第25讲 与圆有关的计算

合集下载

2024中考数学专题过关检测专题25 与圆有关的计算的核心知识点精讲(讲义)(解析版)

2024中考数学专题过关检测专题25 与圆有关的计算的核心知识点精讲(讲义)(解析版)

专题25 与圆有关的计算的核心知识点精讲1.掌握弧长和扇形面积计算公式;2.会利用弧长和扇形面积计算公式进弧长和扇形面积的计算考点1:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD D中进行::::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE D中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB D中进行,::2AB OB OA =.考点2:扇形的弧长和面积计算扇形:(1)弧长公式:180n Rl p =;(2)扇形面积公式:213602n R S lR p ==n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长S :扇形面积注意:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的; (2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.长的,即即; (4)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的 (5)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量.考点3:扇形与圆柱、圆锥之间联系1、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r p p +(2)圆柱的体积:2V r h p =2、圆锥侧面展开图(1)S S S =+侧表底=2Rr r p p +(2)圆锥的体积:213V r hp =注意:圆锥的底周长=扇形的弧长(180r 2Rn ΠΠ=)【题型1:正多边形和圆的有关计算】【典例1】(2023•福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为( )A .B .2C .3D .2积的,即;C 1D 1【答案】C【解答】解:如图,AB是正十二边形的一条边,点O是正十二边形的中心,过A作AM⊥OB于M,在正十二边形中,∠AOB=360°÷12=30°,∴AM=OA=,∴S=OB•AM==,△AOB∴正十二边形的面积为12×=3,∴3=12×π,∴π=3,∴π的近似值为3,故选:C.【变式1-1】(2023•临沂)将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是( )A.60°B.90°C.180°D.360°【答案】B【解答】解:由于正六边形的中心角为=60°,所以正六边形绕其中心旋转后仍与原图形重合,旋转角可以为60°或60°的整数倍,即可以为60°,120°,180°,240°,300°,360°,不可能是90°,故选:B.【变式1-2】(2023•安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=( )A.60°B.54°C.48°D.36°【答案】D【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.【变式1-3】(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为,(0,﹣3),则点M的坐标为( )A.(3,﹣2)B.(3,2)C.(2,﹣3)D.(﹣2,﹣3)【答案】A【解答】解:设中间正六边形的中心为D,连接DB.∵点P,Q的坐标分别为,(0,﹣3),图中是7个全等的正六边形,∴AB=BC=2,OQ=3,∴OA=OB=,∴OC=3,∵DQ=DB=2OD,∴OD=1,QD=DB=CM=2,∴M(3,﹣2),故选:A.【变式1-4】(2023•内江)如图,正六边形ABCDEF内接于⊙O,点P在上,点Q是的中点,则∠CPQ 的度数为( )A.30°B.45°C.36°D.60°【答案】B【解答】解:如图,连接OC,OD,OQ,OE,∵正六边形ABCDEF,Q是的中点,∴∠COD=∠DOE==60°,∠DOQ=∠EOQ=∠DOE=30°,∴∠COQ=∠COD+∠DOQ=90°,∴∠CPQ=∠COQ=45°,故选:B.【题型2:弧长和扇形面积的有关计算】【典例2】(2023•张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于( )A.πB.3πC.2πD.2π﹣【答案】B【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∴==,∵的长==π,∴该“莱洛三角形”的周长是3π.故选:B.【变式2-1】(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )A.πB.πC.πD.π【答案】B【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【变式2-2】(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是( )A.m B.m C.m D.(+2)m【答案】C【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,由题意可得,CD=2m,AD=2m,∠ADC=90°,∴tan∠DCA===,AC==4(m),∴∠ACD=60°,OA=OC=2m,∴∠ACB=30°,∴∠AOB=60°,∴优弧ADCB所对的圆心角为300°,∴改建后门洞的圆弧长是:=(m),故选:C.【变式2-3】(2023•锦州)如图,点A,B,C在⊙O上,∠ABC=40°,连接OA,OC.若⊙O的半径为3,则扇形AOC(阴影部分)的面积为( )A.πB.πC.πD.2π【答案】D【解答】解:∵∠ABC=40°,∴∠AOC=2∠ABC=80°,∴扇形AOC的面积为,故选:D.【题型3:有圆有关的阴影面积的计算】【典例3】(2023•广元)如图,半径为5的扇形AOB中,∠AOB=90°,C是上一点,CD⊥OA,CE⊥OB,垂足分别为D,E,若CD=CE,则图中阴影部分面积为( )A.B.C.D.【答案】B【解答】解:连接OC,如图所示,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴∠AOB=∠ODC=∠OEC=90°,∴四边形OECD是矩形,∵CD=CE,∴四边形OECD是正方形,∴∠DCE=90°,△DCE和△OEC全等,∴S阴影=S△DCE+S半弓形BCE=S△OCE+S半弓形BCE=S扇形COB==,故选:B.【变式3-1】(2023•雅安)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花,在其余区域内(阴影部分)种草,测得∠AOB =120°,OA =15m ,OC =10m ,则种草区域的面积为( )A .B .C .D .【答案】B【解答】解:S 阴影=S 扇形AOB ﹣S 扇形COD ==(m 2).故选:B .【变式3-2】(2023•鄂州)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是( )A .5πB .5﹣4πC .5﹣2πD .10﹣2π【答案】C【解答】解:连接OD .在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,∴BC =AB =4,∴OC =OD =OB =2,∴∠DOB =2∠C =60°,∴S 阴=S △ACB ﹣S △COD ﹣S 扇形ODB =×4×4﹣﹣=8﹣3﹣2π=5﹣2π.故选:C .【变式3-3】(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC =90°,则扇形部件的面积为( )A .米2B .米2C .米2D .米2【答案】C【解答】解:连结BC ,AO ,如图所示,∵∠BAC =90°,∴BC 是⊙O 的直径,∵⊙O 的直径为1米,∴AO =BO =(米),∴AB ==(米),∴扇形部件的面积=π×()2=(米2),故选:C .【题型4:圆锥的有关计算】【典例4】(2023•东营)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是( )A.3B.4C.5D.6【答案】A【解答】解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=15π,∴R=3.故选:A.【变式4-1】(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )A.90°B.100°C.120°D.150°【答案】C【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.