激光测距实验报告
激光测距实验报告

激光测距实验报告一、实验目的本实验旨在通过激光测距仪器进行实际测距,掌握激光测距的原理和方法,以及了解激光测距在实际工程中的应用。
二、实验原理激光测距是利用激光器发射出的激光束,通过反射、接收和处理使得的返回激光束,从而测定物体的距离。
一般来说,激光测距主要包括激光器、发射器、接收器和处理器四个部分。
发射器将激光束发射到目标物体上,目标反射激光束并接收器接收反射的激光束信号,并传递至处理器进行信号处理和距离计算。
三、实验器材1. 激光测距仪器2. 测距標尺3. 计算机4. 实验用物体四、实验步骤及内容1. 检查激光测距仪器是否正常工作,设置仪器参数。
2. 将激光测距仪器对准测距目标物体,按下触发键开始测距。
3. 记录实际距离值,并通过计算机处理得到的测距结果。
4. 重复以上步骤,进行多次测距,对比不同次测距结果的稳定性和准确性。
5. 分析实验结果,总结实验体会。
五、实验数据处理利用测距仪器测量得到的数据,通过计算机进行数据处理和分析。
根据测距仪器的测距原理,以及所采集到的数据,计算出目标物体的实际距离并与激光测距仪测距结果进行对比分析。
六、实验注意事项1. 激光测距仪器操作时需要注意安全,避免直接照射眼睛。
2. 实验过程中需注意激光测距仪器的稳定性和准确性,保持仪器处于正确的位置和设置状态。
3. 实验完成后,及时将激光测距仪器关闭并妥善保管。
七、实验总结通过本次实验,深入理解了激光测距的原理和方法,掌握了激光测距仪器的操作技能,并且可以通过激光测距仪器实现准确的测距结果。
同时也了解到激光测距在实际工程应用中的重要性和广泛性。
以上就是关于激光测距实验的报告,希望能对您有所帮助。
激光脉冲测距实验报告讲解

激光脉冲测距1目录一工作原理 (3)(1)测距仪工作原理 (3)(2)激光脉冲测距仪光学原理结构 (3)(3)测距仪的大致结构组成 (4)(4)主要的工作过程 (4)(5)激光脉冲发射、接收电路板组成及工作原理 (5)二激光脉冲测距的应用领域 (5)三关键问题及解决方法 (6)(1)优点 (6)(2)问题及解决方案 (7)2一工作原理(1)测距仪工作原理现在就脉测距仪冲激光测距简要叙述其工作原理。
简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。
一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。
系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。
在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。
假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D为:式中:c 为激光在大气中的传播速度;D 为待测距离;t为激光在待测距离上的往返时间。
R=C*T/2 (公式1)图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2()3图二)测距仪的大致结构组成(3时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。
该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。
大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。
激光测距实验报告(精)

一、激光测距简介:激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。
由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。
激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点:①激光有小的光束发散角,即所谓的方向性好或准直性好。
②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。
③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。
若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。
若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。
美国军方很快就在此基础上开展了对军用激光装置的研究。
1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。
由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。
国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
激光测距仪-分类:一维激光测距仪用于距离测量、定位;二维激光测距仪(Scanning Laser Range finder)用于轮廓测量,定位、区域监控等领域;三维激光测距仪(3D Laser Range finder)用于三维轮廓测量,三维空间定位等领域。
激光测距-方法激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
激光测距实验报告(精)

一、激光测距简介:激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。
由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。
激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点:①激光有小的光束发散角,即所谓的方向性好或准直性好。
②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。
③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。
若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。
若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。
美国军方很快就在此基础上开展了对军用激光装置的研究。
1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。
由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。
国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
激光测距仪-分类:一维激光测距仪用于距离测量、定位;二维激光测距仪(Scanning Laser Range finder)用于轮廓测量,定位、区域监控等领域;三维激光测距仪(3D Laser Range finder)用于三维轮廓测量,三维空间定位等领域。
激光测距-方法激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
激光脉冲测距实验报告

百度文库- 让每个人平等地提升自我激光脉冲测距组长:孙汉林(制作PPT)组员:张莹(讲解)吕富敏(制作报告)目录一工作原理 (3)(1)测距仪工作原理 (3)(2)激光脉冲测距仪光学原理结构 (3)(3)测距仪的大致结构组成 (4)(4)主要的工作过程 (4)(5)激光脉冲发射、接收电路板组成及工作原理 (5)二激光脉冲测距的应用领域 (5)三关键问题及解决方法 (6)(1)优点 (6)(2)问题及解决方案 (7)一工作原理(1)测距仪工作原理现在就脉测距仪冲激光测距简要叙述其工作原理。
简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。
一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。
系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。
在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。
假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t为激光在待测距离上的往返时间。
R=C*T/2 (公式1)图一脉冲激光测距系统原理框图(2)激光脉冲测距仪光学原理结构图二(3)测距仪的大致结构组成脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、门控电路、时钟脉冲振荡器以及计数显示电路组成(4)主要的工作过程其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。
该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。
长度的测量实验报告

