SPSS实习报告

合集下载

spss实习报告

spss实习报告

spss实习报告篇一:spss实习报告SPSS统计分析软件实验报告石河子大学经济与管理学院经济与贸易系国际经济与贸易专业XX级1班雍荣 XX165106实验一 SPSS基本操作一、实验目的1.熟悉SPSS的菜单和窗口界面,熟悉SPSS各种参数的设置; 2.掌握SPSS的数据管理功能。

二、实验内容及步骤(一)数据的输入和保存 1. SPSS界面当打开SPSS后,展现在我们面前的界面如下:请注意窗口顶部显示为“SPSS for Windows Data Editor”,表明现在所看到的是SPSS的数据管理窗口。

这是一个典型的Windows软件界面,有菜单栏、工具栏。

该界面和EXCEL极为相似,很多操作也与EXCEL类似,同学们可以自己试试。

2.定义变量选择菜单Data==>Define Variable。

系统弹出定义变量对话框如下:对话框最上方为变量名,现在显示为“VAR00001”,这是系统的默认变量名;往下是变量情况描述,可以看到系统默认该变量为数值型,长度为8,有两位小数位,尚无缺失值,显示对齐方式为右对齐;第三部分为四个设置更改按钮,分别可以设定变量类型、标签、缺失值和列显示格式;第四部分实际上是用来定义变量属于数值变量、有序分类变量还是无序分类变量,现在系统默认新变量为数值变量;最下方则依次是确定、取消和帮助按钮。

假如有两组数据如下:GROUP 1: GROUP 2:先来建立分组变量GROUP。

请将变量名改为GROUP,然后单击OK按钮。

现在SPSS的数据管理窗口如下所示:第一列的名称已经改为了“group”,这就是我们所定义的新变量“group”。

现在我们来建立变量X。

单击第一行第二列的单元格,然后选择菜单Data==>Define Variable,同样,将变量名改为X,然后确认。

此时SPSS的数据管理窗口如下所示:3.输入数据首先,当前单元格下移,变成了二行二列单元格,而一行二列单元格的内容则被替换成了;其次,第一行的标号变黑,表明该行已输入了数据;第三,一行一列单元格因为没有输入过数据,显示为“.”,这代表该数据为缺失值。

spss实验报告,心得体会

spss实验报告,心得体会

spss实验报告,心得体会篇一:SPSS实验报告SPSS应用——实验报告班级:统计0801班学号:1304080116 姓名: 宋磊指导老师:胡朝明2010.9.8一、实验目的:1、熟悉SPSS操作系统,掌握数据管理界面的简单的操作;2、熟悉SPSS结果窗口的常用操作方法,掌握输出结果在文字处理软件中的使用方法。

掌握常用统计图(线图、条图、饼图、散点、直方图等)的绘制方法;3、熟悉描述性统计图的绘制方法;4、熟悉描述性统计图的一般编辑方法。

掌握相关分析的操作,对显著性水平的基本简单判断。

二、实验要求:1、数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。

2、了解描述性统计的作用,并1掌握其SPSS的实现(频数,均值,标准差,中位数,众数,极差)。

3、应用SPSS生成表格和图形,并对表格和图形进行简单的编辑和分析。

4、应用SPSS做一些探索性分析(如方差分析,相关分析)。

三、实验内容:1、使用SPSS进行数据的录入,并保存: 职工基本情况数据:操作步骤如下:打开SPSS软件,然后在数据编辑窗口(Data View)中录入数据,此时变量名默认为var00001,var00002,…,var00007,然后在Variable View窗口中将变量名称更改即可。

具体结果如下图所示:输入后的数据为:将上述的数据进行保存:单击保存即可。

2、读取上述保存文件:选择菜单File--Open—Data;选择数据文件的类型,并输入文件名进行读取,出现如下窗口:选定职工基本情况.sav文件单击打开即可读取数据。

3、对上述数据新增一个变量工龄,其操作步骤为将当前数据单元确定在某变量上,选择菜单Data—Insert Variable,SPSS自动在当前数据单元所在列的前一列插入一2个空列,该列的变量名默认为var00016,数据类型为标准数值型,变量值均是系统缺失值,然后将数据填入修改。

结果如下图所示:篇二:SPSS相关分析实验报告本科教学实验报告(实验)课程名称:数据分析技术系列实验实验报告学生姓名:一、实验室名称:二、实验项目名称:相关分析三、实验原理相关关系是不完全确定的随机关系。

spss实训心得体会范文

spss实训心得体会范文

spss 实训心得体会范文【篇一: spss 实训个人总结表】数信系学生项目实训个人总结表数学与信息工程系年月日【篇二:实习总结spss 】实习总结这次实习使用的是spss17.0版本的软件,通过这次实习,我了解到 spss 具有完整的数据输入、编辑、统计分析、图形制作等功能。

