Pro-E 钣金设计

合集下载

Pro_E在钣金展开中的应用

Pro_E在钣金展开中的应用

ACAD /CAM /CAPP 应用pplication of CAD /CAM /CAPP栏目主持张维官76櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏櫏#5=[#4]*10(角度的增量值)#20=#1*COS [#3-#5](长槽起点坐标X 值)#21=#1*SIN [#3-#5](长槽起点坐标Y 值)#22=#2*COS [#3-#5](长槽终点坐标X 值)#23=#2*SIN [#3-#5](长槽终点坐标Y 值)G00G90X#20Y#21Z2.G1Z0F#10#32=10(铣削次数)#33=1WHILE [#33LE #32]DO2G01G91Z -0.1F#9G90X#22Y#23F#10G91Z -0.1F#9G90X#20Y#21F#10#33=#33+1END2G00G90Z20.#4=#4+1#30=#30+1END1M5G00G90Z20.在程序中,我们把每个长槽的起点和终点坐标用变量赋值,由机床内部自动运算,程序占用字节数减少了。

(收稿日期:20101019)Pro /E 在钣金展开中的应用秦皇岛烟草机械有限责任公司(河北066012)王银武曲利永钣金件制作在烟机产品中占很大比重,而且钣金件类型多样,结构复杂,制作过程中一般采用卷制或压弯成形等方法。

目前,Pro /E 钣金设计和展开软件在我厂得到广泛应用,利用产品设计图通过钣金展开软件生成展开图,可以大大缩短设计→展开→编程的时间,提高生产效率。

但在实际使用中也存在一些问题,Pro /E 软件原有的展开计算程序方法单一,折弯系数值Y 一旦设定加载,整个钣金件就只能以选定的系数来计算。

Pro /E 软件展开长度计算公式L =Yt +(πR )/2式中L ———折弯处钣金展开长度;R ———折弯处的内侧半径;t ———材料厚度;Y ———中性折弯线位置常数。

在进行一些钣金件制作过程中,有时需结合使用不同的钣金折弯设备来完成操作。

proe钣金冲压设计

proe钣金冲压设计
在创建法兰壁时,需先在现有的钣金壁(第一 壁)上选取某条棱边作为法兰壁的依附边, 然后再定义其侧面形状和尺寸等参数。
D
31
D
32
D
33
D
34
创建扭转壁
扭转壁是将一块平整壁沿中心线扭转一定角 度以后形成的壁特征。
D
35
D
36
创建延伸壁
延伸壁是将现有的薄壁延伸,将壁由现有长 度延长到指定的曲面或指定的距离。
创建次要壁时,可选择使壁为连接或未连接 的。除延伸壁外,次要壁可以连接到整个边, 也可以连接到一部分边(它是壁的一部分)。
D
13
分离的平整壁特征
分离的平整壁是钣金件的平面/平滑/展平的 部分。它是通过草绘特征的封闭轮廓,然 后 再定义它的厚度而生成的。
单击绘图区域右侧“钣金件”工具栏中的 “创建分离的平整壁”按钮,系统显示出 “分离的平整壁”特征操作面板,设定草绘 平面后进入草绘环境,绘制封闭截面。完成 草绘后,在操作面板上输入分离的平整壁的 厚度,可得到分离的平整壁特征。
平整薄壁的一般创建方法为:启动平整壁命 令后,选取依附边,定义截面形状、尺寸,折弯 角度和折弯半径,设计止裂槽,最后生成次要 平整薄壁特征。
D
26
D
27
D
28
D
29
D
30
创建法兰璧特征
法兰壁主要用于创建常见的折边和替代简单 的扫描壁,其壁厚与第一壁相同,使用这个命 令能加快设计速度,减少繁琐的步骤。
单击右侧工具栏中“平整形态”按钮, 选择需要保 持固定的平面或边,即可完成钣金件的平整形态操 作。
当添加新的特征时,平整形态特征将会自动被暂时 隐含,钣金件仍显示为三维状态,当新特征创建完毕 后,系统又自动恢复平整形态特征。这样系统会永 远将平整形态特征放在模型树的最后。