【变式4-2】(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是( )A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【答案】C【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.【变式4-3】(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为( )A.10cm B.20cm C.5cm D.24cm【答案】D【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.一.选择题(共10小题)1.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形的中心角∠COD的度数是( )A.72°B.60°C.48°D.36°【答案】A【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:A.2.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为( )A.2,B.,πC.2,D.2,【答案】D【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OB sin∠OBM=4×=2,的长==;故选:D.3.如图,⊙O的半径为1,点A、B、C都在⊙O上,∠B=45°,则的长为( )A.πB.πC.πD.π【答案】C【解答】解:∵∠B=45°,∴∠AOC=90°,∵⊙O的半径为1,∴的长===π,故选:C.4.如图,AB是半圆O的直径,C、D是半圆上两点,且满足∠ADC=120°,BC=1,则的长为( )A.B.C.D.【答案】A【解答】解:如图,连接OC.∵∠ADC=120°,∴∠ABC=60°,∵OB=OC,∴∠OCB=∠OBC=∠B=60°,OB=OC=BC=1,∴的长为=,故选:A.5.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )A.πB.2πC.4πD.6π【答案】B【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.6.若扇形的半径是12cm弧长是20πcm,则扇形的面积为( )A.120πcm2B.240πcm2C.360πcm2D.60πcm2【答案】A【解答】解:该扇形的面积为:(cm 2).故选:A .7.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°后得到△AB 'C ',点B 经过的路径为弧BB ′,若∠BAC =60°,AC =3,则图中阴影部分的面积是( )A .B .C .D .3π【答案】C【解答】解:在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AC =3,∴∠ABC =30°.∴AB =2AC =6.根据旋转的性质知△ABC ≌△AB ′C ′,则S △ABC =S △AB ′C ′,AB =AB ′.∴S 阴影=S 扇形ABB ′+S △AB ′C ′﹣S △ABC ==.故选:C .8.如图,四边形ABCD 为正方形,边长为4,以B 为圆心、BC 长为半径画,E 为四边形内部一点,且BE ⊥CE ,∠BCE =30°,连接AE ,则阴影部分面积( )A .B .6πC .D .【答案】C【解答】解:如图,作EF ⊥AB 于点F ,∵BE⊥CE,∠BCE=30°,∴BE=BC=2,∠CBE=60°,∴CE=BE=2,∠EBF=30°,∴EF=BE=1,∴S阴影=S扇形ABC﹣S△BCE﹣S△ABE=﹣×2×﹣×1=4π﹣2﹣2.故选:C.9.如图,圆锥的母线长为5cm,高是4cm,则圆锥的侧面展开扇形的圆心角是( )A.180°B.216°C.240°D.270°【答案】B【解答】解:∵圆锥的母线长为5cm,高是4cm,∴圆锥底面圆的半径为:=3(cm),∴2π×3=,解得n=216°.故选:B.10.已知圆锥的底面半径是4,母线长是5,则圆锥的侧面积是( )A.10πB.15πC.20πD.25π【答案】C【解答】解:圆锥的侧面积=×2π×4×5=20π,故选:C.二.填空题(共8小题)11.AB是⊙O的内接正六边形一边,点P是优弧AB上的一点(点P不与点A,B重合)且BP∥OA,AP 与OB交于点C,则∠OCP的度数为90° .【答案】90°.【解答】解:∵AB是⊙O的内接正六边形一边,∴∠AOB==60°,∴=30°,∵BP∥OA,∴∠OAC=∠P=30°,∴∠OCP=∠AOB+∠OAC=60°+30°=90°.故答案为:90°.12.已知正六边形的内切圆半径为,则它的周长为 12 .【答案】见试题解答内容【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长等于正六边形的半径,设正六边形的半径为a,∴△OAB是等边三角形,∴OA=AB=a,∴OG=OA•sin60°=a×=,解得a=2,∴它的周长=6a=12.故答案为:12.13.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧,点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路的长度为40πm.【答案】见试题解答内容【解答】解:由题意得,这段弯路的长度为,故答案为:40π.14.已知扇形的圆心角为120°,面积为27πcm2,则该扇形所在圆的半径为9cm .【答案】见试题解答内容【解答】解:∵扇形的圆心角为120°,面积为27πcm2,∴由S=得:r===9cm,故答案为:9cm.15.圆锥的侧面积是10πcm2,底面半径是2cm,则圆锥的母线长为5cm.【答案】见试题解答内容【解答】解:底面半径是2cm,则扇形的弧长是4π.设母线长是l,则×4πl=10π,解得:l=5.故答案为:5.16.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是4 cm.【答案】见试题解答内容【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故答案为4.17.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是6π .【答案】见试题解答内容【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:=6π,故答案为:6π.18.如图,将边长相等的正六边形和正五边形拼接在一起,则∠ABC的度数为 132°.【答案】见试题解答内容【解答】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠ABC=360°﹣120°﹣108°=132°,故答案为:132.一.选择题(共7小题)1.在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受到中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,“雪花”中心与原点重合,C,F在y轴上,则顶点B的坐标为( )A.(4,2)B.(4,4)C.D.【答案】C【解答】解:连接OB,OA,如图所示:∵正六边形是轴对称图形,中心与坐标原点重合,∴△AOB是等边三角形,AO=BO=AB=4,AB⊥x轴,AM=BM,∵AB=4,∴AM=BM=2,∴OM=,∴点B的坐标为:(2,2),故选:C.2.如图,正五边形ABCDE内接于⊙O,点F在弧AE上.若∠CDF=95°,则∠FCD的大小为( )A.38°B.42°C.49°D.58°【答案】C【解答】解:如图,连接OE,OD,CE,∵五边形ABCDE是正五边形,∴∠CDE=(5﹣2)×180°÷5=108°,∵∠CDF=95°,∴∠FDE=∠CDE﹣∠CDF=108°﹣95°=13°,∴∠FCE=13°,∵正五边形ABCDE内接于⊙O,∴∠EOD=360°÷5=72°,∴∠ECD==36°,∴∠FCD=∠FCE+∠ECD=36°+13°=49°,故选:C.3.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D.若⊙O的半径为5,AB =4,则的长是( )A.B.C.D.4π【答案】A【解答】解:连接AC,OB,OD,CD,作CF⊥AB于点F,作OE⊥CF于点E,由垂定理可知OD⊥AB于点D,AD=BD==.又OB=5,∴OD===,∵CA、CD所对的圆周角为∠CBA、∠CBD,且∠CBA=∠CBD,∴CA=CD,△CAD为等腰三角形.∵CF⊥AB,∴AF=DF==,又四边形ODFE为矩形且OD=DF=,∴四边形ODFE为正方形.∴,∴CE===2,∴CF=CE+EF=3=BF,故△CFB为等腰直角三角形,∠CBA=45°,∴所对的圆心角为90°,∴==.