14、七年级下册数学《生活中的轴对称》单元测试卷(含答案)

合集下载

(典型题)初中数学七年级数学下册第五单元《生活中的轴对称》测试卷(包含答案解析)

(典型题)初中数学七年级数学下册第五单元《生活中的轴对称》测试卷(包含答案解析)

一、选择题1.如图,ABC ,点D ,E 在BC 边上,点F 在AC 边上.将ABC 沿AD 折叠,恰好与AED 重合,将CEF △沿EF 折叠,恰好与AEF ∆重合.下列结论:①60B ︒∠=②AB EC =③AD AF =④DE EF =⑤2B C ∠=∠正确的个数有( )A .2个B .3个C .4个D .5个 2.如图,ABC 与111A B C △关于直线MN 对称,点P 为MN 上任一点,下列结论中错误的是( )A .1AA P 是等腰三角形B .MN 垂直平分1AAC .ABC 与111A B C △面积相等D .直线AB ,11A B 的交点不一定在MN 上 3.如图,若ABC ∆与A B C '''∆关于直线MN 对称,BB '交MN 于点O ,则下列说法不一定正确的是 ( )A .AC AC ''=B .BO B O '=C .AA MN '⊥D .AB B C ''=4.下列与防疫有关的图案中不是轴对称图形的有( )A .1个B .2个C .3个D .4个5.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D . 6.在如图所示的直角坐标系中,三颗棋子A 、O 、B 的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0),添加棋子C ,使A 、O 、B 、C 四颗棋子成为一个轴对称图形,则C 的坐标一定不是( )A .(-1,-1)B .(1,1)C .(-1,2)D .(0,-1) 7.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40°8.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个9.下列图形中是轴对称图形的个数为( )A .2个B .3个C .4个D .5个10.以下是某中学初二年级的学生在学习了轴对称图形之后设计的.下面这四个图形中,不是轴对称图形的是( )A .B .C .D . 11.如图,在△ABC 中,∠A =70°,∠B =90°,点A 关于BC 的对称点是A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',若△ABC 的面积是1,则△A 'B 'C '的面积是( )A .2B .3C .4D .512.如图,点P 是直线l 外一个定点,点A 为直线l 上一个定点,点P 关于直线l 的对称点记为P 1,将直线l 绕点A 顺时针旋转30°得到直线l ′,此时点P 2与点P 关于直线l ′对称,则∠P 1AP 2等于( )A .30°B .45°C .60°D .75°二、填空题13.如图a 是长方形纸带,18DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是_________.14.如图,点P关于OA、OB的对称点分别是P1、P2,P1、P2分别交OA、OB于点C、D,1220PP cm,则△PCD的周长是_______.15.如图,点A、B、C都是数轴上的点,点B、C关于点A对称,若点A、B表示的数分别是2,19,则点C表示的数为____________.16.如图,在△ABC中,AB=10,BC=8,AC=9,如果将△BCD沿BD翻折与△BED重合,点C的对应点E落在边AB上,那么△AED的周长是_____.17.如图,点E,F分别在四边形ABCD的边AD,CD上,将△DEF沿直线EF翻折,点D恰好落在边BC上,若∠1+∠2=∠B,∠A=95°,则∠C=_____.18.如图 a 是长方形纸带,∠DEF=19°,将纸带沿 EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c 中的∠DHF 的度数是________ .19.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则ACD △的周长为________cm .20.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.三、解答题21.如图,在平面直角坐标系xOy 中,完成下列作图(不必写作法,保留作图痕迹,标出相应字母);(1)作出ABC ∆关于y 轴对称的111A B C ∆;(2)尺规作图:在x 轴上找出一个点P ,使点P 到,A B 两点的距离相等.22.如图,以AB 为对称轴,画出下面图形的对称图形,观察这个图形和它的轴对称图形构成什么三角形,根据你所学习的轴对称图形的基本特征,结合你所画的图形写出两个正确结论.23.如图,方格子的边长为1,△ABC 的顶点在格点上.(1)画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)求△ABC 的面积.24.如图,在平面直角坐标系中,ABC ∆三个顶点的坐标分别是()()()2,1,1,3,4,4A B C . (1)在图中画出ABC ∆关于y 轴对称的图形111A B C ∆,并写出点C 的对应点1C 的坐标; (2)在图中x 轴上作出一点P ,使得1PB PC +的值最小(保留作图痕迹,不写作法)25.如图,三角形A′B′C′是三角形ABC 经过某种变换后得到的图形.(1)分别写出点A 和点A′,点B 和点B′,点C 和点C′的坐标;(2)观察点A 和点A ′,点B 和点B′,点C 和点C′的坐标,用文字语言描述它们的坐标之间的关系 ;(3)三角形ABC 内任意一点M 的坐标为(x ,y ),点M 经过这种变换后得到点M′,则点M′的坐标为 .26.