平日课下进行统计调查技能培训的时候,分析数据所用的软件是excel 。

虽然使用excel 可以对数据进行透视、分类、筛选以及计算相关系数等,但是这些操作都需要自己每一步每一步的进行手动操作,而使用spss 软件在对数据进行整理时,只需对软件某选项内设置变量条件,系统便自动的进行整理。

通过这次spss 实习,我又入门了一项非常实用的软件,会为以后统计分析提供多一种的选择。

下面我会从以下四方面分别阐述这次实习的收获与总结。

做问卷调查根据指导老师的安排,我需要独自完成 6 份《广东高校在校大学生消费使用数码产品情况》的调查问卷。

去广工、广财听宣讲会并且在那里做了两份问卷调查,剩下的 4 份是以电子版的形式做的问卷调查。

在做问卷调查的过程中,为了保证问卷的有效性和准确性,我会认真审核每一份问卷是否填写完整以及前后是否合逻辑。

在我的六份问卷调查中,比较容易出现问题的主要在每天使用数码产品的时间,也是在做问卷调查中叮嘱最多的。

这都是值得的,因为保证问卷的客观和有效是后面做统计分析的基础。

这次实训是全班合作完成问卷,如果是一个人完成30 几份的问卷,那么真是一项不容小觑的任务。

spss 入门操作这一部分主要是根据老师编制的指导书展开。

spss 入门操作主要涉及到数据的输入、描述统计分析、假设检验、相关与回归分析。

针对每一项都有专门的案例以及相应的练习。

个人认为最难的是假设检验这一块,因为《统计学原理》是在之前的学期学习的,统计分析的原理基本上都记不起来,对于输出假设检验结果对问题进行分析方面问题比较大。

我自己也回去看了相应的统计学原理,有一定的了解后,进行实操也比较顺利。

市场营销研究spss个人实习报告

市场营销研究spss个人实习报告

竭诚为您提供优质文档/双击可除市场营销研究spss个人实习报告篇一:spss实习报告spss统计分析软件实验报告石河子大学经济与管理学院经济与贸易系国际经济与贸易专业20XX级1班雍荣20XX165106实验一spss基本操作一、实验目的1.熟悉spss的菜单和窗口界面,熟悉spss各种参数的设置;2.掌握spss的数据管理功能。

二、实验内容及步骤(一)数据的输入和保存1.spss界面当打开spss后,展现在我们面前的界面如下:请注意窗口顶部显示为“spssforwindowsDataeditor”,表明现在所看到的是spss的数据管理窗口。

这是一个典型的windows软件界面,有菜单栏、工具栏。

该界面和exceL 极为相似,很多操作也与exceL类似,同学们可以自己试试。

2.定义变量选择菜单Data==>DefineVariable。

系统弹出定义变量对话框如下:对话框最上方为变量名,现在显示为“VAR00001”,这是系统的默认变量名;往下是变量情况描述,可以看到系统默认该变量为数值型,长度为8,有两位小数位,尚无缺失值,显示对齐方式为右对齐;第三部分为四个设置更改按钮,分别可以设定变量类型、标签、缺失值和列显示格式;第四部分实际上是用来定义变量属于数值变量、有序分类变量还是无序分类变量,现在系统默认新变量为数值变量;最下方则依次是确定、取消和帮助按钮。

假如有两组数据如下:gRoup1:0.841.051.201.201.391.531.671.801.872.072.11 gRoup2:0.540.640.640.750.760.811.161.201.341.351.48 1.561.87先来建立分组变量gRoup。

请将变量名改为gRoup,然后单击oK按钮。

现在spss的数据管理窗口如下所示:第一列的名称已经改为了“group”,这就是我们所定义的新变量“group”。

现在我们来建立变量x。

spss实验报告心得体会

spss实验报告心得体会

spss实验报告心得体会篇一:SPSS学习报告总结心得应用统计分析学习报告本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,SPSS也只是听说过,从来没有学过。

一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看老师给的英文教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水。

老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了。

结合软件和书上的例子,实战一下,发现SPSS的功能相当强大。

最后总结出这篇报告,以巩固所学。

SPSS,全称是Statistical Product and Service Solutions,即“统计产品与服务解决方案”软件,是IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,也是世界上公认的三大数据分析软件之一。