长度的测量实验报告引言:长度是物理学中最基本的物理量之一,也是我们生活中经常需要测量的量之一。
在科学实验中,准确测量长度是非常重要的,因为它直接影响到实验结果的准确性。
通过本实验,我们旨在探究不同测量方法对长度测量结果的影响,并比较其准确性与可靠性。
一、实验目的:本实验的主要目标是:1. 比较直尺、卷尺和激光测距仪三种常见的长度测量工具的准确性和可靠性;2. 探究不同测量方法对长度测量结果的影响;3. 分析实验结果,总结并提出适合不同情况下选择的测量方法。
二、实验材料和设备:本实验所需的材料和设备包括:1. 直尺:用于直接测量较短的长度;2. 卷尺:用于测量较长的长度;3. 激光测距仪:利用激光技术进行非接触式测量。
三、实验步骤:1. 使用直尺对一根长度为10厘米的木棍进行测量,并记录结果;2. 使用卷尺对一根长度为50厘米的铁丝进行测量,并记录结果;3. 使用激光测距仪对一块长度为1米的砖墙进行测量,并记录结果;4. 重复步骤1~3,以获得更准确的结果。
四、实验结果与分析:通过实验测量得到的结果如下:1. 利用直尺测量10厘米的木棍,结果为9.8厘米;2. 利用卷尺测量50厘米的铁丝,结果为50.3厘米;3. 利用激光测距仪测量1米的砖墙,结果为0.995米。
从结果可以看出,直尺和卷尺的测量结果与真实值存在一定的误差。
这主要是由于人的肉眼判断和操作时的不精确所致,同时直尺和卷尺本身也存在一定的固有误差。
而激光测距仪的测量结果更加准确,接近真实值。
这是因为激光测距仪采用了先进的激光技术,可以实现非接触式测量,减少了人为因素的干扰。
值得注意的是,即使是同一测量方法,不同人员进行测量时可能会得到不同的结果,这是由人的主观因素和操作技巧等影响所致。
因此,在进行精确测量时,应尽量减少人为因素的干扰,例如可以让同一人员多次测量并取平均值,或者使用更先进、精确度更高的测量设备。
五、实验结论:通过本实验的比较和分析,我们得出以下结论:1. 在进行长度测量时,不同测量方法的准确性和可靠性存在差异;2. 激光测距仪是一种高精度、可靠性较高的测量工具,适用于较长距离的测量;3. 直尺和卷尺适用于较短距离的测量,但在精确度上与激光测距仪相比有限制。
激光测距实验报告

激光测距实验报告激光脉冲测距实验1.实验目的通过学习激光脉冲测距的工作原理;了解激光脉冲测距系统的组成;搭建室内模拟激光脉冲测距系统进行正确测距,为今后的工程设计奠定理论基础和工程实践基础。
2.实验原理激光脉冲测距与雷达测距在原理上是完全相同的,如图所示。
在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。
测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为R=/2式中c为光速。
真空中的光速是一个精确的物理常数C1=299792458 m/s光纤中的平均折射率n为n=故光纤中的光速为C=299710000可见,激光测距的任务就是准确地测定时间间隔t。
当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的⊿R=C⊿t/2实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔t的。
时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。
设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。
若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。
设这段时间内脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为R=1/2cmT=cm/f=相应的测距精度为⊿R =1/2Ct=c/可见,脉冲激光测距机的测距精度由晶振的频率决定。
常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz 等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。
晶振的频率愈高,测距精度就愈高,但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。
对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成电信号形成的。
这两个信号既可由同一探测器提供,也可以用两个探测器提供。
激光脉冲测距机由激光器、发射光学系统、接收及瞄准光学系统、取样及回波探测放大系统、技数及显示器和电源几部分组成,如图所示系统操作人员一旦下达发射激光命令,激光器发射一束窄激光脉冲,经发射光学系统扩束后射向接收系统,其中一小部分经取样后启动计数器开始计数。
距离测量实验报告