pro-e钣金装配图技术要求

pro-e钣金装配图技术要求

5. 铜管焊接要牢固,不得漏焊,虚焊,必须进行充氮保压检漏,根据型号充上适量冷媒。
6. 按照电路图和接线图进行接线,接完线必须检查导线相关检测表进行判断产品是否合格。不合格需进行检修到合格方可转为成品。
8. 配齐产品附件、产品检验合格证和整机一起装到包装箱中,产品打包要紧但不能破坏包装材料,贴上产品标识。
技术要求
1. 装配过程中,先检查各零件表面外观,防止刮花,刮伤,外购件是否有合格证明,不合格类需交由检验员处理。
2. 先装压缩机、冷凝器和蒸发器,再装冷凝、蒸发风机保证转动顺畅,不能有摩擦现象。
3. 各部分螺钉要打紧,不得有漏打的情况。
4. 贴棉要平整,美观,牢固,不得有气泡和破损现象。

Pro/E环境下不锈钢钣金的结构设计

Pro/E环境下不锈钢钣金的结构设计

也方便后期 处理 。对于不锈钢 的机械加工过程中, 不锈钢表面 易
机, 并 配 用 专 门 的 不锈 钢 焊 条 。
P r o / E是新一代 的产 品结构造型系统, 以参数化著称 , 是参数 成撕裂状, 焊接难度较大 , 对于必须焊接 的不锈钢需使用直流焊 化技术设计的最早 应用者 。 P r o / E软件 具有 强大的设计功能 , 在目
2 不锈 钢的特点
适合相对简单 的结构零件和 复杂结构部件的设计 。与 同等 C AD
不锈钢是一种 新兴材料 , 因其具有表面美观 、 使用可 能性较 软件 相 比, P r o / E可 以实 现 三 位造 型 的 方 向性 与 随意 性 , 同 时 可在 大 、 强度高 、 耐腐蚀 、 耐高温 、 免维修 以及生命力 强等优越特 点 , 线进行 结构 、 部件 的模 拟装配 , 并 可进 行可行 性分析 , 在缩短产 被 广泛应用与公共场合的设施及露天条件 下的工作环境 ,例如 品 设 计 周 期 的 同 时 降低 生产 成本 。 正 是 由于 P r o / E软 件 的这 些优 常见的晾衣 架、 门窗、 自动售票机、 检票机等 。由于不锈钢表面有 越特点 , 使其成 为世界上三维建模软件中的领头者 。
关键词 : 钣金 建模 ; 不锈 钢 ; P r o / E设 计
在现代产 品设计 中, 计算机 的辅助设计因设计直观 、 简便、 优 的加 工 方 式 。 化等特点被逐渐推广 。以往 的计算机辅助设计主 要是在二维视 P r o / E中钣 金设计 的折弯系数不固定,主要是根据不 同公 司
了功能仿真 、 制造 、 数据 管理等 强大的功能 , 被广泛应用 于 电子 、
软件பைடு நூலகம்