在如图所示的平面直角坐标系中:(1)画出ABC ∆关于x 轴成轴对称图形的三角形DEF ∆;(2)分别写出(1)中的点D ,E ,F 的坐标;(3)求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将△ABD 沿着AD 翻折,可得AB =AE ,∠B =∠AEB ,将△CEF 沿着EF 翻折,可得AE =CE ,∠C =∠CAE ,可得∠B =2∠C .【详解】解:∵将△ABD 沿着AD 翻折,使点B 和点E 重合,∴AB =AE ,∠B =∠AEB ,∵将△CEF 沿着EF 翻折,点C 恰与点A 重合,∴AE =CE ,∠C =∠CAE ,∴AB =EC ,∴②正确;∵∠AEB =∠C +∠CAE =2∠C ,∴∠B =2∠C ,故⑤正确;其余的都无法推导得出,故选:A .【点睛】本题考查翻折变换,三角形外角性质等知识,掌握旋转的性质是本题的关键.2.D解析:D【分析】据对称轴的定义,△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,可以判断出图中各点或线段之间的关系.【详解】解:∵△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,∴△A 1A P 是等腰三角形,MN 垂直平分A 1A ,C 1C ,这两个三角形的面积相等,故A 、B 、C 选项正确,直线AB ,11A B 关于直线MN 对称,因此交点一定在MN 上,故D 错误,故选:D .【点睛】本题考查了轴对称的性质与运用,掌握对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键. 3.D解析:D【分析】根据轴对称的性质解答.【详解】∵ABC ∆与A B C '''∆关于直线MN 对称,BB '交MN 于点O ,∴AC AC ''=,BO B O '=,AA MN '⊥,AB A B ''=,BC B C ''=,故选:D .【点睛】此题考查了轴对称的性质:关于轴对称的两个图形的对应边相等,对应角相等,对应点的连线垂直于对称轴.4.B解析:B【分析】根据轴对称图形的概念判断即可.【详解】解:由轴对称图形的概念可得:第一、二个图案是轴对称图形,第三、四个图案不是轴对称图形,故选:B .【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.C解析:C【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.6.B解析:B【分析】根据A,B,O,C的位置,结合轴对称图形的性质,进而画出对称轴即可.【详解】如图所示,C点的位置为(-1,2),(2,1),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴,C点的位置为(-1,-1),x轴是对称轴,C点的位置为(0,-1),故选:B.【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.7.B解析:B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】,解:∵∠A′BC=20°,DC BC∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵AD//BC,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∠ABA′=25°.∴∠A′BD=12故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.8.C解析:C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.B解析:B【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】解:第1个是轴对称图形;第2个不是轴对称图形;第3个是轴对称图形;第4个是轴对称图形;第5个不是轴对称图形.故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.C解析:C【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.B解析:B【分析】BB′的延长线交A′C′于E,如图,根据轴对称的性质得到DB′=DB,BB′⊥AC,BC=BC′,AB=A′B,则可判断△ABC≌△A′BC′,所以∠C=∠A′C′B,AC=A′C′,则AC∥A′C′,所以DE⊥A′C′,且BD=BE,即B′E=3BD,然后利用三角形面积公式可得到S△A′B′C′=3S△ABC.【详解】BB′的延长线交A′C′于E,如图,∵点B关于AC的对称点是B',∴DB′=DB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′E=3BD,∴S△A′B′C′=12A′C′×B′E=3×12×BD×AC=3S△ABC=3×1=3.故选:B.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.12.C解析:C【分析】根据轴对称的性质得到∠P1AD=∠PAD,∠PAC=∠P1AC,根据平角的定义得到∠DAC=150°,于是得到结论.【详解】如图,∵点P关于直线l的对称点记为P1,点P2与点P关于直线l′对称,∴∠P1AD=∠PAD,∠PAC=∠P1AC,∵∠BAC=30°,∴∠DAC=150°,∴∠DAP1+P2AC=150°,∠DAP1+∠P2AB=150°﹣30°=120°,∴∠P1AP2=180°﹣120°=60°,故选:C.【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.