SPSS具有统计分析功能强大、操作界面友好、与其他软件交互性好等特点,被广泛应用于经济管理、医疗卫生、自然科学等各个领域。

具体到管理方面,SPSS也是一个进行数据分析和预测的强大工具。

这门课中也会用到AMOS软件。

关于SPSS的书,很多都是首先介绍软件的。

这个软件易于安装,我装的是的,虽然有一些改变和优化,但是主体都是一样的,而且都是可视化界面,用起来很方面且容易上手。

所以,我学习的重点是卡方检验和T检验、方差分析、相关分析、回归分析、因子分析、结构方程模型等方法的适用范围、应用价值、计算方式、结果的解释和表述。

首先是T检验这一部分。

由于参数检验的基础不牢固,这部分也是最初开始接触应用统计的东西,学起来很多东西拿不准,比如说原假设默认的是什么。

结果出来后依然分不清楚是接受原假设还是拒绝原假设。

不过现在弄懂了。

这部分很有用的是T检验。

T检验应用于当样本数较小时,且样本取自正态总体同时做两样本均数比较时,还要求两样本的总体方差相等时,已知一个总体均数u,可得到一个样本均数及该样本标准差,样本来自正态或近似正态总体。

spss实习报告心得范文3篇实习报告

spss实习报告心得范文3篇实习报告

spss实习报告心得范文3篇当我还是大学生的时候,我有概率统计和数学分析的基础,但是我从来没有接触过任何应用统计分析的东西。

SPSS只是听说过,从未听说过。

我一直认为在一起学习很难。

在这个学期开始的时候,我没有仔细看老师给的英语教材,也没有在课后收集相关的资料。

因此,我觉得有点难学,而且总是感到困惑。

老师说期末考试是提交学习报告,然后我从图书馆借了一些教材并检查了一些材料。

我发现许多问题很明显。

结合软件和书籍中的例子,实战表明SPSS是相当强大的最后,对本报告进行总结,以巩固我们所学到的知识。

SPSS,全称是统计产品和服务解决方案,是“统计产品和服务解决方案”软件。

它是IBM推出的用于统计分析、数据挖掘、预测分析和决策支持任务的一系列软件产品和相关服务的总称,也是世界公认的三大数据分析软件之一。

SPSS具有强大的统计分析功能、友好的操作界面以及与其他软件良好的交互作用等特点。

它广泛应用于经济管理、医疗保健、自然科学等各个领域。

在管理方面,SPSS也是一个强大的数据分析和预测工具。

本课程还将使用AMOS软件。

许多关于SPSS的书籍首先介绍了软件这个软件很容易安装,我安装了190,尽管是200有一些变化和优化,但是主体是相同的,它们都是可视化界面,易于使用。

因此,本文研究的重点是卡方检验、t检验、方差分析、相关分析、回归分析、因子分析、结构方程模型等方法的应用范围、应用价值、计算方法、结果的解释和表达。

第一部分是测试由于参数检验的基础不牢固,这部分也是第一次接触到应用统计学。

我对许多事情都不确定,比如原始假设的缺省值是多少。

结果出来后,仍然不清楚是接受还是拒绝最初的假设。

但是现在我明白了这部分对测试非常有用当样本数量较少且样本取自正常人群并比较平均样本数量时,使用t检验。

还要求两个样本的总体方差相等。

如果总体平均数U已知,则可以获得样本平均数和样本的标准差。

样本来自正常或接近正常的人群t检验分为单样本t检验、独立样本t检验和配对样本t检验。

spss统计分析实习心得3篇(精选5篇)

spss统计分析实习心得3篇(精选5篇)第一篇:spss统计分析实习心得3篇spss统计分析实习心得3篇五天的SPSS软件实训终于结束了,虽然实训过程充满了酸甜苦辣,但实训结果却是甜的。

看着小组的课题报告,心里有种说不出来的感触。

高老师在对统计理论及SPSS 软件功能模块的讲解的同时更侧重于统计分析在各项工作中的实际应用,使我们不仅掌握SPSS 软件及技术原理而且学会运用统计方法解决工作和学习中的实际问题这个实训。

我真真正正学到了不少知识,另外,也提高了自己分析问题解决问题的能力。

小组中每个人完成不同的任务,我的任务是用独立样本T检验的方法分析市、县及县以下的分类对社会消费品零售总额的影响,分析方差,均值,P值,显著性如何并进行T检验,得出结论报告。

结果中比较有用的值为差值变量的均值Mean和Sig显著性在初级统计中,通常都要求所分析的数据呈现正态分布。

通过对spss软件对数据的实践处理,我感觉显著性检验问题还是比较简单的,但对具体数据分析的目的性,实用性以及自己在做研究时如何使用,还有待进一步实践和提高。

SPSS 有具体的使用者要求的分析深度,同时是一个可视化的工具,使我们非常容易使用,这样我们可以自己对结果进行检查。

电算化老师曾经说过,学习软件其实只是学习软件的操作流程,而要真正掌握整个软件,就得自己摸索探究,真真正正弄懂它,还要下一定的功夫的。

我也深刻体会到了这点。

前几次实训都是关于会计实验的,虽然时间安排比此次实训紧,任务量大,但实训结束后,基本的试训内容都完全掌握。

而这次实训,虽然时间安排较为轻松,内容也不多,操作起来也有一定的难度,另外受外界因素的影响,根本就听不见看不见老师讲的,即便后来老师一讲就去前面,由于没有条件跟着操作,导致一部分内容总是不熟练,请教同学他们也不会,不过,问题也总会用解决的办法。

