第五章抽样与参数估计

合集下载

抽样分布与参数估计

抽样分布与参数估计

抽样分布与参数估计首先,我们来了解什么是抽样分布。

在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。

假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。

抽样分布的形状和性质取决于总体的分布和样本的大小。

通过分析抽样分布,可以得到有关总体参数的有用信息。

例如,我们想要知道一些城市成年人的平均年收入。

在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。

如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。

这个抽样分布将给我们提供有关总体平均年收入的估计和推断。

接下来,我们将讨论参数估计。

参数估计是指使用样本数据来估计总体参数的过程。

总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。

通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。

常用的参数估计方法有点估计和区间估计。

点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。

点估计给出了一个单一的值,但不能提供关于估计的精度的信息。

因此,我们常常使用区间估计。

区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。

区间估计能够向我们提供关于估计的精确程度的信息。

区间估计依赖于抽样分布的性质。

中心极限定理是制定抽样分布理论的一个重要原则。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。

这使得我们可以使用正态分布的性质来计算置信区间。

构建置信区间的一种常用方法是使用样本均值的标准误差。

标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。

根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。

通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。

曾五一《统计学导论》(第2版)配套题库【课后习题】第五章 抽样分布与参数估计 【圣才出品】

曾五一《统计学导论》(第2版)配套题库【课后习题】第五章 抽样分布与参数估计 【圣才出品】

A.是不可避免要产生的 B.是可以通过改进调查方法消除的
C.是可以事先计算的
D.只有调查结束之后才能计算
【答案】AC
【解析】抽样误差是由于抽样的随机性引起的样本结果与总体之间的误差。抽样误差是
一种随机性误差,只存在概率抽样中,在概率抽样中,抽样误差是不可避免的。但是,用大
数定律的数学公式,是可以事先计算的。
构造的统计量
X S
服从 t n
1
,则置信区间为:
X
t /2
n
1
S n
n
样本均值
X
=12.09,样本标准差
S2 n 1
S
2 15
=0.005,
S15
=0.0707
SX =
S =0.0707/ n
16 =0.0177, t0.025
15
2.131
△= t /2 n 1
S n
=0.0177 2.131=0.038
5.某微波炉生产厂家想要了解微波炉进入居民家庭生活的深度。他们从某地区已购买 了微波炉的 2200 个居民户中用简单随机不还原抽样方法以户为单位抽取了 30 户,询问每 户一个月中使用微波炉的时间。调查结果依次为(单位:分钟)
【答案】A
【解析】 E z 2
,根据公式可知,如果极限误差缩小为原来的二分之一,则在其
n
他条件不变的情况下,样本容量扩大为原来的 4 倍。
4.当样本单位数充分大时,样本估计量充分地靠近总体指标的可能性趋于 1,称为抽 样估计的( )。
A.无偏性 B.一致性 C.有效性 D.充分性 【答案】B 【解析】一致性是指随着样本容量不断增大,样本统计量接近总体参数的可能性就越来 越大,或者,对于任意给定的偏差控制水平,两者间偏差高于此控制水平的可能性越来越小, 接近于 0。用公式表示就是

第5章--抽样分布与参数估计教案资料

第5章--抽样分布与参数估计教案资料

(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
9
9,1
9,2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
9,10
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
(9.5)
10
10,1
10,2
10,3
10,4
10,5
10,6
10,7
10,8
10,9
10,10
数是 ,标准差是 ,从这个总体中抽出一 个容量是 n 的样本,则样本平均数 X 也服从 正态分布,其平均数 E( X ) 仍为 ,其标准
差为 。 X 5-19
从正态分布的再生定理可以看出,只要总体 变量服从正态分布,则从中抽取的样本,不管n 是多少,样本平均数都服从正态分布。但是在 客观实际中,总体并非都是正态分布。对于从 非正态分布的总体中抽取的样本平均数的分布 问题,需要由中心极限定理来解决。
第5章--抽样分布与参数估计
第一节 抽样的基本概念与数学原理
一、有关抽样的基本概念 二、大数定理与中心极限定理
5-2
一、有关抽样的基本概念
(一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分
单位的集合,这个集合的大小称为样本容量, 一般用n表示,它表明一个样本中所包含的单 位数。
lim
n
1 n
p
n
i 1
X
i
1
(5.5)
5-17
大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计抽样和参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例子是估计总体参数(某种意见的比例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第二节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进行调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。