proe钣金展开教程

proe钣金展开教程

proe钣金展开教程ProE钣金展开教程导言:ProE是一款强大的产品设计软件,提供了多种功能和工具,用于建模、装配和制造。

在产品设计过程中,钣金展开是一个重要的步骤,用于将三维模型展开为二维平面图,以便进行材料切割和弯曲。

本文将介绍如何使用ProE进行钣金展开。

第一部分:钣金展开的基本概念1.1 什么是钣金展开?钣金展开是将三维钣金零件展开为平面图的过程。

在钣金加工中,为了确保材料的成本和材料利用率,需要将三维模型展开为平面图,以便进行后续的切割和折弯操作。

1.2 钣金展开的重要性钣金展开对于确保产品质量和加工效率至关重要。

正确的展开图可以确保在切割和折弯过程中材料的准确度和一致性,从而避免产生浪费和制造错误。

同时,精确的展开图也可以为后续的装配和焊接提供准确的参考。

第二部分:使用ProE进行钣金展开的步骤2.1 建立三维模型在开始钣金展开之前,首先需要使用ProE建立钣金零件的三维模型。

可以使用ProE的建模工具和功能来创建零件的几何形状和尺寸。

2.2 定义钣金特征在建立三维模型之后,需要定义钣金的特征,例如弯曲、挤压和切割。

通过选择相应的特征工具和功能,可以将这些特征应用于三维模型。

2.3 选择展开方向在进行钣金展开之前,需要选择展开的方向。

根据零件的几何形状和要求,可以选择水平展开、垂直展开或其他合适的展开方向。

2.4 进行钣金展开一旦选择了展开方向,就可以使用ProE的展开功能将三维模型展开为平面图。

通过点击展开按钮或使用相关的命令,可以生成一个展开图,显示零件在展开方向上的几何形状和尺寸。

2.5 检查展开结果生成展开图之后,需要仔细检查展开结果,确保展开图的准确性和一致性。

可以通过测量和对比展开图的尺寸与原始三维零件的尺寸来进行检查。

第三部分:常见的钣金展开问题及解决方法3.1 弯曲角度误差在钣金展开过程中,由于材料的弹性和变形,可能会出现弯曲角度误差。

为了解决这个问题,可以使用ProE的弯曲修正功能来纠正展开图中的角度误差。

proe钣金技巧

proe钣金技巧

proe钣金技巧第一篇:proe钣金技巧1.平整壁特征平整壁的草绘图元必须是封闭的; 2.拉伸特征1)当使用拉伸特征创建第一壁时,需要使用开放截面;在“选项”中可定义折弯半径,也可在草绘时,将半径画出;2)使用拉伸进行切除时,除普通切割外,还可以进行薄壳切割;3)拉伸切除“移除与曲面垂直的材料”形式有三种,不同的形式切除的材料不一样;当不选取“移除与曲面垂直的材料”时,则直接切除;(切除形式,只有在拉伸切除的草绘平面与被切除曲面成角度时,才有影响)3.壁厚的更改一是通过右击特征,选取编辑或者编辑定义更改;二是通过“工具”—“参数”更改;4.内部草绘只能用于当前特征,而外部草绘则可应用于多个特征,根据不同需求,选取不同草绘形式;5.在proe5.0的草绘环境下,对图元进行约束时(比如相等、垂直、相切),可先选取需要约束的图元,再右击,选取约束类型;6.使用拉伸创建第一壁时,壁厚可在草绘中“右击”,选取“壁厚”进行设定,也可在外部定义;右击可切换壁厚的方向;草绘中定义壁厚的优势时,有利于尺寸的标注,比如钣金件整体尺寸等;内部定义“壁厚”时,两直线之间需要倒圆角才能加厚;7.当创建的不是第一壁时,在“选项”里可以勾选“将驱动曲面设置为与草绘平面相对”,从而更改其驱动曲面;主要应用于合并壁,合并壁时,需要驱动曲面一致; 8.旋转壁特征1)“属性”中的“单侧”表示往一侧旋转;“双侧”表示往两侧一起旋转; 9.偏移壁特征1)当不能使用平整,旋转等特征进行创建,需要借助曲面时,先创建曲面,再使用偏移壁特征进行构建;2)偏移壁需要设定两个数值,一个是偏移数值,一个是壁厚,偏移数值一般设为0;3)当有两个连在一起的面进行偏移时,可以在“排除”中,排除不需要偏移的面;4)当不能按照“垂直于曲面”的偏移类型进行偏移时,可更改其偏移类型;当使用“自动拟合”可能壁厚不一致,这时需要使用“控制拟合”,需要选取一个坐标系,定义其X,Y,Z方向的偏移;10.混合壁特征(类似于零件中混合壁的创建)1)选取列表中的“方向”可定义深度的方向;2)当使用“投影截面”时,是用两个曲面来限定距离,只能有两个草绘截面,且投影截面必须是钣金壁面,而不能是曲面;(该特征创建出来有问题,一般不使用)3)进行旋转混合,草绘时需要放置坐标系;4)进行一般混合时,一般先草绘好截面,再使用选取截面的方式;11.平整辅助壁特征1)只能在单条边界进行创建;2)如果采用系统提供的标准形状(矩形、梯形、L型、T型),则可以在图形区域直接拖动白色框来改变其尺寸;3)对于常用的形状,可将其定义为标准形状,方法如下:首先,进入平整辅助壁特征,在“形状”中草绘出其该常用形状,并且在“形状”中将该形状保存在一个文件夹下;然后,将“选项”中的flat_shape_sketches_directory的路径指向上一步的文件夹;4)“形状”下可选取高度尺寸是否包含厚度;同时会改变折弯方向;5)“偏移”中可定义折弯边相对于边界的距离;6)当对边界进行部分折弯时,可以选择止裂槽的类型(撕裂、矩形、长圆形、拉伸);无止裂槽需要角度为零或者偏移类型为“向壁偏移添加附加折弯”;而拉伸、矩形、长圆形则需要内侧半径不为零;12.法兰壁的创建1)可以使用一条链(多条边界)进行折弯;2)对于常用的形状,可以如平整壁一样创建新的形状,将“选项”中flange_shape_sketches_directory指向对应的路径;3)斜切口(miter cut):对于相切链连接处转角切口的设置;当沿着某曲线创建法兰壁失效时,可以考虑添加斜切口;4)止裂槽有折弯止裂槽和拐角止裂槽,折弯止裂槽相当于平整壁的止裂槽;拐角止裂槽则是指当对一条链折弯时,两条边界连接处的止裂槽形状;5)边处理:对于链折弯时,两条边界折弯后边的处理; 13.平整壁与法兰壁的区别1)平整壁就是画正面,法兰壁就是画侧面;2)平整壁的附着边只可以是一条边界,法兰壁的附着边可以是一条链;3)钣金说来不就是一张比较厚的铁纸么,可以分为面和厚度方向,平整面就是从面正向看过去,是正方的还是梯形的,而法兰壁就是从厚度方向,是折成L形了还是Z形的。