故选:A.4.如图,将直径为4的半圆形分别沿CD,EF折叠使得直径两端点A,B的对应点都与圆心O重合,则图中阴影部分的面积为( )A.B.C.D.【答案】A【解答】解:连接AC,OC,OE,BE,由题意得:CD垂直平分OA,∴AC=OC,∵OC=OA,∴△OAC是等边三角形,同理△BOE是等边三角形,∴∠AOC=∠BOE=60°,∴∠COE=60°,∴弓形AMC、弓形ONC、弓形OPE的面积相等,∵圆的直径是4,∴OA=2,∴扇形OAC的面积==,△OAC的面积=OA2=,∴扇形OCE的面积=扇形OAC的面积=,∴弓形AMC的面积=扇形OAC的面积﹣△OAC的面积=﹣,∴阴影的面积=扇形OCE的面积﹣弓形AMC的面积×2=﹣2×(﹣)=2﹣.故选:A.5.如图,扇形AOB中,∠AOB=90°,点C,D分别在OA,上,连接BC,CD,点D,O关于直线BC对称,的长为π,则图中阴影部分的面积为( )A.B.C.D.【答案】A【解答】解:连接BD、OD,交BC与E,由题意可知,BD=BO,∵OD=OB,∴OD=OB=DB,∴∠BOD=60°,∵∠AOB=90°,∴∠AOD=30°,∵的长为π,∴,∴r=6,∴OB=6,∴OE==3,BE=OB=3,∴CE=OE=,+S△COE﹣S△BOE=+﹣=6π﹣3.∴阴影部分的面积=S扇形BOD故选:A.6.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是( )A.B.C.D.【答案】B【解答】解:如图,连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=8,∵AD∥BO,∴∠OAD=∠AOB=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵△OAD与△ABD与△AOB是等底等高的三角形,∴S阴影=S扇形AOB==π.故选:B.7.如图,一个圆锥的母线长为6,底面圆的直径为8,那么这个圆锥的侧面积是( )A.24πB.40πC.48πD.【答案】A【解答】解:根据题意,这个圆锥的侧面积=×8π×6=24π.故选:A.二.填空题(共5小题)8.如图,已知正方形ABCD的边长为4cm,以AB,AD为直径作两个半圆,分别取弧AB,弧AD的中点M,N,连结MC,NC,则图中阴影部分的周长为 (4) cm.【答案】(4).【解答】解:解法一:如图,取AD的中点O,连接NO,设CN交AD于点E,∵N是弧AD的中点,∴NO⊥AD,∵CD⊥AD,∴NO∥CD,∴△NOE∽△CDE,∴====,∴OE=OD=,在Rt△NOE中,NE===,∴CM=CN=3NE=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.解法二:作NH⊥BC于点H,则CH=2,NH=6,在Rt△NHC中,NC===2,∴CM=CN=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.故答案为:(4).9.如图,△ABC是边长为1的等边三角形,曲线CC1C2C3C4…是由多段120°的圆心角所对的弧组成的,其中的圆心为A,半径为AC;的圆心为B,半径为BC1;的圆心为C,半径为CC2;的圆心为A,半径为AC3……,,,,…的圆心依次按点A,B,C循环,则的长是 .(结果保留π)【答案】.【解答】解:∵△ABC是边长为1的等边三角形,∴AC=AC1=1,∠CAB=∠ABC=∠BCA=60°,;∴BC2=BC1=AB+AC1=2,CC3=CC2=BC2+AB=3,∠CAC1=∠C1BC2=C2CC3=120°,∴的半径为1;的半径为2;的半径为3;所对的圆心角为120°,∴的半径为n,所对的圆心角为120°,∴所在圆的半径为2023,所对的圆心角为120°,∴的长为.故答案为:.10.如图,已知矩形纸片ABCD,AD=2,,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为 .【答案】见试题解答内容【解答】解:cos∠BAE=,∴∠BAE=30°,∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:=π,∴圆锥的底面半径为π÷2π=.11.如图,从一块半径为20的圆形纸片上剪出一个圆心角是90°的扇形ABC,如果将剪下来的扇形ABC 围成一个圆锥,则该圆锥的底面半径是 .【答案】.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,即BC=20,∴AB=10,设该圆锥的底面圆的半径为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径为m.故答案为:.12.如图,AB是圆锥底面的直径,AB=6cm,母线PB=9cm,点C为PB的中点,若一只蚂蚁从A点处出发,沿圆锥的侧面爬行到C点处,则蚂蚁爬行的最短路程为cm .【答案】cm.【解答】解:由题意知,底面圆的直径AB=6cm,故底面周长等于6πcm,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得6π=,解得n=120°,所以展开图中∠APD=120°÷2=60°,因为半径PA=PB,∠APB=60°,故三角形PAB为等边三角形,又∵D为PB的中点,所以AD⊥PB,在直角三角形PAD中,PA=9cm,PD=cm,根据勾股定理求得AD=(cm),所以蚂蚁爬行的最短距离为cm.故答案为:cm.1.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是( )A.π﹣20B.π﹣20C.20πD.20【答案】D【解答】解:如图,连接BD,则BD过点O,在Rt△ABD中,AB=4,BC=5,∴BD2=AB2+AD2=41,S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆=π×()2+π×()2+4×5﹣π×()2=+20﹣=20,故选:D.2.(2023•广安)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是( )A.π﹣2B.2π﹣2C.2π﹣4D.4π﹣4【答案】C【解答】解:在等腰直角△ABC中,∠ACB=90°,AC=BC=2,∴∠A=∠B=45°,+S扇形CBF﹣S△ABC∴阴影部分的面积S=S扇形CAE=×2﹣=2π﹣4.故选:C.3.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为18 .【答案】见试题解答内容【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.4.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是10 .【答案】10.【解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:×180°×(5﹣2)=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故答案为:10.5.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是6cm.【答案】见试题解答内容【解答】解:设圆锥的母线长为x cm,根据题意得=2π•2,解得x=6,即圆锥的母线长为6cm.故答案为6.6.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为2cm.【答案】2.【解答】解:由题意得:母线l=6,θ=120°,2πr=,∴r=2(cm).故答案为:2.7.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为 .【答案】.【解答】解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),∴阴影部分的面积=S=×π×22=.扇形ADO故答案为:.8.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为πcm.【答案】π.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠OEA=∠BAC=50°,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.9.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5 .若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为 .【答案】5;.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得 5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.。