二、填空题13.126°【分析】先由平行线的性质得出∠BFE=∠DEF=18°再根据折叠的性质得出∠CFG=180°-2∠BFE由∠CFE=∠CFG-∠EFG即可得出答案【详解】解:∵四边形ABCD是长方形∴AD∥解析:126°【分析】先由平行线的性质得出∠BFE=∠DEF=18°,再根据折叠的性质得出∠CFG=180°-2∠BFE,由∠CFE=∠CFG-∠EFG即可得出答案.【详解】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠BFE=∠DEF=18°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×18°=126°,故答案为:126°.【点睛】本题考查了翻折变换的性质、平行线的性质;熟练掌握翻折变换,弄清各个角之间的关系是解决问题的关键.14.20cm【分析】根据轴对称的性质可得PC=P1CPD=P2D从而求出△PCD的周长等于P1P2从而得解【详解】解:∵点P关于OAOB的对称点P1P2∴OA垂直平分PP1OB垂直平分PP2∴PC=P1解析:20cm【分析】根据轴对称的性质可得PC=P1C,PD=P2D,从而求出△PCD的周长等于P1P2,从而得解.【详解】解:∵点P关于OA、OB的对称点P1、P2,∴OA垂直平分PP1,OB垂直平分PP2∴PC=P1C,PD=P2D,∴△PCD的周长=PC+PD+CD=P1P2=20cm.故答案为:20cm.【点睛】本题考查了轴对称的性质,熟记性质得到相等的边是解题的关键.15.4-【分析】先求出线段AB的长度根据对称点的关系得到AC=AB即可利用点A得到点C所表示的数【详解】∵点表示的数分别是2∴AB=-2∵点关于点对称∴AC=AB=-2∴点C所表示的数是:2-(-2)=解析:【分析】先求出线段AB的长度,根据对称点的关系得到AC=AB,即可利用点A得到点C所表示的数.【详解】∵点A、B表示的数分别是2∴,∵点B、C关于点A对称,∴,∴点C所表示的数是:2-)故答案为:【点睛】此题考查数轴上两点间的距离公式,对称点的关系,点的平移规律,利用点的对称关系得到AC的长度是解题的关键.16.11【分析】由翻折的性质可知:DC=DEBC=EB于是可得到AD+DE=9AE=2即可得出结果【详解】由翻折的性质可知:DC=DEBC=EB=8∴AD+DE=AD+DC=AC=9AE=AB﹣BE=A解析:11【分析】由翻折的性质可知:DC=DE,BC=EB,于是可得到AD+DE=9,AE=2,即可得出结果.【详解】由翻折的性质可知:DC=DE,BC=EB=8,∴AD+DE=AD+DC=AC=9,AE=AB﹣BE=AB﹣CB=10﹣8=2,∴△ADE的周长=9+2=11,故答案为:11.【点睛】本题考查了翻折的性质,熟练掌握折叠的性质是解题的关键17.85°【分析】根据折叠的性质得到∠ED′F=∠D求得∠B+∠D=180°根据四边形的内角和得到∠A+∠C=180°即可得到结论【详解】解:∵将△DEF沿直线EF 翻折点D恰好落在边BC上∴∠ED′F=解析:85°【分析】根据折叠的性质得到∠ED′F=∠D,求得∠B+∠D=180°,根据四边形的内角和得到∠A+∠C =180°,即可得到结论.【详解】解:∵将△DEF沿直线EF翻折,点D恰好落在边BC上,∴∠ED′F=∠D,∵∠1+∠2=∠B,∠1+∠2+∠ED′F=180°,∴∠B+∠D=180°,∴∠A+∠C=180°,∵∠A=95°,∴∠C=85°,故答案为:85°.【点睛】本题考查了多边形的内角与外角,四边形的内角和,折叠的性质,正确的识别图形是解题的关键.18.57°【解析】【分析】由题意知∠DEF=∠EFB=19°图b ∠GFC=142°图c 中的∠DHF=180°-∠CFH 【详解】∵AD ∥BC ∠DEF=19°∴∠BFE=∠DEF=19°∴∠EFC=180°解析:57°【解析】【分析】由题意知∠DEF=∠EFB=19°图b ∠GFC=142°,图c 中的∠DHF =180°-∠CFH .【详解】∵AD ∥BC ,∠DEF=19°,∴∠BFE=∠DEF=19°,∴∠EFC=180°-19°=161°(图a ),∴∠BFC=161°-19°=142°(图b ),∴∠CFE=142°-19°=123°(图c ),∴由DH ∥CF 得∠DHF =180°-123°=57°【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.19.14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.20.12【分析】根据题意利用翻折不变性可得AE =ACCD =DE 进而利用DE+BD+BE =CD+BD+E =BC+BE 即可解决问题【详解】解:由翻折的性质可知:AE =ACCD =DE 且AB =10AC =6BC =解析:12【分析】根据题意利用翻折不变性可得AE =AC ,CD =DE 进而利用DE+BD+BE =CD+BD+E =BC+BE 即可解决问题.【详解】解:由翻折的性质可知:AE =AC ,CD =DE ,且AB =10,AC =6,BC =8,∴BE =AB-AE=10-6=4,∴△BDE 的周长=DE+BD+BE =CD+BD+E =BC+BE =8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.(1)见解析,(2)见解析,【分析】(1)根据轴对称的性质,分别画出A 、B 、C 三点的对称点,顺次连接即可;(2)作AB 的垂直平分线,交x 轴于点P .【详解】解:(1)ABC ∆关于y 轴对称的111A B C ∆如图所示;(2)如图,作AB 的垂直平分线,交x 轴于点P ;.【点睛】本题考查了轴对称变换和垂直平分线的性质的应用,依据知识准确画图是解题关键. 22.'ACC ∆是等腰三角形 结论:不唯一,【分析】根据轴对称性质和等腰三角形定义可得,画出来的图形构成等腰三角形.【详解】'ACC是等腰三角形结论:不唯一,【点睛】考核知识点:画轴对称图形.理解轴对称图形的性质.23.