经过我坚持不懈的努力,在本次实训结束之前,我终于弥补了自己不熟练的那部分内容。

学习SPSS软件,对于我们这些将来要时刻与数据打交道的人是有很大的帮助的,它主要的是运用SPSS软件结合所学统计知识对数据进行需要的处理,相对于EXCEL处理,SPSS软件处理不仅效率高,而且操作简单。

spss实训报告1

实训报告实验课程名称SPSS软件实训系(部)年级专业班学生姓名学号开课时间至学年第学期实验一均值比较与T检验一实验目的1、掌握均值比较,用于计算指定变量的综合描述统计量,2、掌握单样本T检验(One—Sample T Test),检验单个变量的均值与假设之间是否存在差异;3、掌握独立样本T检验(Independent Samples Test),用于检验两组来自独立总体的样本,企图理综题的均值或中心位置是否一样4、掌握配对样本T检验(Paired Samples Test),用于检验两个相关的样本是否来自具有相同均值的总体。

二实验内容1 (1) 解决问题的原理:分析该班的数学成绩与全国的平均成绩70分之间是否有显著性差异,其中全班平均成绩为单个变量的均值,全国平均成绩70分之间为假设检验值,此问题满足单样本T检验(One—Sample T Test)的条件,因此用单样本T检验来解决此问题。

(2) 实验步骤;第1步数据组织;首先建立SPSS数据文件,只需建立一个变量“成绩”,录入相应的数据即可。

第2步打开主对话框;选择Analyze→ Compare Means → One-Sample T Test ,打开同下图样的单样本T检验主对话框。

第3步确定要进行T检验的变量;在上图所示的对话框中,选择“成绩”变量作为检验变量,移入“Test Variable(s)”框中。

第4步输入要检验的值;在上图的对话框中的“Test value”中输入要检验的值,本例应输入70。

(3)结果分析(1)单样本统计量单样本统计量(One-Sample Statistics)(2)单样本T检验结果:当置信水平为95%时,显著性水平为0.05,从单样本T检验(One—Sample T Test)结果表可以看出,双尾检验率P值为0.002,小于0.05,故拒绝原假设,也就是说该班的数学成绩与全国的平均成绩70分之间有显著性差异。