proe钣金冲压设计

proe钣金冲压设计

02 03
拉伸操作
在钣金零件上添加拉伸特征,可以通过选择“钣金”工具栏中的“拉伸 ”命令来实现。在弹出的对话框中输入拉伸参数,即可完成拉伸特征的 创建。
成形操作
在钣金零件上添加成形特征,可以通过选择“钣金”工具栏中的“成形 ”命令来实现。在弹出的对话框中输入成形参数,即可完成成形特征的 创建。
03
材料厚度
选择合适的材料厚度是钣金冲压设计的重要考虑因素,厚度会影响 到成型效果、强度和重量等。
材料性能
钣金材料的机械性能如硬度、抗拉强度、屈服强度等对冲压工艺和 产品性能均有影响。
冲压工艺简介
冲压工艺
01
冲压工艺是将金属板材通过模具施加压力进行成型的一种加工
方法,广泛应用于汽车、家电、电子等行业。
集成化设计
多学科集成
将钣金冲压设计与工艺、材料、模具等学科进行集成, 实现跨学科的综合设计。
全流程集成
打通从设计到生产的全流程,实现设计、工艺、生产 等环节的无缝对接。
标准化与模块化
通过标准化和模块化设计,提高设计效率,降低生产 成本。
绿色化设计
环保材料
优先选择可再生、可回收、低污染的环保材料, 降低产品生命周期内的环境影响。
通过调整冲压速度和行程,提高冲压效率 和产品质量,降低模具磨损和生产成本。
模具结构优化
模具布局优化
合理布置模具元件,简化模具结构,提高模具刚度和稳定性。
模具间隙调整
根据产品特点和工艺要求,合理调整模具间隙,提高冲压件的质量和模具寿命。
05
Pro/e钣金冲压设计常见 问题及解决方案
问题一:折弯线不闭合
问题三:模具磨损严重
总结词
模具磨损严重是钣金冲压设计中需要考虑的经济性问题,长期磨损会增加生产成本和维 护成本。