(1)见解析;(2)5.【分析】(1)分别找出A、B、C三点关于直线l的对称点,再顺次连接即可;(2)利用长方形的面积减去周围多余三角形的面积即可得到△ABC的面积.【详解】解:(1)△A1B1C1如图所示:(2)△ABC的面积=3×4−12×2×4−12×1×3−12×1×3=5.【点睛】此题主要考查了作图--轴对称变换以及三角形面积的求法,关键是找出对称点的位置以及利用割补法求面积.24.(1)见解析;(2)见解析【分析】(1)利用轴对称的性质找出A1、B1、C1关于y轴对称点,再依次连接即可;(2)作点C关于x轴的对称点C2,连接B1C2,与x轴交点即为P.【详解】解:(1)如图,△A1B1C1即为所作图形,其中C 1的坐标为(-4,4);(2)如图点P 即为所作点.【点睛】本题考查了作图—轴对称,最短路径问题,解题的关键在于利用轴对称的性质作出最短路径.25.解:(1)A (-2,4),A ′(2,4),B (-4,2),B ′(4,2),C (-1,-1),C ′(1,-1);(2)横坐标互为相反数,纵坐标相等;(3)(-x ,y )【分析】(1)根据点的位置写出坐标即可;(2)探究规律,利用规律解决问题即可;(3)利用(2)中结论解决问题即可.【详解】解:(1)A (-2,4),A ′(2,4),B (-4,2),B ′(4,2),C (-1,-1),C ′(1,-1);(2)观察可知:横坐标互为相反数,纵坐标相等故答案为:横坐标互为相反数,纵坐标相等;(3)三角形ABC 内任意一点M 的坐标为(x ,y ),点M 经过这种变换后得到点M 则点'M 的坐标为(-x ,y ).故答案为:(-x ,y ).【点睛】本题考查几何变换类型,坐标与图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.(1)见解析;(2)()2,4D -,()5,3E -,()1,0F ;(3)132【分析】(1)根据轴对称的性质,找出△ABC 各顶点关于x 轴对称的对应点,然后顺次连接各顶点即可得DEF ∆;(2)根据所画图形可直接写出D ,E ,F 的坐标;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图,DEF ∆为所求.(2)()2,4D -,()5,3E -,()1,0F . (3)11144413134222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯ 316262=--- 132= 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.。

(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》测试卷(含答案解析)

(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》测试卷(含答案解析)

一、选择题1.在下列四个图案的设计中,没有运用轴对称知识的是( )A .B .C .D . 2.如图,ABC 与111A B C △关于直线MN 对称,点P 为MN 上任一点,下列结论中错误的是( )A .1AA P 是等腰三角形B .MN 垂直平分1AAC .ABC 与111A B C △面积相等D .直线AB ,11A B 的交点不一定在MN 上3.下列图形中不是轴对称图形的是( ) A . B . C . D . 4.以下是回收、节水、绿色包装、低碳四个标志,其中是轴对称图形的是( ) A . B . C . D . 5.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是( ).A .对应点所连线段都相等B .对应点所连线段被对称轴平分C.对应点连线与对称轴垂直D.对应点连线互相平行6.下列世界博览会会徽图案中是轴对称图形的是()A.B.C.D.7.△ABC和△A´B´C´关于直线l对称,若AA´=8,则点A到l的距离是()A.2 B.3 C.4 D.58.如图的四组图形中,左边图形与右边图形成轴对称的有()A.1组B.2组C.3组D.0组9.下列图形是轴对称图形的是()A.B.C.D.10.一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为()A.1.5cm B.2cm C.2.5cm D.3cm11.将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF的度数为().A.40°B.45°C.56°D.37°12.下列大学的校徽图案是轴对称图形的是()A .B .C .D .二、填空题13.四边形ABCD 中,90,70B D C ︒︒∠=∠=∠=,在BC ,CD 上分别找一点M ,N ,使AMN ∆周长最小时,此时AMN ANM ∠+∠的度数为______度14.如图,点A 、B 、C 都是数轴上的点,点B 、C 关于点A 对称,若点A 、B 表示的数分别是2,19,则点C 表示的数为____________.15.如图,在△ABC 中,AB =10,BC =8,AC =9,如果将△BCD 沿BD 翻折与△BED 重合,点C 的对应点E 落在边AB 上,那么△AED 的周长是_____.16.如图,Rt △AFC 和Rt △AEB 关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC ≌△AMB ;③CD =DN .其中正确的结论是_____.(填序号)17.如图,在一张直角三角形纸片ABC中,∠ACB=90°,∠A=30°P是边AB上的一动点,将△ACP沿着CP折叠至△A1CP,当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP 的度数为_____.18.如图所示,将长方形纸片ABCD进行折叠,∠FEH=70°,则∠BHE=_______.19.