spss实验报告

《统计实习》SPSS实验报告姓名:学号:班级:会计二班实验报告二实验项目:描述性统计分析实验目的:1、掌握数据集中趋势和离中趋势的分析方法;2、熟练掌握各个分析过程的基本步骤以及彼此之间的联系和区别..实验内容及步骤一、数据输入案例:对6名男生和6名女生的肺活量的统计;数据如下:1.打开SPSS软件;进行数据输入:通过打开数据的方式对XLS的数据进行输入其变量视图为:二、探索分析进行探索分析得出如下输出结果:浏览由上表可以看出;6例均为有效值;没有记录缺失值得情况..由上表可以看出;男女之间肺活量的差异;男生明显优于女生;范围更广;偏度大.. 男男 Stem-and-Leaf PlotFrequency Stem & Leaf2.00 1 . 342.00 1 . 892.00 2 . 02Stem width: 1000Each leaf: 1 cases女女 Stem-and-Leaf PlotFrequency Stem & Leaf2.00 1 . 233.00 1 . 568 1.00 2 . 0Stem width: 1000Each leaf: 1 cases三、频率分析进行频率分析得出如下输出结果:由上图可知;分析变量名:肺活量..可见样本量N为6例;缺失值0例; 1500以下的33%;1500-2000男生33%女生50%;2000以上女生16.7%;男生33%..四、描述分析进行描述分析得出如下输出结果:由上图可知;分析变量名:工资;可见样本量N为6例;极小值为男1342女1213;极大值为男2200女2077;说明12人中肺活量最少的为女生是1213;最多的为男生有2200;均值为1810.50/1621.33;.标准差为327.735/325.408;离散程度不算大..五、交叉分析实验报告三实验项目:均值比较实验目的:.学习利用SPSS进行单样本、两独立样本以及成对样本的均值检验..实验内容及步骤(一)描述统计案例:某医疗机构为研究某种减肥药的疗效;对15位肥胖者进行为期半年的观察测试;测试指标为使用该药之前和之后的体重..编号 1 2 3 4 5服药前198 237 233 179 219服药后192 225 226 172 214编号 6 7 8 9 10服药前169 222 167 199 233服药后161 210 161 193 226编号11 12 13 14 15服药前179 158 157 216 257服药后173 154 143 206 249输入SPSS建立数据..由上图可知;结果输出均值、样本量和标准差..因为选择了分组变量;所以三项指标均给出分组及合计值;可见以这种方式列出统计量可以非常直观的进行各组间的比较..由上表可知;在显著性水平为0.05时;服药前后的概率p值为小于0.05;拒绝零假设;说明服药前后的体重有显著性变化(二)单样本T检验进行单样本T检验分析得出如下输出结果:由上表可以知;单个样本统计量分析表;的基本情况描述;有样本量、均值、标准差和标准误;单样本t检验表;第一行注明了用于比较的已知总体均值为14;从左到右依次为t值t、自由度df、P值Sig.2-tailed、两均值的差值Mean Difference、差值的95%可信区间..由上表可知:t=34.215;P=0.000<0.05..因此可以认为肺气肿的总体均值不等于0.(三)双样本T检验案例:研究某安慰剂对肥胖病人治疗作用;用20名患者分组配对;测得体重如下表;要求测定该安慰剂对人的体重作用是否比药物好..进行双样本T检验得出如下输出结果:T检验成对样本统计量均值N 标准差均值的标准误对 1 安慰剂121.80 10 11.419 3.611 组药物组111.80 10 10.185 3.221 由上图可知;对变量各自的统计描述;此处只有1对;故只有对1..此处进行配对变量间的相关性分析配对t检验表;给出最终的检验结果;由上表可见P=0.001;故可认为安慰剂组和药物组对肥胖病人的体重有差别影响实验报告四实验项目:相关分析实验目的:1.学习利用SPSS进行相关分析、偏相关分析、距离分析、线性回归分析和曲线回归..实验内容及步骤(一)两变量的相关分析案例:某医疗机构为研究某种减肥药的疗效;对15位肥胖者进行为期半年的观察测试;测试指标为使用该药之前和之后的体重..编号 1 2 3 4 5服药前198 237 233 179 219服药后192 225 226 172 214编号 6 7 8 9 10服药前169 222 167 199 233服药后161 210 161 193 226编号11 12 13 14 15服药前179 158 157 216 257服药后173 154 143 206 249进行相关双变量分析得出如下输出结果:相关性相关系数系数表..变量间两两的相关系数是用方阵的形式给出的..每一行和每一列的两个变量对应的格子中就是这两个变量相关分析结果结果;共分为三列;分别是相关系数、P值和样本数..由于这里只分析了两个变量;因此给出的是2*2的方阵..由上表可见;服药前和服药后自身的相关系数均为1of course;而治疗前和治疗后的相关系数为0.911;P<0.01(二)偏相关分析偏相关已知有某河流的一年月平均流量观测数据和该河流所在地区当年的月平均雨量和月平均温度观测数据;如表所示..试分析温度与河水流量之间的相关关系..观测数据表月份月平均流量月平均雨量月平均气温1 0.50 0.10 -8.802 0.30 0.10 -11.003 0.40 0.40 -2.404 1.40 0.40 6.905 3.30 2.70 10.606 4.70 2.40 13.907 5.90 2.50 15.408 4.70 3.00 13.509 0.90 1.30 10.0010 0.60 1.80 2.7011 0.50 0.60 -4.8012 0.30 0.20 -6.00由上表可见控制月平均雨量之后;“月平均流量”与“月平均气温”的相关系数为0.365;P=0.27;P>0.05;因此“月平均流量”与“月平均气温”不存在显著相关性..