人教版数学九年级上学期课时练习-圆及有关概念(知识讲解)(人教版)

人教版数学九年级上学期课时练习-圆及有关概念(知识讲解)(人教版)

专题24.1 圆及有关概念(知识讲解)【学习目标】1.理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;【要点梳理】要点一、圆的定义第一定义:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.特别说明:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.第二定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 特别说明:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.特别说明:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.特别说明:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.特别说明:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.类型一、圆的定义1.如图,已知O 的圆心原点()0,0O ,半径长为(10,8),A a 是O 上的在第一象限的点,求a 的值.【答案】6【分析】根据圆的基本性质,可得OA =10,再由(),8A a ,可得AB =8,然后由勾股定理,求出OB =6,即可求解.解:如图,过点B 作AB ⊥x 轴于点B ,连接OA ,⊥O 的半径长为10,⊥OA =10,⊥(),8A a ,⊥AB =8,在Rt AOB 中,由勾股定理得:6OB = ,⊥(),8A a 在第一象限内,⊥0a > ,⊥6a =.【点拨】本题主要考查了圆的基本性质,勾股定理,点的坐标,熟练掌握圆的基本性质,勾股定理是解题的关键.举一反三:【变式1】 ABC 中,90C ∠=︒.求证:A B C ,,三点在同一个圆上.【分析】取AB 的中点O ,根据直角三角形的性质得到CO =AO =BO ,故可求解. 解:如图所示,取AB 的中点O ,连接CO在Rt ⊥ABC 中,⊥AO = BO ,⊥ACB = 90°,⊥CO =12AB ,即CO =AO =BO .⊥A ,B ,C 三点在同一个圆上,圆心为点O .【点拨】此题主要考查证明三点共圆,解题的关键是熟知圆的基本性质及直角三角形的特点.【变式2】如图,已知MN 为O 的直径,四边形ABCD ,EFGD 都是正方形,小正方形EFGD 的面积为16,求圆的半径.【答案】r =【分析】连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==,在Rt ⊥COD 和Rt ⊥FOG 中,分别根据勾股定理可得222(2)832x x x x +=++,解方程即可求解.解:如图,连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==, ⊥222DO CD CO +=,⊥222(2)x x r +=,⊥正方形EFGD 的面积为16,⊥4DG FG ==,⊥4OG x =+,又⊥222OF OG FG =+,⊥2222(4)4832r x x x =++=++,⊥222(2)832x x x x +=++, 解得14x =,22x =-(不合题意,舍去),⊥2224880r =+=,r =【点拨】本题考查勾股定理的应用圆的认识和性质,解题的关键是熟练掌握在一个直角三角形中两条直角边的平方和等于斜边的平方.类型二、与圆有关的概念3.如图,在O 中,半径有________,直径有________,弦有________,劣弧有________,优弧有________.【答案】OA,OB,OC,OD AB AB,BC AC,BC,BD,CD,AD ADC,BAC,BAD,ACD,DAC【分析】根据圆的基本概念,即可求解.解:在O中,半径有OA,OB,OC,OD;直径有AB;弦有AB,BC;劣弧有AC,BC,BD,CD,AD;优弧有ADC,BAC,BAD,ACD,DAC;故答案为:OA,OB,OC,OD;AB;AB,BC;AC,BC,BD,CD,AD;ADC,BAC,BAD,ACD,DAC.【点拨】本题主要考查了圆的基本概念,熟练掌握圆的半径、直径、弦、弧的概念是解题的关键.举一反三:【变式1】小于半圆的弧(如图中的________)叫做______;大于半圆的弧(用三个字母表示,如图中的_______)叫做______ .【注意】1)弧分为是优弧、劣弧、半圆.2)已知弧的两个起点,不能判断它是优弧还是劣弧,需分情况讨论.【答案】AC劣弧ABC优弧【变式2】如图,以点A为端点的优弧是____________,以点A为端点的劣弧是_____________.【答案】AEC,ADE AE,AC【分析】根据劣弧和优弧的定义求解.解:在⊥O中,以A为端点的优弧有AEC,ADE;以A为端点的劣弧有AE,AC;故答案为:AEC,ADE;AE,AC.【点拨】本题考查了圆的认识:掌握与圆有关的概念,注意:大于半圆的弧是优弧,小于半圆的弧是劣弧,半圆既不是优弧,也不是劣弧.类型三、点和圆的位置关系3.已知⊥O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点与⊥O位置关系各是怎样的【答案】PD=4cm,点P在⊥O上.QD>4cm,点Q在⊥O外.RD<4cm,点R在⊥O 内.【分析】依题意画出图形(如图所示),计算出P、Q、R三点到圆心的距离与圆的半径比较大小.解:连接PO,QO,RO.⊥PD=4cm,OD=3cm,⊥PO5r==.⊥ 点P 在⊥O 上.5QO r ===,⊥ 点Q 在⊥O 外.5RO r ==,⊥ 点R 在⊥O 内.【点拨】本题主要考查点与圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.举一反三:【变式1】已知:如图,△ABC 中,90,2cm,4cm AC C C B ∠==︒=,CM 是中线,以C长为半径画圆,则点A 、B 、M 与⊥C 的关系如何?【答案】点A 在⊥O 内;点B 在⊥C 外;M 点在⊥C 上【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d ,则当d =r 时,点在圆上;当d >r 时,点在圆外;当d <r 时,点在圆内.解:根据勾股定理,有AB =cm );⊥CA =2cm ,⊥点A 在⊥O 内,⊥BC =4cm ,⊥点B 在⊥C 外;由直角三角形的性质得:CM⊥M 点在⊥C 上.【点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【变式2】画图说明:端点分别在两条互相垂直的直线上,且长度为5 cm的所有线段的中点所组成的图形.【答案】以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【分析】如图所示,当线段两个端点在O,F时,此时的的中点为B点,同理可知也可在A,G,H点,这些点在已知直线的交点为圆心,2.5 cm长为半径的一个圆上;当线段两个端点在C,D时,其中点为E,根据直角三角形斜边上的中点是斜边的一半知CE=DE=OE,则E点在以O为圆心2.5 cm长为半径的一个圆上;综上即可画出图形.解:如图所示,以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【点拨】此题主要考查点与圆的关系,解题的关键是正确理解题意,再画出图形.类型四、圆中弦的问题4、已知:线段AB = 4 cm,画图说明:和点A、B的距离都不大于3 cm的所有点组成的图形.【答案】所求图形为阴影部分(包括阴影的边界).【分析】以A,B点为圆心,半径为3作圆,重叠的部分即为所求.解:如图所示,以点A,B为圆心,3cm为半径画圆,两个圆相交的部分为阴影部分,图中阴影部分就是到点A和点B的距离都不大于3 cm的所有点组成的图形.【点拨】此题主要考查点与圆的位置关系,解题的关键是根据题意画出图形,根据所学的点与圆的位置关系的判断方法来解答.举一反三:【变式1】如图所示,AB 为O 的一条弦,点C 为O 上一动点,且30BCA ∠=︒,点E ,F 分别是AC ,BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径为7,求GE FH +的最大值.【答案】GE FH +的最大值为212. 【分析】由GE FH +和EF 组成O 的弦GH ,在O 中,弦GH 最长为直径14,而EF 可求,所以GE FH +的最大值可求.解:连结AO ,BO ,⊥30BCA ∠=︒ ⊥60BOA ∠=︒⊥AOB 为等边三角形,7AB =⊥点E ,F 分别是AC ,BC 的中点 ⊥1722EF AB ==,⊥ GH 为O 的一条弦 ⊥GH 最大值为直径14 ⊥GE FH +的最大值为7211422-=. 【点拨】利用直径是圆中最长的弦,可以解决圆中一些最值问题.