壹、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样和不重复抽样。

而且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进行抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数目、满足特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

曾五一《统计学导论》配套题库【章节题库】第五章 抽样分布与参数估计 【圣才出品】

曾五一《统计学导论》配套题库【章节题库】第五章 抽样分布与参数估计 【圣才出品】

12.样本均值的抽样标准差 x ,( ).
A.随着样本量的增大而变小 B.随着样本量的增大而变大
5 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

C.与样本量的大小无关
D.大于总体标准差
【答案】A
【解析】根据样本均值的抽样分布可知,样本均值抽样分布的标准差 x
D.服从 2 分布
【答案】B
【解析】当 n 比较大时,样本均值的抽样分布近似服从正态分布。题中 n 36 30 为
大样本,因此样本均值的抽样分布近似服从正态分布。
5.估计量的含义是指( )。 A.用来估计总体参数的统计量的名称
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

圣才电子书 十万种考研考证电子书、题库视频学习平台

第五章 抽样分布与参数估计
一、单项选择题 1.抽样分布是指( )。 A.一个样本各观测值的分布 B.总体中各观测值的分布 C.样本统计量的分布 D.样本数量的分布 【答案】C 【解析】统计量是样本的函数,它是一个随机变量。样本统计量的分布称为抽样分布。
2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布, 其分布的均值为( )。
A.
B. X C. 2
2 D.
n 【答案】A
【解析】根据中心极限定理,设从均值为 ,方差为 2 的任意一个总体中抽取样本量 为 n 的样本,当 n 充分大时,样本均值的抽样分布近似服从均值为 ,方差为 2 n 的正
n
,样本
量越大,样本均值的抽样标准差就越小。
13.在用正态分布进行置信区间估计时,临界值 1.645 所对应的置信水平是( )。 A.85% B.90% C.95% D.99% 【答案】B 【解析】置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在

统计学习题区间估计假设检验..

统计学习题区间估计假设检验..

统计学习题区间估计假设检验..第五章抽样与参数估计一、单项选择题1、某品牌袋装糖果重量的标准是(500±5)克。

为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。

下列说法中错误的是( B )A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于( D )A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加( C )A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的( A )A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加( C )A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是( C )A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使( B )尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( D )A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用( A )A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P应选( A )A、85%B、87.7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有( ADE )A、总体各单位标志值的差异程度B、调查人员的素质C 、样本各单位标志值的差异程度D 、抽样组织方式E 、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格。

第五章 参数估计

第五章 参数估计
(总体方差未知时,以样本方差代替)
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:

分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:

一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计

利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:

当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)

第五章 抽样法

第五章 抽样法

抽样的作用

抽样调查能够解决全面调查无法或难以解决的问
题。

抽样调查可以补充和订正全面调查的结果。
抽样调查方法可以用于生产过程中产品质量的检
查和控制。 抽样调查方法可以用于对总体的某种假设进行检 验,以判断这种假设的真伪,决定行动的取舍。

抽样中的几个基本术语
总体(Population):调查研究的事物或现象的全体 个体(Item unit):组成总体的每个元素
一、抽样的概念、特点、作用 二、抽样中的基本术语 (一)总体和样本 (二)参数和统计量 (三)样本容量和样本个数 (四)重复抽样和不重复抽样 (五)概率抽样与非概率抽样 (六)抽样框 三、抽样误差
抽样的概念 特点
(一)概念 抽样调查是按照随机原则从全部研究对象中抽取 一部分单位进行观察,并依据获得的数据对全部研 究对象的数量特征做出具有一定可靠性的估计和判 断.达到对现象总体认识的一种方法. (二)特点 它是按照随机原则从总体中抽取样本。 它是由部分推算整体的一种方法。 它是运用概率估计的方法。 抽样误差可事先计算并加以控制。
抽样中的几个基本术语
X
i 1 N
总体均值
X
i
N