(三)距离分析案例:植物在不同的温度下的生长状况不同;下列是三个温度下的植物生长编号10度20度30度1 12.36 12.4 12.182 12.14 12.2 12.223 12.31 12.28 12.354 12.32 12.25 12.215 12.12 12.22 12.16 12.28 12.34 12.257 12.24 12.31 12.28 12.41 12.3 12.46近似值(四)线性回归分析已知有某河流的一年月平均流量观测数据和该河流所在地区当年的月平均雨量和月平均温度观测数据;如表所示..试分析关系..观测数据表月份月平均流量月平均雨量月平均气温1 0.50 0.10 -8.802 0.30 0.10 -11.003 0.40 0.40 -2.404 1.40 0.40 6.905 3.30 2.70 10.606 4.70 2.40 13.907 5.90 2.50 15.408 4.70 3.00 13.509 0.90 1.30 10.0010 0.60 1.80 2.7011 0.50 0.60 -4.8012 0.30 0.20 -6.00进行线性回归分析得出如下输出结果:回归由表可知;是第一个问题的分析结果..这里的表格是拟合过程中变量进入/退出模型的情况记录;由于只引入了一个自变量;所以只出现了一个模型1在多元回归中就会依次出现多个回归模型;该模型中身高为进入的变量;没有移出的变量; 这里的表格是拟合过程中变量进入/退出模型的情况记录;由于只引入了一个自变量;所以只出现了一个模型在多元回归中就会依次出现多个回归模型;该模型中身高为进入的变量;没有移出的变量..模型汇总模型R R 方调整R方标准估计的误差1 .855a .732 .705 .6117a. 预测变量: 常量; 月平均流量..拟合模型的情况简报;显示在模型中相关系数R为0.855;而决定系数R2为0. 732;校正的决定系数为0.705;说明模型的拟合度较高..Anovab模型平方和df 均方 F Sig.1 回归10.208 1 10.208 27.283 .000a残差 3.741 10 .374总计13.949 11a. 预测变量: 常量; 月平均流量..b. 因变量: 月平均雨量这是所用模型的检验结果;可以看到这就是一个标准的方差分析表从上表可见所用的回归模型F值为27.283;P值为.00a;因此用的这个回归模型是有统计学意义的;可以继续看下面系数分别检验的结果..由于这里所用的回归模型只有一个自变量;因此模型的检验就等价与系数的检验;在多元回归中这两者是不同的..包括常数项在内的所有系数的检验结果..用的是t检验;同时还会给出标化/未标化系数..可见常数项和身高都是有统计学意义的残差统计量a极小值极大值均值标准偏差N 预测值.526 3.113 1.292 .9633 12残差-.6337 1.1358 .0000 .5832 12标准预测值-.795 1.890 .000 1.000 12标准残差-1.036 1.857 .000 .953 12a. 因变量: 月平均雨量图表(五)曲线回归分析某地1963年调查得儿童年龄岁与体重的资料试拟合对数曲线..进行曲线回归分析得出如下输出结果:实验报告五实验项目:聚类分析和判别分析实验目的:1.学习利用SPSS进行聚类分析和判别分析..实验内容及步骤(一)系统聚类法为确定老年妇女进行体育锻炼还是增加营养会减缓骨骼损伤;一名研究者用光子吸收法测量了骨骼中无机物含量;对三根骨头主侧和非主侧记录了测量值;结果见教材表..:主侧桡骨桡骨主侧肱骨肱骨主侧尺骨尺骨受试者编号1 1.103 1.052 2.139 2.238 0.873 0.8722 0.842 0.859 1.873 1.741 0.590 0.7443 0.925 0.873 1.887 1.809 0.767 0.7134 0.857 0.744 1.739 1.547 0.706 0.6745 0.795 0.809 1.734 1.715 0.549 0.6546 0.787 0.779 1.509 1.474 0.782 0.5717 0.933 0.880 1.695 1.656 0.737 0.8038 0.799 0.851 1.740 1.777 0.618 0.6829 0.945 0.876 1.811 1.759 0.853 0.77710 0.921 0.906 1.954 2.009 0.823 0.765输入SPSS建立数据..进行系统聚类分析得出如下输出结果:聚类快捷聚类研究儿童生长发育的分期;调查名1月至7岁儿童的身高cm、体重kg、胸围cm 和资料..求出月平均增长率%;判别分析对某企业;搜集整理了10名员工2009年第1季度的数据资料..