【变式2】如图,已知等边⊥ABC 的边长为8,点 P 是 AB 边上的一个动点(与点 A 、B 不重合).直线 l 是经过点 P 的一条直线,把⊥ABC 沿直线 l 折叠,点 B 的对应点是点B '.当 PB =6 时,在直线 l 变化过程中,求⊥ACB'面积的最大值.【答案】【分析】如图,过点P 作PH AC ⊥,当B ',P ,H 共线时,ACB '△的面积最大,求出PH 的长即可解决问题.解:如图,过点P 作PH ⊥AC ,由题可得,B '在以P 为圆心,半径长为6的圆上运动,当HP 的延长线交圆P 于点B '时面积最大,在Rt APH 中,8AB =,6PB =,2PA ∴=, ABC 是等边三角形,60PAH ∴∠=︒,1AH ∴=,PH =6BH ∴=ACB S '∴的最大值为18(6242⨯⨯=. 【点拨】本题考查圆与三角形综合问题,根据题意构造出图形是解题的关键. 类型五、与圆周长和面积有关的问题5、如图所示,求如图正方形中阴影部分的周长.(结果可保留π)【答案】正方形中阴影部分的周长为()2060cm π+【分析】阴影部分的周长=半圆弧长+14圆弧长+正方形边长的3倍,依此计算即可求解. 解:根据题意得:1110(cm)2l d ππ==, 2210(cm 41)r l ππ=⋅=, ()1010602060cm C πππ=++=+.故正方形中阴影部分的周长为()2060cm π+.【点拨】本题主要考查列代数式,解题的关键是掌握圆的周长公式.举一反三:【变式1】如图,长方形的长为a ,宽为b ,在它的内部分别挖去以b 为半径的四分之一圆和以b 为直径的半圆.(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =8,b =4时,求阴影部分的面积(π取3).【答案】(1)阴影部分的面积=ab ﹣38πb 2;(2)14.【分析】 (1)根据阴影部分面积=矩形面积-14圆的面积-半圆的面积,结合图形14圆的半径、半圆的半径和矩形的宽的关系,并利用它们的面积公式即可求解.(2)将a ,b 的值代入(1)中所求的代数式进行计算.解:(1)14圆的半径即为矩形的宽=b ,半圆的半径为矩形宽的12=12b , 阴影部分面积=矩形面积-14圆的面积-半圆的面积即:阴影部分面积=2221113()4228ab b b ab b πππ--=- (2)因为π取3,将84a b ==,代入(1)所得的代数式得:原式=238434=148⨯-⨯⨯. 【点拨】本题考查求圆的面积的公式及根据题意列代数式,明确阴影部分面积=矩形面积-14圆的面积-半圆的面积是解题的关键. 【变式2】如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【答案】2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点拨】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.类型六、坐标系中圆的问题6、如图,点P 是反比例函数(0)k y x x=<图象上一点,PA x ⊥轴于点A ,点M 在y 轴上,M 过点A ,与y 轴交于B 、D ,已知A 、B 两点的坐标分别为()()6,00,2A B -,,PB 的延长线交M 于另一点C .(1)求M 的半径的长;(2)当45APB ∠=︒时,试求出k 的值;(3)在(2)的条件下,请求出线段PC 的长.【答案】(1) 10 (2) 48- (3) 【分析】(1)设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,求出满足要求的m ,求出MB 的长,进而可得半径;(2)由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,将P B ,代入得62a b n b -+=⎧⎨=⎩,可得过P B ,的直线的解析式为226n y x -=+,将0y =代入,求得12,02E n -⎛⎫ ⎪-⎝⎭,由45APB ∠=︒ ,90PAB ∠=︒,可知AP PE =,则()1262n n -=---,求出满足要求的n 值,得到P 点坐标,然后代入反比例函数解析式求k 即可;(3)由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+,设(),2C a a -+,由题意知,10MC =,则()2222810a a +-++=,求出符合要求的a 值,进而可得C 的坐标,然后利用勾股定理求PC 的值即可.(1)解:设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,解得:8m =-,⊥()0,8M -,⊥()2810--=,⊥M 的半径的长为10.(2)解:由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,如图,将P B ,代入得62a b n b -+=⎧⎨=⎩, 解得262n a b -⎧=⎪⎨⎪=⎩, ⊥过P B ,的直线的解析式为226n y x -=+, 将0y =代入得122x n-=-, ⊥12,02E n -⎛⎫ ⎪-⎝⎭, ⊥45APB ∠=︒ ,90PAE ∠=︒,⊥45PEA ∠=︒,⊥AP AE =, ⊥()1262n n-=---, 整理得280n n -=,解得8n =,0n =(不合题意,舍去),⊥()6,8P -,将()6,8P -代入k y x =得,86k =-, 解得48k =-,⊥k 的值为48-.(3)解:由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+, 设(),2C a a -+,由题意知,10MC =,⊥()2222810a a +-++=,解得10a =, 0a =(不合题意,舍去),⊥()10,8C -,⊥PC =⊥PC 的长为【点拨】本题考查了圆的概念,反比例函数与一次函数的综合,等角对等边,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.举一反三:【变式1】如图,在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,其中0a >,0b >.(1)请写出方程22(3)(4)25x y ++-=表示的圆的半径和圆心的坐标;(2)判断原点()0,0和第(1)问中圆的位置关系.【答案】(1)半径为5,圆心()3,4- (2)在圆上【分析】(1)根据题目所给的“在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆”即可直接得出答案;(2)将原点()0,0的坐标代入22(3)(4)25x y ++-=,即可判断出点与圆的位置关系.(1)解:在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,∴将22(3)(4)25x y ++-=化成()2223(4)5x y --+-=⎡⎤⎣⎦, ∴22(3)(4)25x y ++-=表示的圆的半径为5,圆心的坐标为()3,4-;(2)解:将原点()0,0代入22(3)(4)25x y ++-=,左边2222(03)(04)3491625=++-=+=+==右边,∴原点()0,0在22(3)(4)25x y ++-=表示的圆上.【点拨】此题主要考查对未学知识以新定义形式出现的题型,读懂题意,根据新定义解决问题是本题的关键.【变式2】阅读下列材料:平面上两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离表示为12PP =,称为平面内两点间的距离公式,根据该公式,如图,设P (x ,y )是圆心坐标为C (a ,b )、半径为r 的圆上任意一点,则点P r =,变形可得:(x ﹣a )2+(y ﹣b )2=r 2,我们称其为圆心为C (a ,b ),半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C (3,4),半径为2的圆的标准方程为: ;(2)若已知⊥C 的标准方程为:(x ﹣2)2+y 2=22,圆心为C ,请判断点A (3,﹣1)与⊥C 的位置关系.【答案】(1)()()223425x y -+-=;(2)点A 在⊥C 的内部.【分析】(1)先设圆上任意一点的坐标(x ,y ),根据圆的标准方程公式求解即可;(2)先根据圆的标准方程求出圆心坐标,利用两点距离公式求出点A 到圆心的距离d ,然后与半径r 相比较,d >r ,点在圆外,d =r ,点在圆上,d <r ,点在圆内,即可判断点A与圆的位置关系.解:(1)设圆上任意一点的坐标为(x ,y ),⊥()()223425x y -+-=,故答案为()()223425x y -+-=;(2)⊥⊥C 的标准方程为:(x ﹣2)2+y 2=22,⊥圆心坐标为C (2,0),⊥点A (3,﹣1),AC 2 ⊥点A 在⊥C 的内部.【点拨】本题考查两点距离公式的拓展内容,圆的标准方程,正确理解题意、熟练掌握基本知识是解题关键.。

