各类有机化合物质谱
各类有机化合物质谱与主要结构

+ H2C CH2
2. 酚(或芳醇)
1)分子离子峰很强。苯酚的分子离子峰为基峰。 2)M-1 峰。苯酚很弱,甲酚和苯甲醇的很强。 3)酚、苄醇最主要的特征峰: M-28 (-CO)
M-29(-CHO)
酚类 在苯环上引入羟基,谱图比芳烃更富有特征
a: M 峰很强,往往是基峰 b:[M - CO] 是酚类特征峰,对鉴别结构很有用。
2. 烯烃
1)由于双键的引入,分子离子峰增强。 2)相差14的一簇峰,(41+14 n)41、55、69、83…。 3)断裂方式有 β 断裂;γ-H、六元环、麦氏重排。 4)环烯烃及其衍生物发生 RDA 反应。
烯烃易发生烯丙基断裂:
CH3 CH2 CH CH2
CH3 CH2 CH CH3
CH3 + CH2 CH CH2
醇类
M 很难得到,因为离子化羟基引发的反应使分解 更为容易, *当进样量较多时,易形成[M+H]+峰(易发生 离子-分子反应)。
除1- 链烷醇外,α-碎裂是醇类最有用的特征反应, 并优先失去最大烷基,形成丰度最大的离子。
CH3
(1)
C4H9 C OH
C4H9
α
C2H5
CH3 H C OH
H2C C H H
各类有机化合物的 质谱和主要结构
各类有机化合物的质谱和
§1 烃类化合物的质谱
1. 烷烃
直链烷烃:1)显示弱的分子离子峰。 2)由一系列峰簇组成,峰簇之间差14个单位。 (29、43、57、71、85、99…) 3)各峰簇的顶端形成一平滑曲线,最高点在C3或C4。 4)比 M+. 峰质量数低的下一个峰簇顶点是 M-29。 而有甲基分枝的烷烃将有 M-15,这是直链烷烃 与带有甲基分枝的烷烃相区别的重要标志。
有机质谱

烷烃----支链烷烃1) M +·弱或不见。
2) M -15 (·CH 3), 带侧链CH 3. 3) M -R (·R)优先失去大基团,此处离子峰的RI 大。
芳烃芳烃的质谱特征是a、分子离子峰明显,M十l和M十2可精确量出,便于计算分子式。
b、带烃基侧键的芳烃常发生苄基型裂解,产生七元环的Tropylium ion m/z = 91(往往是基峰)。
若基峰的m/z比91大n×l4,则表明苯环α碳上另有甲基取代,形成了取代的Tropylium ion。
如:2012/9/1817醇¾M+·弱或不出现¾Cn H2n+1O 的含氧碎片, m/z 31,45,59···等(自由基位置引发的裂解)。
¾所有伯醇(甲醇例外)及高分子量仲醇和叔醇易脱水形成M-18峰;M-18-28¾伴有Cn H2n +1m/z 43, 57, 71, 85, 99,113···等(i异裂R+)。
¾Cn H2nm/z 42, 56, 70, 84,···等,分子失水后类似于烯烃的裂解。
¾Cn H2n -1m/z 41, 55, 69, 83, ···等。
醇、酚、醚醚脂肪醚:M +·弱, [M -H]C n H 2n+1O 的含氧碎片, 31, 45, 59···等. C n H 2n +1m/z 43, 57, 71, 85, 99,113···等。
低质荷比区伴有C n H 2n , C n H 2n -1峰. 与醇类的区别, 无失水峰.2012/9/18CH3H3CO O COOCH3m/z 123(100)m/z 95M-34M-34-28476189硫醇、硫醚硫醇和相应醇相似,硫醇电离能较醇低1eV,M+•比醇强,存在C-S键σ电离。
波谱分析质谱-5

60
40
20
0 158
m/z
Br: 79Br 100%,
M Br, n=1: Br2, n=2: Br3, n=3:
100 98
81Br
98%≈100%
1 2 3
100
M+2 M+4 M+6 1 3 1
100 100
1 1 1
n! bm (n m)! m!
10H14 18O
12C
1! 10 0.021 0.02(0.2%) (1 1)!1!
m/z162, 0.74%
100
Relative Abundance
80
所以: M+• : [M+1]+• : [M+2]+• = 100 : 11 : 0.74 某个离子中含有两种或两种 以上的同位素,那么它的丰 度是各个同位素丰度之和
考察[M+2]+,分析可能含的元素:不可能含Cl、Br、 S、Si, 只可能含O,含几个O? 首先扣除13C2对[M+2]+的贡献:
98 0.0112 0.44% 2
O的贡献:
0.64% 0.44% 0.20%
n b = n 0.002 = 0.002
因此,只能含1个O,所以此化合物分子式C9H11NO
n! bm (n m)! m!
简化:
n b
1个同位素
n (n 1) 2 b 2
n (n 1) (n 2) 3 b 3 2
2个同位素
3个同位素
n: 离子中某种元素的数目 (C,O,N等); m: 元素的同位素的数目 (13C); b: 同位素(13C,18O)的相对强度值
常见有机化合物的裂解方式和规律