构建1个10×6维的矩阵职工代号工作产量工作质量工作出勤工砟损耗工作态度工作能力1 9.68 9.62 8.37 8.63 9.86 9.742 8.09 8.83 9.38 9.79 9.98 9.733 7.46 8.73 6.74 5.59 8.83 8.464 6.08 8.25 5.04 5.92 8.33 8.295 6.61 8.36 6.67 7.46 8.38 8.146 7.69 8.85 6.44 7.45 8.19 8.17 7.46 8.93 5.7 7.06 8.58 8.368 7.6 9.28 6.75 8.03 8.68 8.229 7.6 8.26 7.5 7.63 8.79 7.6310 7.16 8.62 5.72 7.11 8.19 8.181、“分析——分类——判别分析”;把“分类”选入“分组变量”;定义范围:最小值1;最大值4;把X1、X2、X3、X4、X5和X6输入“自变量框”;选择“使用逐步式方法”;2、“统计量”中选择“均值”、“单变量ANOVA”、“Fisher”、“未标准化”、“组内相关”;3、“方法”默认设置;4、“分类”中选择“根据组大小计算”、“摘要表”、“不考虑该个案时的分类”、“在组内”、“合并图、分组、区域图”;5、“保存”中选择“预测组成员”、“判别得分”;6、点击确定..得到以下各表和图..特征值函数特征值方差的% 累积% 正则相关性1 1.002a 100.0 100.0 .707a. 分析中使用了前1 个典型判别式函数..函数1工作质量.270工作产量-.831工作出勤-.406工砟损耗 1.415工作态度 1.879工作能力-2.061结构矩阵函数1工砟损耗.541工作出勤.355工作态度.175工作产量.063工作能力-.056工作质量-.050判别变量和标准化典型判别式函数之间的汇聚组间相关性按函数内相关性的绝对大小排序的变量..典型判别式函数系数函数1工作质量.581工作产量-.830工作出勤-.312工砟损耗 1.248工作态度 2.798工作能力-2.803 常量-6.817非标准化系数组质心处的函数职工代号函数11 -.7312 1.097在组均值处评估的非标准化典型判别式函数分类统计量分类处理摘要已处理的10 已排除的缺失或越界组代码0至少一个缺失判别变量0用于输出中10组的先验概率职工代号先验用于分析的案例未加权的已加权的1 .600 6 6.0002 .400 4 4.000 合计 1.000 10 10.000分类函数系数职工代号1 2工作质量121.299 122.360工作产量-58.894 -60.411工作出勤-14.803 -15.373工砟损耗 3.739 6.020工作态度123.979 129.094工作能力-63.284 -68.407 常量-547.493 -560.691Fisher 的线性判别式函数单独组图表实验报告六实验项目:因子分析和主成分分析实验目的:1.学习利用SPSS进行因子分析和主成分分析..实验内容及步骤(一)因子分析下表资料为15名健康人的7项生化检验结果;6项生化检验指标依次命名为X1至X6;请对该资料进行因子分析..因子分析1.打开导入excle数据2.选择菜单“分析→降维→因子分析” ;弹出“因子分析”对话框..在对话框左侧的变量列表中选除地区外的变量;进入“变量”框;3.单击“描述”按钮;弹出“因子分析: 描述”对话框;在“统计量”中选“单变量描述”项;输出各变量的均数与标准差;“相关矩阵”栏内选“系数”;计算相关系数矩阵;并选“KMO 和 Bartlett’s 球形度检验”项;对相关系数矩阵进行统计学检验;对以上资料进行因子分析:分析——降维——因子分析;确定操作得出描述统计量均值标准差分析 NX1 6.0213 1.23848 15 X2 7.9880 .57340 15 X3 3.9960 1.01195 15 X4 5.5700 1.38699 15 X5 8.3727 .77780 15 X6 8.0247 .68955 15相关矩阵X1 X2 X3 X4 X5 X6相关X1 1.000 .966 .782 .055 .104 .019 X2 .966 1.000 .747 .028 .233 .158X3 .782 .747 1.000 .125 .214 -.024X4 .055 .028 .125 1.000 -.150 .233X5 .104 .233 .214 -.150 1.000 .753X6 .019 .158 -.024 .233 .753 1.000Sig.单侧X1 .000 .000 .423 .356 .473 X2 .000 .001 .461 .202 .287X3 .000 .001 .329 .222 .467X4 .423 .461 .329 .297 .202X5 .356 .202 .222 .297 .001X6 .473 .287 .467 .202 .001KMO 和 Bartlett 的检验取样足够度的 Kaiser-Meyer-Olkin 度量.. .460Bartlett 的球形度检验近似卡方64.035 df 15 Sig. .000公因子方差初始提取X1 1.000 .950X2 1.000 .930X3 1.000 .801X4 1.000 .989X5 1.000 .928X6 1.000 .936提取方法:主成份分析..成份矩阵a成份1 2 3X1 .935 -.277 -.021 X2 .954 -.131 -.057 X3 .868 -.218 .030 X4 .107 .059 .987 X5 .389 .839 -.272 X6 .263 .914 .178 提取方法 :主成份..a. 已提取了 3 个成份..旋转成份矩阵a成份1 2 3X1 .975 -.001 .016 X2 .953 .146 -.012 X3 .892 .032 .066 X4 .049 .021 .993 X5 .145 .930 -.205 X6 -.013 .937 .241 提取方法 :主成份..旋转法 :具有 Kaiser 标准化的正交旋转法..a. 旋转在 4 次迭代后收敛..成份转换矩阵成份 1 2 31 .958 .281 .0542 -.284 .957 .0533 -.037 -.066 .997 提取方法 :主成份..旋转法 :具有 Kaiser 标准化的正交旋转法..。