X F
i 1 K i
K
i
F
i 1
i
标准差

X
N i 1
i
X
2
N

X
K i 1
i K
X Fi
i
2
F
i 1
抽样中的几个基本术语
总体方差
2
( X i X )2
i 1
N
N

( X i X ) 2 Fi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响区间宽度的因素
1. 数据的离散程度,用 数据的离散程度, σ 来测度 2. 样本容量n, 样本容量n 3. 置信水平 (1 - α),影 响 Z 的大小 极限误差
∇ x = zα
σ
n
2
抽样平均误差
第三节 总体均值和总体比例 的区间估计
一. 总体均值的区间估计 二. 总体比例的区间估计 三. 样本容量的确定
样本均值的分布与总体分布的比较
总体分布
.3 P(x)
抽样分布
.3 .2 .1 0 1 2 3 4
.2 .1 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
µ = 2.5
σ2 =1.25
µx = 2.5 2 σx = 0.625
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N 当总体服从正态分布N ~ (µ,σ2 )时,来自该总体的所 有容量为n的样本的均值 也服从正态分布, 有容量为n的样本的均值X也服从正态分布,X 的 数学期望为µ 方差为σ 数学期望为µ,方差为σ2/n。即X~N(µ,σ2/n)
90%的样本 90%的样本 95% 的样本 99% 的样本
由于样本均值的抽样分布服从正态分布, 由于样本均值的抽样分布服从正态分布,
X
σ2
n = σ X2
σ2 N µ, n
Z=
标准化
X−µ
σ
n
Z
N ( 0,1)

n
给定
1 − α 查正态分布双侧表,可得临界值 查正态分布双侧表,
置信区间
均 值 σ2 已知 σ2 未知
比例
方差
落在总体均值某一区间内的样本
X σ2 N µ, n
X = µ ± Zσx
2.58σ µ - 2.58σx
_ σx
σ2
n
= σ X2
µ -1.65 σx
µ
+1.65σ µ +1.65σx
µ + 2.58x
X
µ -1.96 σx
+1.96σ µ +1.96σx
(n−1 s )
2
σ
2