CH2 HC
CH3
CH2
H H m/z=92
CH2CH2CH2CH3 m/z=134
C4H9 m/z=77
HC CH m/z=51
三.醇类
• ①分子离子峰很小,随C链↑而↓, 甚至消失(C>5时),(易脱 水)。
• ②易发生α裂解,31+14n
• ③脱水重排,M-18峰
• ④直链伯醇含羟基碎片(31,45, 59),烷基离子(29,43,57) 及链烯离子 (27,41,55)三种 系统的离子,质谱峰多
• (正离子稳定性顺序R3C+> R2C+H> C+H2> C+H3)
3.烯烃 H3C
CH3 CH C CH2 CH3
CH2 CH3 m/z=55 CH3
% OF BASE PEAK
H3C
100 90 80 70 60 50 40 30 20 10 0
CH C 41
55 27
H3C
CH3
CH3
CH C CH2
一、烃
二、芳烃
第四节
常见有机化合物的 裂解方式和规律
三、醇 四、醛、酮
五、酸和酯类
一、烃的质谱图
1.直链烷烃
43
29 15
57
71 85 99 113 142
m/z
16 15
methane M=16
m/z
43
29 15
57
71 85 99 113 142
正癸烷
m/z
❖分子离子:C1(100%), C10(6%), C16(小), C45(0) ❖有m/z :29,43,57,71,……CnH2n+1 系列峰(σ—断裂) ❖有m/z :27,41,55,69,……CnH2n-1 系列峰
有机化合物常用谱图解析

目录1原料药结构确证研究一般手段汇总 (1)2核磁共振谱图解析 (4)2.1核磁共振-氢谱 (4)2.1.11HNMR常见溶剂化学位移 (4)2.1.2常见有机化合物官能团化学位移数值 (6)2.1.3 常见结构单元的偶合常数数值 (7)2.2核磁共振-碳谱 (9)2.3核磁共振二维谱 (10)2.3.1同核位移相关谱(1H-1H-COSY) (10)2.3.2异核位移相关谱(HMQC或HSQC) (11)2.3.3异核位移相关谱(HMBC) (12)3质谱解析 (14)3.1电子(轰击)电离质谱(EI-MS) (14)3.2软电离质谱(ESI) (14)4红外谱图 (15)4.1红外谱图解析 (15)4.2常用官能团的波数 (16)5药物晶型研究谱图分析 (19)5.1X射线粉末衍射-XRPD (19)5.2热分析法 (21)5.2.1热重分析(TG) (21)5.2.2差示扫描量热法(DSC) (23)6元素分析 (26)7结构确证送样基本要求与原则 (26)1原料药结构确证研究一般手段汇总2核磁共振谱图解析2.1核磁共振-氢谱2.1.11HNMR常见溶剂化学位移2.1.2常见有机化合物官能团化学位移数值化学位移数值大小反映了所讨论的氢原子核外电子云密度的大小。
由于氢原子核外只有S电子,因此氢原子核外电子云密度的大小即氢原子核外S电子的电子云密度大小。
S电子的电子云密度越大,化学位移的数值越小,相应的峰越位于核磁共振氢谱谱图的右方,反之亦然。
2.1.3 常见结构单元的偶合常数数值注意:在核磁共振氢谱中耦合裂分的信息的可靠性高于由化学位移得到的信息。
如果从这两种分析得到的结论不同,耦合裂分的信息应该优先。
这是因为准确的化学位移数值不能从任何计算得到,也不能从相似化学环境中的相同结构单元估计。
再者,化学位移数值是有例外的,而耦合裂分则极少有例外。
因此分析氢谱中峰组的耦合裂分是解析核磁共振氢谱最重要的事情。
质 谱(第五六节)