如图,在22的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的ABC为格点三角形,在图中最多能画出______个不同的格点三角形与ABC成轴对称.20.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有________种.三、解答题21.(1)计算:(2x﹣1)2﹣x(4x﹣3);(2)△ABC 在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位. ①△A 1B 1C 1与△ABC 关于纵轴(y 轴)对称,请你在图中画出△A 1B 1C 1;②求△ABC 的面积.22.在33⨯的正方形格点图中,有格点ABC 和DEF ,且ABC 和DEF 关于某直线成轴对称(对称轴不一定是正方形的边所在直线),请在下面给出的图中画出2个这样的DEF .23.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC ∆的顶点均落在格点上,点A 的坐标是()3,1--.(1)分别写出与ABC ∆关于x 轴对称的111A B C ∆的顶点坐标;(2)分别写出与ABC ∆关于y 轴对称222A B C ∆的的顶点坐标;(3)分别画出111A B C ∆和222A B C ∆.24.如图,在平面直角坐标系xOy 中,A(-1,4),B(-1,1).C(-4,5).(1)在图中做△ABC 关于y 轴对称的△A' B' C'.并写出点A',B’, C'的坐标;(2)在直角坐标系中,找一点P ,使得△ABC 全等于△ABP ,请直接写出点P 坐标.25.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)26.如图,在平面直角坐标系中,ABC ∆的顶点()0,1A ,()3,2B,()1,4C 均在正方形网格的格点上.(1)画出ABC ∆关于x 轴对称的图形111A B C ∆;(2)已知222A B C ∆和111A B C ∆关于y 轴成轴对称,写出顶点2A ,2B ,2C 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用轴对称图形的定义得出符合题意的答案.【详解】解:A 、,是轴对称图形,故此选项错误;B 、,是轴对称图形,故此选项错误;C 、,不是轴对称图形,故此选项正确;D 、,是轴对称图形,故此选项错误;故选:C .【点睛】本题考查了轴对称图形,正确把握轴对称图形的定义是解题的关键.2.D解析:D【分析】据对称轴的定义,△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,可以判断出图中各点或线段之间的关系.【详解】解:∵△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,∴△A 1A P 是等腰三角形,MN 垂直平分A 1A ,C 1C ,这两个三角形的面积相等,故A 、B 、C 选项正确,直线AB ,11A B 关于直线MN 对称,因此交点一定在MN 上,故D 错误,故选:D .【点睛】本题考查了轴对称的性质与运用,掌握对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键. 3.C解析:C【分析】根据轴对称图形的定义:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐一判定即可.【详解】A.是轴对称图形,故该选项不符合题意,B.是轴对称图形,故该选项不符合题意,C.不是轴对称图形,故该选项符合题意,D.是轴对称图形,故该选项不符合题意,故选:C .【点睛】本题考查的是轴对称图形的辨识,能够准确掌握轴对称图形的定义是解题的关键. 4.B解析:B【分析】根据轴对称图形的定义,结合选项所给图形进行判断即可.【详解】解:A 、不是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意.故选:B .【点睛】本题考查了轴对称图形的概念.解题的关键是寻找对称轴,对称轴两旁的部分折叠后可重合.5.B解析:B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.6.B解析:B【分析】根据轴对称的定义即可解答.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图叫做轴对称图形,这条直线叫做对称轴,根据轴对称的定义可得只有B选项是轴对称图形.故选B.【点睛】本题考查轴对称的定义,熟悉掌握是解题关键.7.C解析:C【分析】根据轴对称的性质求解即可.【详解】∵△ABC和△A´B´C´关于直线l对称,∴直线l垂直平分AA´,∵AA´=8,∴点A到l的距离=4,故选:C.【点睛】此题主要考查了轴对称的性质,熟练掌握其性质是解题的关键.8.A解析:A【分析】:欲分析两个图形是否成中心对称,主要把一个图形绕一个点旋转180°,观察是否能和另一个图形重合即可.【详解】根据中心对称的概念,知①、②、③都是中心对称;④是轴对称故选:A.【点睛】本题重点考查了两个图形成中心对称的定义如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心9.B解析:B【解析】【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可.【详解】根据轴对称图形定义,图形A、C、D中不是轴对称图形,而B是轴对称图形.故选B【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.10.B解析:B【解析】【分析】设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.