2013-2014中考数学专题复习学生版第二十五讲 与圆有关的计算

2013-2014中考数学专题复习学生版第二十五讲 与圆有关的计算

第二十五讲与圆有关的计算【基础知识回顾】一、正多边形和圆:1、各边相等,也相等的多边形是正多边形2、每一个正多边形都有一个外接圆,外接圆的圆心叫正多边形的外接圆的半径叫正多边形的一般用字母R表示,每边所对的圆心角叫可用用α表示,α=,中心到正多边形一边的距离叫做正多边形的用r表示3、每一个正n边形都被它的半径分成n个全等的三角形,被它的半径和边心距分成个全等的三角形【名师提醒:正多边形的有关计算,一般是放在一个等腰三角形或一个直角三角形中进行,根据半径、边心距、边长、中心角等之间的边角关系作计算,以正三角形、正方形和正方边形为主】二、弧长与扇形面积计算:⊙O的半径为R,弧长为L,圆心角为n0,扇形的面积为S扇,则有如下公式:L=S扇= =【名师提醒:1、以上几个公式都可进行变形,2、原公式中涉及的角都不带单位3、扇形的两个公式可根据已知条件灵活进行选择4、圆中的面积计算常见的是求阴影部分的面积,常用的方法有:⑴已知规则图形面积的和与差⑵割补法⑶等积变形法⑷平移法⑸旋转法等】三、圆柱和圆锥:1、如图:设圆柱的高为h,底面半径为R则有:⑴S圆柱侧=⑵S圆柱全=⑶V圆柱=2、如图:设圆锥的母线长为l,底面半径为R,高为h,则有:⑴S圆锥侧= 、⑵S圆锥全=⑶V圆锥=【名师提醒:1、圆柱的高有条,圆锥的高有条2、圆锥的高h,母线长l,底高半径R满足关系3、注意圆锥的侧面展开圆中扇形的半径l是圆锥的,扇形的弧长是圆锥的4、圆锥的母线为l,底面半径为R,侧面展开图扇形的圆心角度数为n,若l=2r,则n= l=3r,则n= l=4r则n= 】【典型例题解析】考点一:正多边形和圆例1 (2013•绵阳)如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b 至少为()A.6mm B.12mm C.D.点评:本题考查了正多边形和圆的知识,构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行求解.对应训练1.(2013•天津)正六边形的边心距与边长之比为()A 3B 2 C.1:2 D :2 考点二:圆周长与弧长例2 (2013•黄冈)如图,矩形ABCD 中,AB=4,BC=3,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A 第一次翻滚到点A 1位置时,则点A 经过的路线长为 .思路分析:如图根据旋转的性质知,点A 经过的路线长是三段:①以90°为圆心角,AD 长为半径的扇形的弧长;②以90°为圆心角,AB 长为半径的扇形的弧长;③90°为圆心角,矩形ABCD 对角线长为半径的扇形的弧长.点评:本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A 运动轨迹,是突破解题难点的关键.对应训练2.(2013•遵义)如图,将边长为1cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( )A .πcmB .(2+π)cmC .πcmD .3cm考点三:扇形面积与阴影部分面积例3 (2013•重庆)如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)323243乐山点评:本题考查了图形的面积的计算,不规则图形的面积可以转化为规则图形的面积的和或差计算.对应训练3.(2013•乐山)如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为.考点四:圆柱、圆锥的侧面展开图例4 (2013•遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcm B.1.5cm C.πcm D.1cm面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.对应训练4.(2013•攀枝花)一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°2点评:此题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.(3)求证:GF-GB=DF•GF.【聚焦山东中考】1.(2013•滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6,B .3,3 C .6,3D .,2.(2013•东营)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( ) A .πa B .2πa C .πaD .3a泰安3.(2013•泰安)如图,AB ,CD 是⊙O 的两条互相垂直的直径,点O 1,O 2,O 3,O 4分别是OA 、OB 、OC 、OD 的中点,若⊙O 的半径为2,则阴影部分的面积为( )A .8B .4C .4π+4D .4π-44.(2013•济南)如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为( )A .B .π-C .D . + 莱芜5.(2013•莱芜)将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .BCD . 6.(2013•菏泽)在半径为5的圆中,30°的圆心角所对的弧长为 (结果保留π).7.(2013•聊城)已知一个扇形的半径为60cm ,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为 cm .8.(2013•青岛)如图,AB 是⊙O 的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是 .124π12124π1232枣庄9.(2013•枣庄)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.10.(2013•莱芜)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.【备考真题过关】 一、选择题1.(2013•淮安)若扇形的半径为6,圆心角为120°,则此扇形的弧长是( )A .40°B .45°C .60°D .80°3.(2013•义乌)已知圆锥的底面半径为6cm ,高为8cm ,则这个圆锥的母线长为( )A .12cmB .10cmC .8cmD .6cm4.(2013•乌鲁木齐)如图是某几何体的三视图,则该几何体的体积是( )A .πB .2πC .3πD .4π南通5.(2013•南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm ,底面周长是6πcm ,则扇形的半径为( )A .3cmB .5cmC .6cmD .8cm6.(2013•黄石)已知直角三角形ABC 的一条直角边AB=12cm ,另一条直角边BC=5cm ,则以AB 为轴旋转一周,所得到的圆锥的表面积是( )A .90πcm 2B .209πcm 2C .155πcm 2D .65πcm 27.(2013•舟山)如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为( )A .cmB .cmC .cmD .7πcm南宁8.(2013•南宁)如图,圆锥形的烟囱底面半径为15cm ,母线长为20cm ,制作这样一个烟囱帽所需要的铁皮面积至少是( )A .150πcm 2B .300πcm 2C .600πcm 2D .150πcm 29.(2013•台州)如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A .3B .C .4D .4π74π72π贵港A .B .24πC .16πD .12πA .BCD 武汉12.(2013•武汉)如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点.若∠CDE=x°,∠ECD=y°,⊙B 的半径为R ,则的长度是( ) A . B . C . D .A .1个B .2个C .3个D .4个19π32π-23π-»DE(90)x Rπ-⨯(90)y Rπ-⨯(180)x Rπ-⨯(180)y Rπ-⨯茂名•重庆二、填空题的圆都经过另一个圆的圆心,则游泳池的周长是m.徐州2具的用纸面积是cm.(不考虑接缝等因素,计算结果用π表示).泸州1程为cm.凉山州25.(2013•凉山州)如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,120°,OC的长为2cm,则三角板和量角器重叠部分的面积为.福州28.(2013•宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆值为.宿迁乐亭县31.(2013•乐亭县一模)如图,已知直线y=x+4与两坐���轴分别交于A、B两点,⊙C 的圆心坐标为(2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是.32.(2013•玉林)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是.(把所有正确的结论的序号都填上)佛山三、解答题33.(2013•佛山)如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.34.(2013•梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.35.(2013•荆门)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC 上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.36.(2013•晋江市)如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.(1)填空:当t=1时,⊙P的半径为,OA= ,OB= ;(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC的形状,并说明理由.。