(M-OR)的峰 ,判断酯的类型;(31+14 n )
(M-R)的峰,29+14 n;59+14 n 3)麦氏重排,产生的峰:74+14 n 4)乙酯以上的酯可以发生双氢重排,生成 的峰:61+14 n
33
5. 酰胺类化合物 1)分子离子峰较强。 2) α 裂解; γ-氢重排
34
6. 氨基酸与氨基酸酯
芳香羧酸分子离子峰强,苯甲酸α -断裂丢失-OH基团后。再丢失中性 分子CO得到m/z 77的苯基离子,其质谱图示于图4-42中。
30
芳酸:1)分子离子峰较强。 2)邻位取代羧酸会有 M-18(-H2O)峰。
31
4 .酯
酯可以发生 α - 裂解丢失 · R或· OR 自由基产生 m/z59+n×14 和 29+n×14 的离子,乙酸丙酯为例:
37
2.芳胺 1)分子离子峰很强,基峰。 2)杂原子控制的 α 断裂。
38
芳胺的分子离子峰是基峰,M-1是中等强度的峰;特征裂解是丢 失HCN,与苯酚丢失CHO基团相类似。
12
叔醇 - 叔丁醇也有三种 α - 断裂,每种α - 断裂丢失的 · R 自由基是相同的, 得到m/z59的强峰,其他叔醇可产生m/z59+n×14的峰。
消去H20的开裂(见重排裂解)产生M-18(H20)的离子峰。正丁醇的质谱有很 弱的分子离子峰 m/z74 ,强的 m/z56 的离子峰就是 M-18(H20) 而得的。长链 高级醇更容易发生环化脱水反应。
26
1)酮类化合物分子离子峰较强。
2)α 裂解(优先失去大基团)
烷系列:29+14 n
3) γ-氢重排 酮的特征峰 m/z 58 或 58+14 n
27
3.羧酸
质谱解析基本要点

(4)含有叔碳的饱和脂肪烃
叔碳的键较容易被电离,正电荷定域
于叔碳较为有利。叔碳的4个键都可以发 生断裂,但反应中失去最大烷基较为有利。 在3.3-二甲基辛烷的质谱图中(图9.5),由 分子离子失去戊基得到m/z 71离子,丰度为 100%,失去乙基得到m/z 113离子,丰度为
中丰度最高的离子向高质量端位移了14da这个对比结果也意味着这些离子是通过rd反应产图916各种链长的2炔烃2辛炔壬炔癸炔十四碳炔的质谱图92醇和酚a饱和脂肪醇羟基的存在使饱和脂肪醇的电离能低于同碳数的饱和脂肪烃但饱和脂肪醇分子离子容易通过氢重排而失去一分子水结果是饱和脂肪醇的分子离子峰的丰度低于同碳数的饱和脂肪烃
其中m/z 81或m/z 67离子对应于较稳 定的六元环和五元环离子。[式9.10],因 而丰度很高。
R
rd m/z 81
R
rd m/z 67
( 9.10 )
(3)有显著的m/z 41,55……离子系 列,丰度最高的m/z 41离子是通过两 次氢重排及i断裂而得到的。
H R
rH
R H
rH,i m/z 41
图9.15给出各种链长的1-炔烃的质谱图,
其质谱特征为:
图9.15 各种链长的1-炔烃的质谱
(1)碳数等于或大于5的1-炔烃,[M-1]+的
丰度高于[M]+,暗示[M-1]+离子可能是通过
环化置换反应(rd)而生成环状离子。
(2)有显著的m/z 39,53,67,81,95……离子
系列,其中m/z 81或m/z 67离子的丰度总 是最高。由断裂可生成CH2=C=CH离子 (m/z 39),其余离子可能是通过rd反应 而得到的。
四大名谱(光谱、质谱、色谱、波谱)

I大名谱(光谱、质谱、色谱、波谱)在检测领域,有四大名谱,分别为色谱、光谱、质谱、波谱,四大名谱都有各自的优缺点,为了能够最大限度的发挥每种分析仪器的最大优势,可将两种或三种仪器进行联用来分析样品,联用技术能够克服仪器单独使用时的缺陷。
是未来分析仪器发展的趋势所在。
四大名谱简介:质谱:分析分子或原子的质量,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱:是一种分离、定性分析与定量分析的手段,可分辨样品中的不同物质。
光谱:定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱:通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外⑴丫)。
1、质谱分析法> 质谱分析法是将不同质量的离子按质荷比(m/z)的大小顺序收集和记录下来,得到质谱图,用质谱图进行定性、定量分析及结构分析的方法。
> 质谱分析法是物理分析法,早期主要用于相对原子质量的测定和某些复杂化合物的鉴定和结构分析。
> 随着GC和HPLC等仪器和质谱仪联机成功以及计算机的飞速发展,使得质谱法成为分析、鉴定复杂混合物的最有效工具。
recorderJ质谱仪种类非常多,工作原理和应用范围也有很大的不同。
从应用角度,质谱仪可以分为下面几类:有机质谱仪:由于应用特点不同又分为:①气象色谱-质谱联用仪(GC-MS)在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。
②液相色谱-质谱联用仪(LC-MS)同样,有液相色谱-四极质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。
③其它有机质谱仪,主要有:基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS),傅里叶变换质谱仪(FT-MS)。