【详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B.【点睛】本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.11.D解析:D【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等.【详解】解:由折叠可知∠DAF=∠D′AF ,∠B′AE=∠B′AD′,由题意可知:∠DAF+∠D′AF+∠BAE+∠B′AE -∠B′AD′=∠BAD ,∵∠B′A D′=16°∴可得:2×(∠B′FA +∠B′A D′)+2×(∠D′AE +∠B′A D′)-16°=90°则∠B′FA+∠D′AE +∠B′A D′=∠EAF=37°故选D.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.12.B解析:B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题13.140【分析】作A 关于BC 和CD 的对称点连接交BC 于M 交CD 于N 则即为的周长最小值推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决【详解】如图作A 关于BC 和CD 的对称点连接交BC 于M 交CD 于N 则解析:140【分析】作A 关于BC 和CD 的对称点,A A ''',连接A A ''',交BC 于M ,交CD 于N ,则A A '''即AMN ∆为的周长最小值,推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决.【详解】如图,作A 关于BC 和CD 的对称点,A A ''',连接A A ''',交BC 于M ,交CD 于N ,则A A '''即AMN ∆为的周长最小值,70,90C B D ︒︒∠=∠=∠=,110DAB ︒∴∠=,∴∠A′+∠A″=70°,∵BA=BA′,MB ⊥AB ,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB ,∠A″=∠NAD ,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″)=140°.故答案为140【点睛】本题考查对称的性质、线段垂直平分线的性质、三角形内角和定理等知识,利用对称作辅助线是解决最短的关键.14.4-【分析】先求出线段AB 的长度根据对称点的关系得到AC=AB 即可利用点A 得到点C 所表示的数【详解】∵点表示的数分别是2∴AB=-2∵点关于点对称∴AC=AB=-2∴点C 所表示的数是:2-(-2)=解析:19【分析】先求出线段AB 的长度,根据对称点的关系得到AC=AB ,即可利用点A 得到点C 所表示的数.【详解】∵点A 、B 表示的数分别是219∴19,∵点B 、C 关于点A 对称,∴19,∴点C 所表示的数是:2-19)19故答案为:19【点睛】此题考查数轴上两点间的距离公式,对称点的关系,点的平移规律,利用点的对称关系得到AC 的长度是解题的关键.15.11【分析】由翻折的性质可知:DC =DEBC =EB 于是可得到AD+DE =9AE =2即可得出结果【详解】由翻折的性质可知:DC =DEBC =EB =8∴AD+DE =AD+DC =AC =9AE =AB ﹣BE =A解析:11【分析】由翻折的性质可知:DC =DE ,BC =EB ,于是可得到AD +DE =9,AE =2,即可得出结果.【详解】由翻折的性质可知:DC =DE ,BC =EB =8,∴AD +DE =AD +DC =AC =9,AE =AB ﹣BE =AB ﹣CB =10﹣8=2,∴△ADE 的周长=9+2=11,故答案为:11.【点睛】本题考查了翻折的性质,熟练掌握折叠的性质是解题的关键16.①②【分析】首先利用轴对称的性质分别判断正误即可【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称∴∠MAD =∠NAD ∠EAD =∠FAD ∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD 即:∠1=∠2故正解析:①②【分析】首先利用轴对称的性质分别判断正误即可.【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠MAD =∠NAD ,∠EAD =∠FAD ,∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD ,即:∠1=∠2,故正确;②∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠B =∠C ,AC =AB ,在△ANC 与△AMB 中,MAN NAM AC ABB C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ANC ≌△AMB ,故正确;③易得:CD =BD ,但在三角形DNB 中,DN 不一定等于BD ,故错误.故答案为:①②.【点睛】本题考查轴对称的性质,熟练掌握性质是解题的关键.17.40°或70°【分析】分两种情形画出图形分别求解即可当PC=CE时设∠ACP =x利用等腰三角形的性质可证得∠CPE=x+30°再利用三角形内角和定理建立关于x的方程解方程即可;当CP=CE时设∠AC解析:40°或70°【分析】分两种情形,画出图形分别求解即可.当PC=CE时,设∠ACP=x,利用等腰三角形的性质,可证得∠CPE=x+30°,再利用三角形内角和定理建立关于x的方程,解方程即可;当CP=CE时,设∠ACP=x,用含x的代数式表示出∠CPE、∠CEP,再利用三角形内角和定理建立关于x的方程,解方程即可求得结论.