2 (n−1)
将χ2(n – 1)称为自由度为(n-1)的卡方分布 1)称为自由度为( 1)的卡方分布
卡方 (χ2) 分布
选择容量为n 选择容量为 的
总体
不同容量样本的抽样分布
n=1 n=4 n=10
简单随机样本
σ µ
计算样本方差S 计算样本方差 2
计算卡方值
n=20
χ2 = (n-1)S2/σ2
使得下式成立
−Z p X − µ p Z = 1− α P α α2 σ 2 n 对括号里不等式移项, P − Zα ⋅ σ 2 n p X − µ p Zα ⋅ σ
2
= 1−α n
2
P -X − Z α ⋅ σ 2 P X + Zα ⋅ σ 2 即
.3 .2 .1 0 1 2 3 4
µ=
∑X
i= 1
N
i
N
N
= 2.5
σ = i=1
2
(Xi − µ)2 ∑ N
=1.25
样本均值的抽样分布
(一个例子)
现从总体中抽取n 现从总体中抽取n=2的简单随机样本,在重复 的简单随机样本, 抽样条件下,共有4 16个样本。 抽样条件下,共有42=16个样本。所有样本的结果 如下表
n n
p − µ p − X+Z α ⋅ σ f + µ f + X-Z α ⋅ σ
2
= 1−α n = 1−α n
= 1−α P X − Zα ⋅ σ p µ p X+Z α ⋅ σ 2 2 n n 表示, X 落在以 µ 为中心的一个区间概率为1 − α
较大的样本容量
P(X )
B A
较小的样本容量
µ
X
区间估计
区间估计
(概念要点)
1. 根据一个样本的观察值给出总体参数的估计范围 2. 给出总体参数落在这一区间的概率 3. 例如: 总体均值落在50~70之间,置信度为 95%
置信区间 样本统计量 (点估计) 点估计)
置信下限
置信上限
置信区间估计
(内容)
16个样本的均值(x) 个样本的均值( ) 个样本的均值
第一个 观察值 .3 .2 .1 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x P(x)
第二个观察值 1 1.0 1.5 2.0 2.5 2 1.5 2.0 2.5 3.0 3 2.0 2.5 3.0 3.5 4 2.5 3.0 3.5 4.0
总体均值的区间估计
(σ2已知)
总体均值的置信区间
(σ2 已知)
1. 假定条件
• • 总体服从正态分布,且总体方差( 总体服从正态分布,且总体方差(σ2)已知 如果不是正态分布,可以由正态分布 正态分布来近似 30) 如果不是正态分布,可以由正态分布来近似 (n ≥ 30) 大样本
根据大数定律,样本分还是 2. 使用正态分布统计量Z 趋近正态分布,只是由样本 x −µ Z= ~ N(0,1 ) 均值估计该非正态总体具体 分布的参数 σ n 3. 总体均值 µ 在1-α置信水平下的置信区间为 置信水平下的置信区间为 σ σ , x + Zα 2 x −Zα 2 n n
第五章 抽样与参数估计
参数估计在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
学习目标
1. 2. 3. 4. 了解抽样和抽样分布的基本概念 理解抽样分布与总体分布的关系 了解点估计的概念和估计量的优良标准 掌握总体均值、 掌握总体均值、总体比例和总体方差的区 间估计
样本均值的抽样分布
抽样分布
(概念要点)
1. 所有样本指标(如均值、比例、方差等) 所形成的分布称为抽样分布 2. 是一种理论概率分布 3. 随机变量是 样本统计量
• 样本均值, 样本比例等
4. 结果来自容量相同的所有可能样本
样本均值的抽样分布
(一个例子)
【例】设一个总体,含有4个元素(个体),即总体单 设一个总体,含有4个元素(个体) 位数N 位数 N=4 。 4 个个体分别为 X1=1 、 X2=2 、 X3=3 、 X4=4 个个体分别为X 。总体的均值、方差及分布如下 总体的均值、 均值和方差 总体分布
µ
P
x ˆ p
s2 x1 − x2 ˆ1 ˆ p − p2
2 2 s1 s2
σ2 µ1 −µ2
P −P 1 2
2 2 σ1 σ2
点估计
点估计
(概念要点)
1. 从总体中抽取一个样本,根据该样本的统计 量对总体的未知参数作出一个数值点的估计
例如: 用样本均值作为总体未知均值的估计值 就是一个点估计
2. 点估计没有给出估计值接近总体未知参数程 度的信息 3. 点估计的方法有数字特征值估计法、顺序统 计量法、最大似然法、最小二乘法等
一个任意分 布的总体
σ σx = n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
µx = µ
X
样本方差的抽样分布
样本方差的分布
设总体服从正态分布N 设总体服从正态分布N ~ (µ,σ2 ), X1,X2, …,Xn为来自该正态总体的样本,则样本方 为来自该正态总体的样本, 差 s2 的分布为
总体均值的区间估计
(正态总体:实例)
【 例 】 某种零件 解:已知X ~N(µ, 0.152), x =2.14, n=9, 14, 长度服从正态分 1-α = 0.95,Zα/2=1.96 95, 布 , 从该批产品 总体均值µ的置信区间为 中随机抽取9件 σ σ x − Zα 2 , x + Zα 2 , 测得其平均长 n n 度为21. mm 。 度为 21.4 mm。 0.15 0.15 已知总体标准差 = 21.4 −1.96 ,21.4 +1.96 σ =0.15mm,试 15mm, 9 9 建立该种零件平 = (21.302 21.498) , 均长度的置信区 可以95% 可以95%的概率保证该种零件的平均长 间 , 给定置信水 度在21.302~21. mm之间 度在21.302~21.498 mm之间 平为0 95。 平为0.95。
1 2 3 4
样本均值的抽样分布
所有样本均值的均值和方差
1.0+1.5+L 4.0 + µx = = = 2.5 = µ M 16
i= 1
n
∑x
1 i=
n
i
σ =
2 x
∑(x − µ )
i x
2
M (1.0 − 2.5)2 +L+ (4.0 − 2.5)2 σ2 = = 0.625 = 16 n
式中:M 式中:M为样本数目 比较及结论:1. 比较及结论:1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n 样本均值的方差等于总体方差的1/n
F
T 统计量的分布
T 统计量的分布
设X1,X2,…,Xn是来自正态总体N~(µ,σ2 )的一个样 是来自正态总体N~(µ 本, 称 (X −µ) T= 为统计量,它服从自由度为( 为统计量,它服从自由度为(n-1)的t 分布 S/ n
t 分布
标准正态分布 t (df = 13)
正态分布
t (df = 5)
计算出所有的
χ2
χ 2值
均值的标准误
1. 所有可能的样本均值的标准差,测度所有 样本均值的离散程度 2. 小于总体标准差 3. 计算公式为
相关文档
最新文档