ProE钣金设计超级手册范本

ProE钣金设计超级手册范本

ProE钣金设计超级手册范本Pro/Engineer自动展开操作手册目录1.Sheet Metal自动展开的特色 (4)1.1钣金设计和修改 (4)1.2模型检查和辅助展开 (4)1.3展开图 (4)2.展开原理 (5)2.1展开原理 (5)2.2展开计算方法………………………………………………………….5-93.功能介绍 (10)4.指令使用说明 (11)4.1模型检查 (11)驱动补偿量检查 (11)Bend特征检查 (12)Sweep特征检查 (13)Wall Copy特征检查 (14)Unbend特征检查 (15)Solid Cut特征检查 (16)压平H≦0.5特征检查 (17)T≦0.3&R=0特征检查 (18)4.2辅助展开 (19)材质和料厚设定 (19)Z折设定 (20)N折设定 (21)Bend设定 (22)删除Notes (23)5.展开流程及说明 (24)5.1展开流程图 (24)5.2展开流程说明 (25)5.2.1Sheet Metal图档处理 (25)5.2.2 模型检查……………………………………………………………25-265.2.3设定Bend Table表 (26)5.2.4手工修改……………………………………………………………26-275.2.5展开 (27)5.2.6工艺性修改 (27)5.2.7转成.dxf图档 (27)6.常见问题及解决……………………………………………..28-311.Sheet Metal自动展开的特色Sheet Metal自动展开是以Pro/Engineer为工作平台,并用Pro/Sheet Matel中的相关指令,结合本公司开发的功能菜单,将用Pro/Sheet Matel建构的产品方便快捷地展开.Sheet Metal自动展开与传统的手工展开相比,更趋于智能化,大大减少了许多人为的错误和无效的工作,提高了效率;和其它的展开软件相比, Sheet Metal自动展开可以直接捕捉设计时的资料和信息,更趋于合理化.1.1 钣金设计和修改Pro/Sheet Matel具有强大的钣金设计和修改功能,能帮助工程师很容易的实现他们的设计意图,并有益于设变展开时的工艺修改.1.2 模型检查和辅助展开展开流程只要选择相关的功能菜单.程序将检查钣金件的结构及相关特征,或高亮度显示,或在窗口中用Notes加以指示,给出展开补偿量(例如选择功能菜单中的Model_Check/Bend_Feat,窗口中高亮度显示所有的Bend特征;选择Aid_Unbend/Bend, 窗口中会给所有的Bend特征加一Notes.).这样将会减少错误次数,节省了时间和金钱.1.3 展开图工程师可按自己的展开标准,经过简单的编程,做成Bend Table表,通过材质设定的功能菜单,对产品的补偿量统一作设定,也可做个别修改;展开后的展开图为三维的,展开前后,产品的特征数据不会失去,并有Pro/Engineer强大的建模及修改功能做后盾,方便对其进行修改和处理;展开可以分步进行,也可一次展开,并可回折;展开图可以做为产品的一个状态,并和产品相互关联.2.展开原理Sheet Metal自动展开时,只计算补偿量,用L表示,料厚用T表示,角度用Angle表示,R表示折弯半径.2.1 展开原理板料在弯曲过程中外层受到拉应力,层受到压应力,从拉到压之间有一既不受拉力又不受压力的过度层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近钣料厚度的中心处;当弯曲半径变小,变形角度增大时,变形程随之增大,中性层位置逐渐向弯曲中心的侧移动.2.2 展开计算方法一般折弯3 (R=0, θ≠90°):1. 