【详解】当PC=CE时,如图1所示:设∠ACP=x,根据折叠的性质得∠A1CP=x,∵CP=CE,∴∠CPE=∠CEP,∵∠CPE=∠ACP+∠A=x+30°,∴在PCE中:x+x+30°+x+30°=180°,∴x=40°;当CP=CE时,如图2所示:设∠ACP=x.根据折叠的性质得∠A1CP=x,∠A1=∠A=30°,则∠CPE=∠CEP=∠ECA+∠A1=∠ACP +∠A1CP -∠ACB= 2x﹣90°+30°=2x﹣60°,在△CPE中,90°﹣x+2(2x﹣60°)=180°,解得:x=70°,综上所述,∠ACP的度数为40°或70°,故答案为:40°或70°.【点睛】本题考查了折叠的性质、等腰三角形的性质、三角形外角定理、三角形内角和定理,用含x的代数式表示出∠CPE,再利用三角形内角和定理建立关于x的方程是解决本题的关键.18.70°【解析】【分析】由折叠的性质可得∠DEH=∠FEH=70°再根据两直线平行内错角相等即可求得答案【详解】由题意得∠DEH=∠FEH=70°∵AD//BC∴∠BHE=∠DEH=70°故答案为:7解析:70°【解析】【分析】由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.【详解】由题意得∠DEH=∠FEH=70°,∵AD//BC,∴∠BHE=∠DEH=70°,故答案为:70°.【点睛】本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.19.5【分析】画出所有与成轴对称的三角形【详解】解:如图所示:和对称和对称和对称和对称和对称故答案是:5【点睛】本题考查轴对称图形解题的关键是掌握画轴对称图形的方法解析:5【分析】画出所有与ABC成轴对称的三角形.【详解】解:如图所示:ABC和ADC对称,ABC和EBD△对称,ABC和DEF对称,ABC和DCB对称,ABC和CDA对称,故答案是:5.【点睛】本题考查轴对称图形,解题的关键是掌握画轴对称图形的方法.20.种【分析】根据轴对称图形的性质分别得出即可【详解】如果一个图形沿一条直线对折直线两旁的部分能互相重合那么这个图形叫做轴对称图形选择一个正方形涂黑使得3个涂黑的正方形组成轴对称图形选择的位置有以下几种 解析:种【分析】根据轴对称图形的性质分别得出即可.【详解】如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1,3,7,6,5,选择的位置共有5处.三、解答题21.(1)1x -;(2)①图形见解析;②212【分析】(1)利用完全平方公式及单项式乘单项式运算法则计算即可;(2)①根据关于y 轴对称点的坐标特点画出111A B C △即可;②利用矩形的面积减去三个角上三角形的面积即可.【详解】解:(1)原式=22441431x x x x x -+-+=-;(2)①如图所示:②11156363523222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯△=15 30932---=212.【点睛】本题考查作图-轴对称图形、完全平方公式、单项式乘单项式,熟知轴对称的性质及完全平方公式是解题的关键.22.见解析【分析】根据轴对称图形的定义进行画图即可.【详解】解:如图所示:【点睛】本题有一定的难度,要求找出所有能与三角形ABC 形成对称的轴对称图形,这里注意思维要严密.23.(1)111(3,1),(2,4),(1,2)A B C ---;(2)222(3,1),(2,4),(1,2)A B C ---;(3)见解析【分析】(1)根据点关于x 轴对称的特点写出坐标即可;(2)根据点关于y 轴对称的特点写出坐标即可;(3)根据(1)(2)中的坐标进一步画图即可.【详解】(1)由题可得ABC ∆的三个顶点坐标为:(3,1),(2,4),(1,2)A B C ------,∴与ABC ∆关于x 轴对称的111A B C ∆的顶点坐标分别为111(3,1),(2,4),(1,2)A B C ---; (2)∵ABC ∆的三个顶点坐标为:(3,1),(2,4),(1,2)A B C ------,∴与ABC ∆关于y 轴对称的222A B C ∆的顶点坐标分别为222(3,1),(2,4),(1,2)A B C ---; (3)如图所示:【点睛】本题主要考查了轴对称的性质,熟练掌握相关概念是解题关键.24.(1)图见解析;(2)P (-4,0)或(2,5)或(2,0)【分析】(1)根据轴对称变换的性质作图即可;(2)根据三角形全等的判定确定点P 坐标即可.【详解】解:(1)如图所示:(2)如下图所示:共有共有3个P点使得使得△ABC全等于△ABP,分别为:(-4,0)、(2,5)、(2,0)【点睛】本题考查了轴对称变换中的作图问题,解题的关键是要确定关键点的对称点.25.见解析.【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】解:如图所示:【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.26.(1)图形见详解;(2)2A (0,-1),2B (-3,-2),2C (-1,-4). 【分析】(1)根据对称点到对称轴的距离相等,ABC ∆关于x 轴对称的图形111A B C ∆,分别找出对应的顶点1A 、1B 、1C ,连接各顶点;(2)平面直角坐标系中对称轴的性质求出1A 的坐标(0,-1),1B 的坐标(3,-2),1C 的坐标(1,-4),再由1A 、1B 、1C 的坐标求出2A ,2B ,2C 的坐标.【详解】(1)由ABC ∆关于x 轴对称的图形111A B C ∆,对称点到x 轴的距离相等,分别找出对应的顶点1A 、1B 、1C ,然后连接各顶点;(2)如图中ABC ∆与111A B C ∆关于x 轴对称,根据关于x 轴对称的点纵坐标互为相反数, 横坐标相等,可得1A 的坐标(0,-1),1B 的坐标(3,-2),1C 的坐标(1,-4);222A B C ∆和111A B C ∆关于y 轴成轴对称,由于关于y 轴对称的点横坐标互为相反数,纵坐标相等, 可知2A 的坐标(0,-1),2B 的坐标(-3,-2),2C 的坐标(-1,-4).【点睛】关于轴对称图形的理解,数形结合。