spss实习报告心得范文3篇_实习报告.doc

spss实习报告心得范文3篇_实习报告spss实习报告心得【1】本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,SPSS也只是听说过,从来没有学过。

一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看老师给的英文教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水。

老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了。

结合软件和书上的例子,实战一下,发现SPSS的功能相当强大。

最后总结出这篇报告,以巩固所学。

SPSS,全称是Statistical Product and Service Solutions,即“统计产品与服务解决方案”软件,是IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,也是世界上公认的三大数据分析软件之一。

SPSS具有统计分析功能强大、操作界面友好、与其他软件交互性好等特点,被广泛应用于经济管理、医疗卫生、自然科学等各个领域。

具体到管理方面,SPSS也是一个进行数据分析和预测的强大工具。

这门课中也会用到AMOS软件。

关于SPSS的书,很多都是首先介绍软件的。

这个软件易于安装,我装的是19。

0的,虽然20。

0有一些改变和优化,但是主体都是一样的,而且都是可视化界面,用起来很方面且容易上手。

所以,我学习的重点是卡方检验和T检验、方差分析、相关分析、回归分析、因子分析、结构方程模型等方法的适用范围、应用价值、计算方式、结果的解释和表述。

首先是T检验这一部分。

由于参数检验的基础不牢固,这部分也是最初开始接触应用统计的东西,学起来很多东西拿不准,比如说原假设默认的是什么。

结果出来后依然分不清楚是接受原假设还是拒绝原假设。

不过现在弄懂了。

这部分很有用的是T检验。

T检验应用于当样本数较小时,且样本取自正态总体同时做两样本均数比较时,还要求两样本的总体方差相等时,已知一个总体均数u,可得到一个样本均数及该样本标准差,样本来自正态或近似正态总体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS实习报告
《SPSS》实习报告
专业:地理信息系统
班级:
学号:
姓名:
2015年6 月27日
一、实习目的:
1. 了解SPSS数据管理与数据分析两大功能。

2. 掌握SPSS的各项操作。

3. 熟悉SPSS应用的领域。

二、实习内容:
1. 连续变量相关分析
2. 偏相关
3. 距离相关分析
4. 因子分析
5. 一元回归分析
6. 多元回归分析
7. 曲线回归分析
8. 时序分析
三、实习过程:
1. 连续变量相关分析:
1.1 数据准备:
1.2 在进行相关分析时,散点图是重要的工具,分析前应先做散点图,以初步确定两个变量间是否存在相关趋势,该趋势是否为直线趋势,以及数据中是否存在异常点。

否则可能的出错误结论。

1.3依次单击Graphs—Scatterplot:
1.4 依次单击Analyze—Correlate—Bivariate,打开Bivariate Correlations对话框。

1.5 单击Options:
1.6 Pearson相关系数距阵:
2. 偏相关:
2.1 数据准备:
2.2 选择Analyze—Correlate—Partial:
2.3 结果如下:
3. 距离相关分析
3.1 数据准备:
3.2 选择Analyze—Correlate—Distances:
3.3 结果如下:
4. 因子分析:
4.1 数据准备。

激活数据管理窗口,定义变量名:分别为X1、X2、X3、X4、X5、X6、X7,按顺序输入相应数值,建立数据库。

4.2 统计分析。

选择[Analyze]=>[Data Reduction]=>[Factor],显示的[Factor Analysis]。

4.3 单击变量描述:
4.4 单击因子提取:
4.5 结果分析:
4.6 因子旋转:使因子负荷在新的坐标系中能按列向0或1两极分化,以便得到一个更简单的易于解释的结构。

4.7 结果可以看出,在第一个公共因子上,X2、X4 和X5 有大的正负荷,而X1 和X3 的负荷很小,这个因子可解释为福利条件因子。

在第二个公共因子上,X1 和X3 有大的正负荷,X4 有较小的正负荷,而X2 和X5 只有很小的负荷,这个因子可解释为人口因子。

4.8 因子得分:对公共因子的取值进行估计,计算各个样本的公共因子得分。

在公共因子的空间中,按照各个样本的因子得分值标出其对应的位置。

4.9 结果如下:
5. 一元回归分析:
5.1 数据输入:可支配收入(x),消费支出(y)
5.2 选择主菜单
[Analyze]=>[Regression]=>[Linear]
5.3 结果分析:
6. 多元回归分析:
6.1 数据输入:
6.2 选择主菜单
[Analyze]=>[Regression]=>[Linear]
6.3 结果分析;
7. 曲线回归分析: 7.1 数据准备:
7.2 选择主菜单[Analyze]=>[Regression]=>[Curve Estimation(曲线估计)]
7.3 在主对话框中单击[Save]
7.4 结果分析:
8. 时序分析:
8.1 数据准备:
8.2作直方图:检验正态性、零均值。

按图形Graphs —直方图Histogram
8.3作相关图:检验平稳性、周期性。

按图形Graphs —时间序列Time Series—自相关
8.4 结果分析:。

相关文档
最新文档