当T0.3 时, L’=02. 当T0.3时, L’= ( / 90) * L注: L为θ=90°时的补偿量.一般折弯4 (R≠0 , θ≠90°):当用折刀加工时:1. 当R<2.0时, 按R=0处理.L’=θ/90* L +2*R*TAN(θ/2)注: L为θ=90°时的补偿量.2 当R>2.0时, 按原值处理.(1). 当T 1.5 时, L’=θ*PI*(R+0.5*T)/180(2). 当T 1.5时, L’=θ*PI*(R+0.4T)/180Z折1 (直边段差):样品方式制作展开方法:1. 当H5T时, 分两次成型时, 按两个90°折弯计算.2.当H5T时, 一次成型,(1). 若R=0,则L’=L;(2). 若R≠0,且只有一角不为零,则L’=L+2R;(3). 若R≠0,且两角都不为零,则L’=L+4R.注: L值依附件一中参数取值.Z折3 (斜边段差):1. 当H2T时当θ≦70°时,按Z折1(直边段差)的方式计算, (此时L=0.2).当θ>70°时完全按Z折1(直边段差)的方式计算2. 当H2T时, 按两段折弯展开(R=0 θ≠90°).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扭转的薄壁
薄壁产生后,可使用扭转选项在薄壁的某条边线再生成一个扭转的薄壁。
分离的薄壁
优点:可使我们能专心于某个局部区域的几何造型设计。 注:分离的薄壁必须与其邻接区域互相相切。
练习
钣金冲孔及切口设计
钣金折弯时,由于材料的挤压,极易在弯曲处造成材料的突起变形,因 此在实际设计中,通常在钣金折弯处挖出小面积的切口,以避免材料的挤压 变形。
(平整、无半径) 额外薄壁厚度随第一面薄壁相关变换
产生额外薄壁(平整,用半径)
这种方式是利用与现有钣金上的白色或绿色面夹某个角度的平面作为绘 图平面,绘制额外薄壁的外形线,以生成等厚度实体,然后指定折弯处的半 径值。 注:两个薄壁的交接处,材料将被删除。 • • 半径所在的侧 内侧半径:从零件的内侧曲面测量半径; 外侧半径:从零件的外侧曲面测量半径;
钣金特性的设臵
钣金特性的设臵
折弯顺序表:显示由2D平板折弯为成形钣金的顺序;
OUT:绿色面夹角大于180 IN:绿色面夹角小于180
钣金的2D工程图
使用展开(或平整阵列)特征将3D钣金展开为2D平板; 产生族表,将最后的展开(或平整阵列)特征放到族表中,并做一个不含此特征 的子零件,也就是此时的样品零件为展开的平板件; 3. 产生含有3D成形钣金及2D展开图的工程图,并标注尺寸; 另外:也可用展平状态取代第一步和第二步。 1. 2.
参考零件
模具和冲孔
2) 模具:在参考零件上指定边界面及种子面,以定义其范围是由种子面向 外扩张,直到碰到边界面为止。
种子面 (选取突起部分的任一面皆可)
网格为其范围
边界面
Lips:设计模具参考零件的几何模型时,需构建一个基础平面作为边界面,而冲孔则 无此要求。
参照零件
要模拟真实的制造要求,必须在标准应用程序中创建自己的成型参照零件。 创建参照零件时: • 尽量将基准平面保持在中央并使参照数最小。这将使成型的放臵和标注更为容易。 • 凹模的基座必须是环绕模具的一个平面(边界平面)。冲孔不需要此基础平面,除 非该基础平面要用作放臵成型(在此实例中,基础平面可成为基准平面)。 • 在成型中,凹角和折弯必须具有一个零半径或一个大于钣金件厚度的半径。 • 参照零件可包含空心。所有的成型几何必须从基础平面的一侧伸出。确保考虑钣金 件厚度的空心,否则空心内的材料将重叠,成型将失败。