距离测量实验报告距离测量实验报告引言:在现代科学技术的发展中,距离测量是一项重要的技术手段。
无论是在建筑工程、地质勘探还是导航系统等领域,准确测量距离都是必不可少的。
本实验旨在通过使用不同的测量工具和方法,探究距离测量的原理和应用。
一、实验目的本实验的目的是通过使用不同的测量工具和方法,探究距离测量的原理和应用。
二、实验材料和仪器1. 测量卷尺2. 激光测距仪3. GPS定位设备4. 钢尺5. 测距仪三、实验步骤1. 使用测量卷尺进行直线距离测量。
将卷尺放置在需要测量的两点之间,读取卷尺上的刻度值,计算出两点之间的直线距离。
2. 使用激光测距仪进行距离测量。
将激光测距仪对准需要测量的目标,观察仪器显示的距离数值,即可得到目标距离。
3. 使用GPS定位设备进行距离测量。
将GPS定位设备放置在需要测量的位置,等待设备定位后,读取设备上显示的距离数值。
4. 使用钢尺进行小范围距离测量。
将钢尺放置在需要测量的两点之间,读取钢尺上的刻度值,计算出两点之间的距离。
5. 使用测距仪进行长距离测量。
将测距仪对准目标,观察仪器上的显示数值,即可得到目标距离。
四、实验结果和分析通过实验测量和计算,我们得到了不同测量工具和方法下的距离测量结果。
在实验中,我们发现激光测距仪的测量结果最为准确,其次是GPS定位设备和测距仪,而测量卷尺和钢尺的结果相对较为粗略。
这是因为激光测距仪采用了先进的激光技术,能够精确测量目标距离,并且具有较高的测量精度。
GPS定位设备通过卫星定位系统,可以实时获取目标位置的经纬度信息,从而计算出目标距离。
而测距仪则是通过测量光的传播时间来计算距离,虽然精度稍低于激光测距仪,但在长距离测量中仍然具有较高的可靠性。
然而,测量卷尺和钢尺的测量结果相对较为粗略,主要原因是人为读取刻度时存在一定的误差。
此外,测量卷尺和钢尺的使用范围相对较小,适用于小范围距离测量。
五、实验总结通过本次实验,我们了解了不同测量工具和方法在距离测量中的应用和优缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光脉冲测距实验1.实验目的通过学习激光脉冲测距的工作原理;了解激光脉冲测距系统的组成;搭建室内模拟激光脉冲测距系统进行正确测距,为今后的工程设计奠定理论基础和工程实践基础。
2.实验原理激光脉冲测距与雷达测距在原理上是完全相同的,如图2.1所示。
在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。
测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为R=/2 (2-1)式中c为光速。
真空中的光速是一个精确的物理常数C1=299792458 m/s光纤中的平均折射率n为n=1.000275266故光纤中的光速为C=299710000可见,激光测距的任务就是准确地测定时间间隔t。
当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的⊿R=C⊿t/2 (2-2)实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔 t的。
时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。
设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。
若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。
设这段时间内脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为R=1/2cmT=cm/f=1.6m (2-3)相应的测距精度为⊿R =1/2Ct=c/(2f) (2-4)可见,脉冲激光测距机的测距精度由晶振的频率决定。
常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。
晶振的频率愈高,测距精度就愈高,但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。
对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成电信号形成的。
这两个信号既可由同一探测器提供,也可以用两个探测器提供。
激光脉冲测距机由激光器、发射光学系统、接收及瞄准光学系统、取样及回波探测放大系统、技数及显示器和电源几部分组成,如图2.2所示系统操作人员一旦下达发射激光命令,激光器发射一束窄激光脉冲,经发射光学系统扩束后射向接收系统,其中一小部分经取样后启动计数器开始计数。
激光回波经测距机的接收和瞄准光学系统,聚焦到前面有窄带滤光片的光探测器上。
由探测器将其转换成电信号,再经取样及回波探测放大系统处理后产生“关门”信号用于关闭计数器。
由计数器计得的脉冲个数计算出光纤得电源计数及显示器激光器长度,再通过显示器显示出来。
3.实验装置实验装置包括“激光脉冲发射/接收电路板”、电脑和“单片机开放板”。
1.激光脉冲发射/接收电路板组成及工作原理激光脉冲发射/接收电路板原理框图如图2.3所示。
图中EMP 3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到分差信号转换芯片;T23为差分信号单短信号转换芯片;LD为半导体激光器;PD为光探测器。
板子上端的EMP3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。
此信号经MAX3656放大后驱动LD发光。
板子下端的EMP 3032被编程为计数器,对125MHz晶振计数器。
其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。
