳打西边出来;异想天开;嫦娥奔月;竹篮打水学生乙:(必然事件)逆水行舟,不进则退;水滴石穿;瓜熟蒂落;流水不腐(目的:通过实例然学生再次巩固三种事件)
3、师生合作,共探新知——抛掷硬币试验:
复习:频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数;称事件A出
现的比例f n (A)=
n
n A
为事件A 出现的频率. ◆试验步骤:(全班共48位同学,小组合作学习)
第一步,全班分成八大组,每组6人,由小组长和一个同学课前做。

第二步,每小组轮流将试验结果汇报给老师;
第三步,利用EXCEL 软件分析抛掷硬币“正面朝上”的频率分布情况,并利

第四步,数据汇总,统计“正面朝上”次数的频数及频率;
第五步,对比研究,探讨“正面朝上”的规律性.(教师引导、学生归纳)
①随着试验次数的增加,硬币“正面朝上”的频率稳定在0.5附近;
②抛掷相同次数的硬币,硬币“正面朝上”的频率不是一成不变的。

(在试验分析过程中,由学生归纳出来)4、小组合作,共探新知——随机数表中的奥秘:
通过老师引导学生数“数随机数表”中的9的个数后,让学生分小组数更多
通过学生共同总结:随着试验次数的增多,“9”出现的频率越来越接近常数0.1。

(目的:通过两个实验引出概率的定义)
概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

P(A)∈(0,1)。

不可能事件的概率为:0 必然事件的概率为:1
讨论:事件A的概率P(A)的范围?频率与概率有何区别和联系?
◆频率与概率的区别和联系:(重点、难点)
频率:反应在该次试验中事件A发生的频繁程度,具有随机性,与试验有关。

概率:反应事件A发生的可能性大小,是理论值,是一个确定的数,具有稳定性,与试验无关。

联系:随着试验次数的增加,频率会接近于某一个常数,并在它附近摆动而趋于稳定,这个常数就是概率。

当试验次数足够多时,概率可以通过频率来估计。

根据频率和概率的相关知识,解释下列问题?
(1)天气预报说下星期一降水概率为90%,下星期三降水概率为 10%,于是有位同学说:“下星期一肯定下雨,下星期三肯定不下雨.”
(2)一个病人去看病,医生告诉他对这个病的治愈概率有9成,病人很高兴。

医生接着说:之前已经有9个病人被我治好了。

话还没说完,病人拔腿就跑。

(3)理论证明双色球一等奖中奖概率为1/177221088,是指买177221088张彩票就一定能中一个一等奖吗?
(目的:通过三个问题让学生掌握频率与概率的区别和联系)
例1:
(目的:通过例题让学生会用频率估计概率)
5、知识小计,巩固概念:
1.随机事件的概念
2.随机事件的概率的定义
3.概率的取值范围:
(通过师生共同复习加深概率的记忆和理解)
6、课外探究,联系生活:
探究1:电脑在今天已走进了千家万户,大大提高了人们的学习和工作效率。

当你的指尖敲打着电脑键盘时,你是否想过,键盘上的字母为什么不按顺序排列呢?
我们不妨一起来做一次统计,先选取一篇英文文章,然后统计总的字母数,每个字母出现的频数与频率,你能发现什么?
探究2:(三扇门问题)曾经美国有一档娱乐节目,最后环节在嘉宾面前呈现三扇门,只有一扇门后面有汽车,嘉宾若猜中即开走。

嘉宾任选一扇门后,主持人从剩下的两扇门中打开一扇后面无车的空门(主持人知道哪扇门后面有车,特意打开空门)此时主持人再问嘉宾:“现在,只有两扇门了,请问你要不要换一扇门?”换,还是不换?哪种情况猜中汽车的可能性更大?。

相关文档
最新文档