展平状态
钣金的2D工程图
显示折弯线注释 折弯顺序表
其他钣金设计特征
一些在零件或组件的建构中所提供的实体特征也可应用于钣金中。
平整印贴消除圆角或斜角
当在钣金的边线建立圆角或倒角时,钣金变成不均一厚度,此时,可使用 平整印贴消除圆角或斜角,使钣金再度变为均一厚度。
曲线的投影
2D或3D的曲线可投影至钣金的平面或曲面上,当进行曲线的投影时,可以使用跟 随曲线选项,使3D钣金状态下投影出来的曲线在2D钣金展开时,也能落在投影面上。
钣金展开
• 含转折区的展开:操作流程是先选取钣金展开的固定面,再选取所有的 转折面。 注:选择固定面时,所有的绿色固定面都要选择,而选择转折面时,所有的 绿色及白色转折面都要选择。
所有的绿色固定面
所有的绿色及白色转折面
钣金展开
• 剖面驱动的展开:展开钣金时,先选取固定面,再指定一条剖面线,来决定变形 曲面展开的形状。此方式常用以展开具不规则外形的薄壁及薄壁上的薄唇或凸缘。 固定边线:此为固定面与想要展开面的交接线。 剖面线:为钣金的边界线或曲线,用以控制展开的几何形状,此曲线必须与固定 面共面。 固定侧:钣金展开时在固定线的两侧想要保持不动的那一侧,此侧必须为平面。 当指定完上述数据后,Pro/E即在剖面线的垂直方向产生众多的2D切面,然后以固 定边线为旋转轴,将这些切面展开摊平至固定面。
生成第一面薄壁(旋转、混合)
建立第一面薄壁(偏移、扫描混合)
将实体零件转换为钣金的第一面薄壁
驱动曲面:适用于实体零件为均一材料厚度的状况; 薄壳:实体非均一材料厚度,将实体零件挖为等厚度的薄壳,以生成钣 金;
产生额外薄壁
额外薄壁:用wall特征完成钣金的第一面薄壁后,再用Wall特征建立的薄壁。 • 零件折弯表:参照与整个零件相关的折弯表。 • 特征折弯表:参照单个特征的独立折弯表。 使用表:使用默认的钣金折弯表来计算此特征的展开长度
Pro/ENGINEER培训
钣金设计部分
钣金设计思路
冲孔、折弯、 扭转、局部冲 型、展开等操 作
以Wall特征 建构钣金主 体外形
钣金设计的基本观念
• • • 钣金件可由下列3种方式建构: 直接建构钣金件; 在装配模块中建构钣金件为新零件; 将实体零件转换为钣金件;
钣金设计的基本观念
为便于查看,钣金件有绿色和白色的曲面。只有 在再生成功后,才形成侧(深度)曲面。绿色侧 称为驱动侧,白色侧则表示厚度。
由于钣金件的厚度一般都较薄,当放臵特征时, 建议选取平面作为参照。如果平面不适用,边要 比侧曲面更为方便。
生成第一面薄壁
体积建构方式有:
生成第一面薄壁(平整,拉伸)
生成第一面薄壁(装配)
薄壁外形线的尺寸标示
创建钣金的薄壁时,在薄壁外形线的圆弧弯曲处一般是标注圆弧的内 径尺寸。可用下列方式来标注此种尺寸:
转变特征
利用转变特征,定义众多的点和线,将钣金切开,据以展开钣金。
点止裂:在边线上加入参考点,以将边线切为数段。 边缝:沿着边线将钣金分割。 裂缝连接:在两个参考点或边线端点之间连出一条直线,以将平面分割。
点止裂
边缝
裂缝连接
钣金特性的设臵
设臵折弯半径:
在此输入默认的折弯半径值
代表默认的折弯半径值已改变
钣金折弯的选项
规则:一般的折弯; 带有转接:含转折区的折弯; 平面:平面形的折弯;
带有转接的折弯
定义折弯线:
定义折弯区域:定义两个折弯区。画线时,要注意先画靠折弯区较 近的线。
在钣金折弯处加入止裂槽
缝止裂槽
伸展止裂槽
矩形止裂槽
非圆形止裂槽
零半径折弯