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。

(沪科版)中考数学总复习课件【第25讲】与圆有关的计算

(沪科版)中考数学总复习课件【第25讲】与圆有关的计算

2π -3 . 3 每个圆都经过另一个圆的圆心,则图中阴影部分的面积为________
图25 -9
第25讲┃与圆有关的计算
第24讲┃与圆有关的位置关系
核心练习
6.[ 2014·岳阳] 的弧长为( D ) π A. 2 已知扇形的圆心角为60°,半径为 1,则扇形
B .π
π C. 6
π D. 3 圆心角为120°,弧长为12π 的扇形半径为
7.[ 2014·衡阳] ( C )
A.6 B.9 C.18 D.36
第25讲┃与圆有关的计算
第25讲┃与圆有关的计算
图25 -1
A.(60°,4) B.(45°,4) C.(60°,2 2) D.(50°,2 2)
第25讲┃与圆有关的计算
[解析 ] 取正六边形中心为 M,连接 MA,MB. ∵多边形是正六边形, 360 ° ∴∠OMA=∠AMB=∠BMC= =60°, 6 MO= MA=MB=MC , ∴△MOA,△MAB ,△MBC 都是等边三角形, ∴∠COA=60°, MO=MC=OA =2, ∴CO =4, 即 θ = 60°,m=4 , ∴顶点 C 的极坐标应记为(60°,4).
第25讲┃与圆有关的计算
经典示例
例1 [2014·常德] 阅读理解:如图25-1①,在平面内
选一定点O,引一条有方向的射线Ox ,再选定一个单位长度,那 么平面上任一点M的位置可由∠MOx的度数θ 与OM的长度 m确定, 有序数对(θ ,m)称为点M的“极坐标”,这样建立的坐标系称 为“极坐标系”. 应用:在图②的极坐标系下,如果正六边形的边长为2 ,有 一边OA在射线Ox上,那么正六边形的顶点C的极坐标应记为 ( A )
第25讲┃与圆有关的计算

中考数学第一轮考点系统复习第七章图形与变换第25讲尺规作图及投影与视图讲本

中考数学第一轮考点系统复习第七章图形与变换第25讲尺规作图及投影与视图讲本

错误的是( D ) A.AD=CD
B.∠ABP=∠CBP
C.∠BPC=115°
D.∠PBC=∠A
3.(2020·武威)如图,在△ABC中,D是边BC上一点,且BD=BA. (1)尺规作图(保留作图痕迹,不写作法):
①作∠ABC的平分线,交AD于点E;
②作线段DC的垂直平分线,交DC于点F; 解:(1)①如图,BE即为所求. ②如图,线段DC的垂直平分线交DC于点F.
③最后由主视图的竖列得到构成几何体的小正方体从左至右的列数;由主 视图中的横行得到构成几何体的小正方体所摆的层数. 注意:该方法也适用于由三视图判定小正方体的个数. 3.由几何体的三视图及其所标尺寸计算几何体的表面积或体积问题,关键是 先由以上方法还原几何体,再将三视图的尺寸对应标注在几何体上,最后 利用几何体的相关计算公式求解.
A.5
B.6
C.7
D.8
考点3 立体图形的展开与折叠 考点精讲 5.(2020·泰州)把如图所示的纸片沿着虚线折叠,可以得到的几何体是( A )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
6.(2021·广东)下列图形是正方体的展开图的有( C )
A.1个
B.2个
C.3个
D.4个
正方体表面展开图的记忆口诀: 中间四个面,上下各一面;中间三个面,一二隔河见;中间二个面,楼梯天 天见;中间没有面,三三连一线.(结合知识点4中的正方体展开图的常见类 型及相对面进行理解)
第七章 图形与变换
第25讲 尺规作图及投影与视图
知识点1 尺规作图及其基本步骤 1.定义:只用直尺和圆规来完成画图,称为尺规作图.
2.基本步骤: (1)已知:写出已知的线段和角,画出图形. (2)求作:求作什么图形,使它符合什么条件. (3)作法:运用五种基本尺规作图,保留作图痕迹. (4)证明:验证所作图形的正确性. (5)结论:对所作的图形下结论.

中考数学《与圆有关的计算》复习课件

中考数学《与圆有关的计算》复习课件
C=πd= 2πR . (2)半径为 R 的圆中,n°���的���������圆������心角所对 的弧长为 l,则 l= ������������������ .
回练课本 1.(1)半径为 4,圆心角为 90°的扇形弧长
为 2π ;
(2)50°的圆心角所对的弧长是 2.5π cm,
则此弧所在圆的半径是 9 cm .
若圆锥的底面圆半径是 5,则圆锥的母线 l=
.
22.(2014 珠海)已知圆柱体的底面半径为 3 cm,高为 4 cm,则圆柱体
的侧面积为( A )
A.24π cm2 C.12 cm2
B.36π cm2 D.24 cm2
基础训练
1.(2019 温州一模)如图,已知扇形的圆心角∠AOB=120°,半径 OA=2,则扇形的弧长
2.圆、扇形面积计算
(1)半径为 R 的圆面积 S=
πR2
.
(2)半径为 R 的圆中,圆心角为
n°的扇形面���������积���������为������ S 扇= ������������lR
或 S 扇= ������������������ .
2.(1)半径为 4,圆心角为 90° 的扇形面积为 4π ; (2)一个扇形的半径是 24 cm,面积是 240π cm2,则扇 形的圆心角是 150° .
3
即 V=13πR2h.
(3)如图所示,“粮仓”的容积为45π m3 (单位:m).
4.正多边形与圆
(1)正多边形:各边相等,各角相等的多边形叫做
正多边形.
(2)圆与正多边形的有关概念:一个正多边形的
外接圆的圆心叫做这个正多边形的中心,外接
圆的半径叫做正多边形的半径;正多边形每一

