随机信号处理实验报告讲解
随机信号处理实验报告讲诉

随机信号处理实验报告目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。
第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。
二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。
随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。
实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。
实验原理:随机信号可以分为离散随机信号和连续随机信号。
离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。
常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。
实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。
实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。
2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。
3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。
4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。
5.计算统计特性:计算随机信号的均值、方差等统计特性。
6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。
实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。
通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。
通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。
通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。
结论:本实验通过对随机信号的分析,加深了对随机信号的理解。
通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。
2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。
《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。
3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
4、方差定义为随机过程的方差。
方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。
5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。
自相关函数可正,可负,其绝对值越大表示相关性越强。
6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。
哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。
随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
随机信号实验报告(模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。
二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。
② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。
③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。
在已知均值和均方值的前提下,方差就很容易求得了。
④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。
⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
随机信号分析报告实验

实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。
二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: (1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号处理实验报告目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。
第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。
二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
2.2 随机过程的频谱信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:()()2j ft X f x t e dt π+∞--∞=⎰信号的时域描述只能反映信号的幅值随时间的变化情况,除只有一个频率分量的简谐波外,一般很难明确揭示信号的频率组成和各频率分量的大小。
信号的频谱X(f)代表了信号在不同频率分量处信号成分的大小,它能够提供比时域信号波形更直观,丰富的信息。
在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT),因此需要利用离散信号x(nT)来计算信号x(t)的频谱。
有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为:()()10N knN n X k x n W -==∑其中0,1,2.......1,kN =- 2jNN W eπ-=2.3 随机过程的相关函数和功率谱(1)随机信号的相关函数:信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t 和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:∑∑-=-+=101N txy N /)t (y )t (x ),t (N R τττ τ,t=0,1,2,……N-1随机信号的自相关函数表示波形自身不同时刻的相似程度。
与波形分析、频谱分析相比,它具有能够在强噪声干扰情况下准确地识别信号周期的特点。
一般来说,信号与噪声在时域内有明显不同,信号前后是有关联的,存在相关性;而噪声在不同时刻基本上不存在关联,即不存在相关性.利用这种相关性原理,已成为从强噪声中提取弱信号的重要手段。
这种技术的理论基础是信息论和随机过程理论,这种检测方法被称为相关检测。
(2)随机信号的功率谱随机信号的功率谱密度是随机信号的各个样本在单位频带内的频谱分量消耗在一欧姆电阻上的平均功率之统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
它只反映随机信号的振幅信息,而没有反映相位信息。
随机过程的功率谱密度为:]2|)(|lim [)(2TX E x G Ti T ω∞→= -∞<ω<+∞随机信号的平均功率就是随机信号的均方值,功率谱密度曲线下的总面积(即随机信号的全部功率)等于随机信号的均方值。
随机信号的功率谱与它的自相关函数构成一对傅里叶变换对。