可对折弯半径输入零。生成的几何在折弯被标注到的那一侧上显示锐边。
多出一个选项
钣金特性的设臵
展平固定面的设臵:
固定几何用于设臵在展平钣金件或折弯回去时要保持固定的缺省曲面、边或平面。该 固定几何设臵有助于在选取固定几何时保持一致性。
展平状态的设臵:
可以使系统自动产生一个含有3D钣金成形件及2D钣金展开件的Family Table,可以 让用户通过名称随时看见钣金的3D或2D几何形状。
产生额外薄壁
• • • • • • 止裂槽 无止裂槽 - 不控制折弯行为。 使用止裂槽 - 在每个连接点处控制折弯行为: 止裂槽宽度 厚度 - 使用与钣金件壁厚相等的缺省半径。 厚度 * 2 - 使用等于钣金件壁厚两倍的缺省半径。 输入值 - 使用在"输入尺寸值"框中键入的绝对值。 自表 - 从列表中选取合适的半径。在指定给零件的折弯表中定义半径值。 如折弯表未指定给零件,则"自表"命令不可用。
钣金特性的设臵
折弯表:
• • 若钣金件含有折弯表,则使用折弯表计算展平长度; 若钣金件不含有折弯表,则使用公式L = (Π/2 x R + y 因子 x T) Θ/90计算展 平长度;
系统提供了TABLE1、TABLE2及TABLE3三种折弯表:
表 表 1 表 2 表 3 材料 软黄铜、铜 硬黄铜、铜、软钢、铝 硬黄铜、青铜、冷轧钢、弹簧钢 Y 因子 0.55 0.64 0.71 K 因子 0.35 0.41 0.45
钣金件切口
设计钣金时,创建切口特征和在实体零件设计中创建Cut特征的方式完全 一样,但如果cut特征的绘图平面与钣金呈某个角度,则实体剪切和钣金切 口所生成的造型截然不同: 钣金-切口:挖出的凹槽与钣金互相垂直; 实体-切口:挖出的凹槽与绘图平面互相垂直;
钣金件切口行为
实体切口行为
凹槽及冲孔
凹槽是在金属弯曲处挖出切口,使弯曲处不致有材料挤压的情况发生, 而冲孔是一般性的Cut特征。 1. 定义凹槽及切口特征: 注:凹槽特征定义时,要在剖面处建立局部坐标系,用以定义下一步的 切口或冲孔所需的加工工具。 2. 建立UDF特征: 单一的:UDF特征可独立 从属的:UDF特征的使用与目前的
生成部分薄壁(拉伸、平整配合无半径)
止裂槽
止裂槽有助于控制钣金件材料行为,并防止发生不希望的变形。 • 无止裂槽 - 创建没有任何止裂槽的折弯。 • 伸展止裂槽 - 拉伸材料,以便在折弯与现有固定材料边的相交处提供止 裂槽。 • 缝止裂槽 - 在每个折弯端点处切割材料。切口是垂直于折弯线形成的。 • 矩形止裂槽 - 在每个折弯端点添加一个矩形止裂槽。 • 长圆形止裂槽 - 在每个折弯端点添加一个长圆形止裂槽。
无止裂槽 伸展止裂槽 缝止裂槽 矩形止裂槽 长圆形止裂槽
在部分薄壁上加入止裂槽(平整、拉伸配 合半径)
练习
薄壁的拉伸
在创建额外薄壁时,可使用拉伸选项,将现有的薄壁拉伸至一个平面, 或拉伸某特定的距离。
斜接的角落
当使用用半径及缝止裂槽的选项来产生平整壁时,可使平整壁的外形线 落在其附着边的外侧,以生成斜接的角落。
punch参考零件
die参考零件
凹形
凸形
模具和冲孔
1. 利用模具或冲孔来生成钣金上的印贴特征时,首先须指定模具或冲孔在 钣金上的位臵,其指定方式与零件的装配方式相同:
参考零件
Align
Align
Align
模具和冲孔
2. 1) 完成装配后,接着在模具或冲孔的参考零件上指定局部凹凸造型的范围: 冲孔:在冲孔参考零件上指定哪一侧要形成印贴特征;
凹槽及冲孔
3. 凹槽及冲孔特征的使用: 选工具 打开UDF特征 完成特征定义 输入参数值,并选定参考几何数据
相关文档
最新文档