专题25圆的有关计算(共53题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

专题25圆的有关计算(共53题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题25圆的有关计算(共53题)一.选择题(共29小题)1.(2022•武威)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为()A.20πm B.30πm C.40πm D.50πm2.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是()A.m B.m C.m D.(+2)m3.(2022•孝感)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为()A.πB.πC.πD.2π4.(2022•台湾)有一直径为AB的圆,且圆上有C、D、E、F四点,其位置如图所示.若AC=6,AD=8,AE=5,AF=9,AB=10,则下列弧长关系何者正确?()A.+=,+=B.+=,+≠C.+≠,+=D.+≠,+≠5.(2022•河北)某款“不倒翁”(图1)的主视图是图2,P A,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是()A.11πcm B.πcm C.7πcm D.πcm6.(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π7.(2022•遵义)如图,在正方形ABCD中,AC和BD交于点O,过点O的直线EF交AB于点E(E不与A,B重合),交CD于点F.以点O为圆心,OC为半径的圆交直线EF于点M,N.若AB=1,则图中阴影部分的面积为()A.﹣B.﹣C.﹣D.﹣8.(2022•湖北)一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为()A.30πcm2B.60πcm2C.120πcm2D.180πcm29.(2022•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D 落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为()A.2πB.2C.2π﹣4D.2π﹣210.(2022•贺州)如图,在等腰直角△OAB中,点E在OA上,以点O为圆心、OE为半径作圆弧交OB于点F,连接EF,已知阴影部分面积为π﹣2,则EF的长度为()A.B.2C.2D.311.(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣12.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A.﹣B.2﹣πC.D.﹣13.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD 的长为30cm,则扇面的面积是()A.375πcm2B.450πcm2C.600πcm2D.750πcm214.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为()A.(840+6π)m2B.(840+9π)m2C.840m2D.876m215.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为()A.6π﹣9B.12π﹣9C.6π﹣D.12π﹣16.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为()A.2π﹣2B.2π﹣C.2πD.π﹣17.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.π﹣B.π﹣C.π﹣2D.π﹣18.(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为()A.米2B.米2C.米2D.米219.(2021•宁夏)如图,已知⊙O的半径为1,AB是直径,分别以点A、B为圆心,以AB的长为半径画弧.两弧相交于C、D两点,则图中阴影部分的面积是()A.B.C.D.20.(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65πC.90πD.120π21.(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm22.(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π23.(2022•德阳)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是()A.16πB.52πC.36πD.72π24.(2022•宁波)已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A.36πcm2B.24πcm2C.16πcm2D.12πcm225.(2022•遂宁)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()A.cm2B.cm2C.175πcm2D.350πcm226.(2022•贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为()A.2cm B.3cm C.4cm D.5cm27.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4,B.3,πC.2,D.3,2π28.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为()A.3B.C.D.329.(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.C.3D.2二.填空题(共20小题)30.(2022•包头)如图,已知⊙O的半径为2,AB是⊙O的弦.若AB=2,则劣弧的长为.31.(2022•衡阳)如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与轮滑之间没有滑动,则重物上升了cm.(结果保留π)32.(2022•新疆)如图,⊙O的半径为2,点A,B,C都在⊙O上,若∠B=30°,则的长为.(结果用含有π的式子表示)33.(2022•温州)若扇形的圆心角为120°,半径为,则它的弧长为.34.(2022•哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是度.35.(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.36.(2022•玉林)数学课上,老师将如图边长为1的正方形铁丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不计),则所得扇形DAB的面积是.37.(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.38.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为.39.(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为.(结果保留π)40.(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)41.(2022•绥化)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为.42.(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为cm.43.(2022•齐齐哈尔)圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图扇形的圆心角为°.44.(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是.45.(2022•宿迁)用半径为6cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径是cm.46.(2022•黑龙江)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为.47.(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.48.(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.49.(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为.三.解答题(共4小题)50.(2022•泰州)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.(1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.51.(2022•福建)如图,△ABC内接于⊙O,AD∥BC交⊙O于点D,DF∥AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).52.(2022•湘潭)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣4,0),C(﹣2,2).将△ABC绕原点O顺时针旋转90°后得到△A1B1C1.(1)请写出A1、B1、C1三点的坐标:A1,B1,C1;(2)求点B旋转到点B1的弧长.53.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
命题点3:扇形面积的计算 3.(2017·山西)如图是某商品的标志图案,AC与BD是⊙O的两条直 径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10 cm,∠BAC=36°,则图中阴影部分的面积为( B ) A. 5π cm2 B.10π cm2 C.15π cm2 D.20π cm2
24π
216°
【点评】 解决有关扇形和圆锥的相关计算问题时,要紧紧抓住两 者之间的两个对应关系:①圆锥的母线长等于侧面展开图的扇形半 径;②圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形 面积公式求出扇形面积是解题的关键.
[对应训练] 3.(1)(2017·聊城)已知圆锥形工件的底面直径是40 cm,母线长30 cm,其侧面展开图圆心角的度数为___2_4_0_°___. (2)(2017·苏州)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC =2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则 这个圆锥底面圆的半径是____.
πrl+πr2
1.圆锥与它的展开图中各量的关系 (1)展开图扇形的弧长=圆锥底面圆的周长; (2)展开图扇形的面积=圆锥的侧面积; (3)展开图扇形的半径=圆锥的母线.
2.求阴影部分面积的几种常见方法 (1)公式法; (2)割补法; (3)拼凑法; (4)等积变形构造方程法; (5)去重法.
B
第25讲 与圆有关的计算
1.正多边形和圆
2.弧长及扇形的面积 (1)半径为r,n°的圆心角所对的弧长公式:_______________; (2)半径为r,n°的圆心角所对的扇形面积公式:________________.
3.圆锥的侧面积和全面积 圆锥的侧面展开图是一个扇形,若设圆锥的母线长为l,底面半 径为r,那么这个扇形的半径为l,扇形的弧长为2πr. (1)圆锥侧面积公式: S圆锥侧=__π_r_l ___; (2)圆锥全面积公式: S圆锥全=_________________.
扇形面积公式的运用 A
【点评】 (1)将阴影部分的面积转化为扇形ABD的面积是解题的关 键;(2)本题解题的关键是求证OA=OB,然后利用等腰三角形的三线 合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积.
A
(2)(2017·黑龙江)如图,BD是⊙O的切线,B为切点,连接DO与⊙O交 于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则 图中阴影部分的面积为____________.
命题点4:圆锥的计算 4.(2017·宁夏)圆锥的底面半径r=3,高h=4,则圆锥的侧面积 是(B ) A.12π B.15π C.24π D.30π
弧长公式的应用 B
【点评】 本题考查了弧长公式知识的应用,求出∠DOE的度数是解 决问题的关键.
π
(2)(2017·白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2, 以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的 长等于____.(结果保留π)
圆锥的侧面展开图
【例3】 (1)(2017·东营)若圆锥的侧面积等于其底面积的3倍,则 该圆锥侧面展开图所对应扇形圆心角的度数为( C )
A.60° B.90° C.120° D.180°
(2)(2017·自贡)圆 锥的底面周长为6π cm,高为4 cm,则该圆锥的
全面积是_______;侧面展开扇形的圆心角是__________.
相关文档
最新文档