计数器的计数结果采用12位二进制数据输出,对应时间范围为0~32.76us.图2.3 发射/接收模块原理框图发射/接收模块布局如图2.4所示,TX、RX1、RX2为三个Q9插座。
其中,LD的驱动信号由TX口输出;PD接收到的信号由RX输出。
2.接口管脚说明插座J9为计数结果输出管脚,包括12位数据管脚和1位计数指示管脚:•数据管脚的高八位(从第12到5位)分别对应J9的1、3、5、7、9、11、13、15;数据管脚的低四位(从第4到11位)分别对应J9的16、14、12、10。
高电平为1,低电平为0;•计数指示管脚为J9的第六位。
计数指示为1表示正在计数,0表示计数结束。
4.实验内容与要求图2.4 实验系统组成框图实验系统主要由激光脉冲发射/接收电路板(其上包括脉冲半导体驱动器、脉冲半导体激光器、光电探测接收系统、计数器)和单片机开发板(其上包括单片机及显示模块)组成。
其中脉冲半导体激光驱动器产生重复频率为1KHz,脉冲宽度为24ns的电脉冲信号驱动半导体激光器工作,同时此脉冲信号作为计数器的开门信号启动计数器开始对高速晶振输出的脉冲个数计数。
半导体激光器输出光脉冲耦合到光纤中,经过一定长度的光纤传输后再被光电探测器接收转换成电信号,经过放大后作为计数器的关门信号,使计数器停止计数。
此时计数器计到的脉冲个数再乘以晶振的周期即为光脉冲在光纤中的传输时间,此时间乘以光在光纤中的传播速度即为光线的长度。
单片机将计数器的计数值读入,计算出距离值并显示出来。
单片机程序:/****************************************///-------------脉冲测距程序-------------////------///****************************************/#include <reg52.h> //头文件#define uchar unsigned char //两个宏定义,只是为了方便#define uint unsigned intuchar code SEG7[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x80};//数码管的编码uchar SA V[6] = {10,10,10,10,10,10};//初始化数码管,使其初始时均无显示uchar code ACT[6]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf}; //位选的编码void delay(uchar); // 延时函数声明void display(); //显示函数声明void count(uint) //计算各个数码管显示数字大小函数的声明uint Get_Data(); //读取数据函数声明void main() //主函数{uint Dis_Data;Dis_Data = Get_Data()*16; //将读取的数据进行计算,得到距离count(Dis_Data) //计算各个数码管显示数字大小while(1) //主循环{display( ) //显示函数 };}void delay(uchar time) //延时函数{while(time>0) time-- }void count(uint Con_Data) //计算各个数码管显示数字大小函数{SA V[0] = Con_Data%10; //计算个位数据SA V[1] = Con_Data/10%10; //计算十位数据SA V[2] = Con_Data/100%10; //计算百位数据SA V[3] = Con_Data/100/10%10; //计算千位数据 }void display( ) //显示函数{uchar i = 0;for (i = 0; i<4 i++ ) //for循环用于进行循环显示{P0 = SEG7[SAV[i]] //显示函数的主体,P0作为字线输出P2 = ACT[i];delay(200);P0 = 0xffP0 = SEG7[11];P2 = ACT[1]; //P2作为实验板的位线delay(200) //延时函数P0 = 0xff //防止出现余辉现象}}uint Get_Data() //读取数据函数{uint Last_Data;uchar Data;/* */P3 = 0xff;// while(P3^3!=0); //检验数据传输是否完成Data = P3 //读取P3口数据Last_Data = Data&0xf0; //获取P3口数据的高四位Last_Data = Last_Data<<4; //数据左移4位,因为读入的是高位P1 = 0xff; //P1口置高,这是读取数据的需要Data = P1; //读取P1口数据Last_Data = Last_Data +Data; //高四位+第四位=周期数/*以下为未接激光测距芯片时用来测试单片机算法的Last_Data = 0xff&0xf0;Last_Data = Last_Data<<4;Data = 0x00;Last_Data = Last_Data +Data;*/return Last_Data}总结:这个实验很有用,特别是对于我们电子类专业的学生,现在激光技术在工业、医疗、商业、科研、信息和军事等研究中应用的非常广泛。
这是一次我们接触这方面的实验,在实验中我们将大一学习过的编程学以致用,同时此次实验也为我们提供了一个练习编程的机会。
我认为作为一名工科生,单片机是我们大学生活中的一个玩伴,通过这门课程的学习,我们已熟悉地掌握单片机的基本操作,同时对激光测距有了基本的认识,,更重要的是我们通过相互帮助,相互学习完成了这个实验,实验同时提高了我们的实践动手能力。
见到不少实验仪器,对实验的过程有了更全面的体会,注意到每一个实验都有各自的严谨性和特殊的方法。
建议:1:该门实验选修课是一门综合性较高的科目,我们能够学到基础课程之外的很多东西,知识量较大,若能多安排几个课时与学分,就更好了。
2:每组若分为一大组,两小组的话这样可以加强同学间的协作,同时能够学到更多东西。