三、 实验步骤与分析本实验利用Matlab 软件编程来实现数据文件中波形的仿真与分析,最后通过滤波器还原正弦信号,与结果进行比较。
3.1 实验方案3.2 实验步骤与分析任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (1)原理:采用傅立叶变换将时域信号x(t)变换为频域信号X(f),并作出幅频曲线进行分析,离散信号x(n),n=0,1,…,N-1的DFT 公式如下:()()10N knNn X k x n W -==∑其中0,1,2.......1,kN =- 2j NN W eπ-=在Matlab 的编程实现时,运用的是快速算法傅里叶算法FFT ,它是DFT 的快速算法。
因为给定的数据文件中采样点数N=4096,所以取采样频率fs=4096Hz 。
(2)Matlab仿真结果及分析图1 随机信号的时域图形图2 随机信号的频域图形由时域图形可知,正弦信号被噪声“淹没”了,所以时域上看不出任何信号的特征,进行傅里叶变换,频域特征如图2所示。
已知采样频率fs=4096Hz,所以Nyquist频率为fs/2=2048Hz,傅里叶变换的数据具有对称性,整个频谱以Nyquist频率为对称轴,所以频谱分析的时候只要截取0~2048Hz范围内的频谱进行分析。
由频谱曲线可知,信号在82Hz处有一个峰值,大小为4021,所以可以得出:信号频率:=82f Hz信号绝对幅度:2=⨯=A4021 1.96N(3)附Matlab程序及说明clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs; %采样时间间隔subplot(211); %两行一列第一幅图plot (n,s1); %画出时域波形xlabel('时间t(1/4096s)');ylabel('信号s1');title('原信号时域波形');grid;%进行FFT变换并做频谱图y=fft(s1,N); %进行fft变换mag=abs(y); %求幅值f=(0:length(y)-1)'*fs/length(y); %进行对应的频率转换subplot(212); %两行一列第二幅图plot(f,mag); %作频谱图xlabel('频率(Hz)');ylabel('幅值');title('信号的幅频谱图N=4096');grid;任务二:(s1 变量)求噪声下正弦信号的相位 (1)原理设观测数据为:1,,...2,1,0),()2cos()(0-=++=N n n w n f A n x φπ式中,w (n )为已知方差2σ的高斯白噪声,正弦信号的幅度A 和频率f 0为已知。
一种估计φ的估计量为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-=∑∑-=-=∧101000)2sin()()2cos()(ln Im N n N n n f n x j n f n x ππφ定义信噪比为222σA SNR =。
由上面已经求的信号幅度A=1.96,f=82Hz ,N=4096。
○1产生服从特定概率分布的观测数据x (n ); ○2利用估计算法计算估计量∧φ; ○3上述过程重复M 次,产生M 个∧φ的实现 ○4利用∑=∧∧=∧M ii M11θμθ确定估计量的均值。
○5利用∧=∧∧∑∧∧-=MiM122)(1θθμθσ确定估计量的方差。
○6利用直方图来确定PDF :首先计算落入某指定区间的次数,然后再除以总的实现次数得到概率,再除以区间长度得到PDF 估计。
(2)Matlab仿真结果及分析根据利用matlab仿真得到的PDF估计如图3所示。
图3 随机信号的相位的统计特性由上面的仿真结果可知初相位约在0时具有最大概率,所以:θ=(3)附Matlab程序及说明clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')N=4096;A=1.96; %A为正弦信号幅值,f为其频率f=82;n=0:N-1;s0=300; %设置循环次数for m=1:s0y1=0;任务三:(s1 变量)求信号自相关函数和功率谱 (1)原理:对于噪声中信号的功率谱分析,有传统方法和现代建模方式。
本次实验中主要采用传统谱估计的自相关法,又称为间接法或BT 法。
具体步骤是先由)(n x N 估计出自相关函数)(ˆm r ,然后对)(ˆm r 求傅里叶变换得到)(n x N 的功率谱,记之为)(ˆw P BT,并以此作为对)(w P 的估计,即1,)(ˆ)(ˆ-≤=--=∑N M e m r w P jwmMMm BT。
(2)Matlab 仿真结果及分析在Matlab 中主要用C (Xn) = xcorr(xn,'unbiased')函数来计算Xn 的自相关函数,然后对其进行傅里叶变换,便得到它的功率谱。
图4 随机信号的自相关函数图4 随机信号的功率谱原信号在时域上时被噪声淹没,经过自相关后可以看出信号为正弦信号,并且由自相关函数图象可知:混合信号的平均功率:2[()](0) 2.934E X n R ==正弦信号的平均功率:()2220lim cos 1.922TT T AP A w t dt θ-→∞=+==⎰在功率谱图像上,极值点坐标为(82,27.72),正好对应正弦信号的频率为82Hz ,与上面的频谱分析一致。
对功率谱密度曲线积分也可求出信号的平均功率。
(3)附Matlab程序及说明%自相关函数clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs;Lag=300; %延迟样点数[c,lags]=xcorr(s1,Lag,'unbiased'); %对原始信号进行无偏自相关估计subplot(1,2,1);plot(n,s1); %绘制原信号的时域波形xlabel('时间t(1/4096s)');ylabel('信号s1');title('带噪声的信号波形');grid on;subplot(1,2,2);plot(lags/fs,c); %绘制自相关函数图象xlabel('时间t');ylabel('Rx(t)');title('带噪声的信号自相关函数');grid on;%功率谱clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs;Lag=300; %延迟样点数[c,lags]=xcorr(s1,Lag,'unbiased'); %求信号的自相关函数fy=fft(c,N); %对自相关函数做FFT变换t1=0:round(N/2-1);a=t1*fs/N;P=10*log10(fy(t1+1)); %纵坐标为相对功率谱密度,单位dB/Hz figure(gcf);plot(a,P);ylabel('功率谱密度dBw/Hz');title('信号的功率谱');grid;任务四:(s变量)求噪声下信号的振幅和频率(1)原理:同“任务一”的原理相同(2)Matlab仿真结果及分析图5 随机信号的时域波形(s变量)图6 随机信号的频谱(s变量)对于频谱图的局部放大如下图所示:图7 随机信号的局部放大的频谱(s变量)由频域分析可以发现,信号的频谱图上有两个峰值,由Matlab 计算得两个极点分别为:(82,4053) (86,8150)所以信号由两个频率相近的正弦信号组成,根据图形分析,有用信号应该是两个正弦信号相加,形如:()1122sin 2cos 2s s n n S n A f A f f f ππ⎛⎫⎛⎫=⨯+⨯ ⎪ ⎪⎝⎭⎝⎭根据“任务一”的计算方式,可以得出: 有用信号的频率:182f Hz =286f Hz =有用信号的绝对振幅:124053 1.98A N =⨯=228153 3.98A N=⨯=对于此处采样点数N 和采样频率fs 的确定要满足频率分辨率的要求,即:max min12f f f f f N-∆=-=所以,要能有效的区分频率轴上的两个频率点f1和f2,有效数据长度必须满足以下关系式:122sf f f N<-所以此处取采样频率4096s f Hz =,采样点数4096N =,满足要求。