七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版

七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版

七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。

(好题)初中数学七年级数学下册第五单元《生活中的轴对称》测试卷(含答案解析)(1)

(好题)初中数学七年级数学下册第五单元《生活中的轴对称》测试卷(含答案解析)(1)

一、选择题1.自新冠肺炎疫情发生以来,全国人民共同抗疫.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A .B .C .D .2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是( )A .B .C .D . 3.有下列说法:①轴对称的两个三角形形状相同;②面积相等的两个三角形是轴对称图形;③轴对称的两个三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的.其中正确的有( )A .4个B .3个C .2个D .1个4.如图,AC BC =,AD BD =,这个图形叫做“筝形”,数学兴趣小组几名同学探究出关于它的如下结论:①ACD BCD △≌△;②AO BO =;③AB CD ⊥;④AOC BOC ≌△△;⑤“筝形”是轴对称图形.其中正确的结论有( )A .2个B .3个C .4个D .5个 5.把一张对边互相平行的纸条按如图所示折叠,EF 是折痕,若∠EFB =34°,则下列结论不正确的是( )A .34C EF '∠︒=B .∠AEC =146° C .∠BGE =68°D .∠BFD =112° 6.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( ) A .B .C .D .7.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中ABC ∆是一个格点三角形.则图中与ABC ∆成轴对称的格点三角形有( )A .2个B .4个C .6个D .8个8.下列图形中,是轴对称图形的有( )A.1个B.2个C.3个D.4个9.在汉字“生活中的日常用品”中,成轴对称的有()A.3个B.4个C.5个D.6个10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.11.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF 沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为()A.60°B.70°C.80°D.90°12.如图,在△ABC中,点D、E在BC边上,点F在AC边上,将△ABD沿着AD翻折,使点B和点E重合,将△CEF沿着EF翻折,点C恰与点A重合.结论:①∠BAC=90°,②DE=EF,③∠B=2∠C,④AB=EC,正确的有()A.①②③④B.③④C.①②④D.①②③二、填空题13.如图,四边形ABCD中,∠B=∠D=90°,∠C=50°,在BC、CD边上分别找到点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数为______.14.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,CD与AE交于点P若∠1:∠2:∠3=13:3:2,则∠α的度数为_____.15.Rt ABC 中,90C ∠=︒,12AC cm =,16BC cm =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于点E ,交斜边于点F ,则CDE △的周长为__________.16.四边形ABCD 中,90,70B D C ︒︒∠=∠=∠=,在BC ,CD 上分别找一点M ,N ,使AMN ∆周长最小时,此时AMN ANM ∠+∠的度数为______度17.如图,Rt △AFC 和Rt △AEB 关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC ≌△AMB ;③CD =DN .其中正确的结论是_____.(填序号)18.如图,在Rt ABC ∆中,沿ED 折叠,点C 落在点B 处,已知ABE ∆的周长是15,6BD =,则ABC ∆的周长为__________.19.如图所示,将长方形纸片ABCD 进行折叠,∠FEH=70°,则∠BHE=_______.20.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.三、解答题21.如图,在平面直角坐标系中,(1,3),(2,1),(4,4)A B C .(1)在平面直角坐标系中作出ABC 关于y 轴的对称图形111A B C △;(2)计算111A B C △的面积.22.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.(问题2)小明发现只利用直角三角板也可以作AOB ∠的角平分线,方法如下: 步骤:①利用三角板上的刻度,在OA 、OB 上分别截取OM 、ON ,使OM ON =. ②分别过点M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为AOB ∠的平分线.请根据小明的作法,求证OP 为AOB ∠的平分线.23.观察设计(1)观察如图①②中阴影部分构成的图案,请写出这2个图案都具有的2个共同特征(2)借助后面的空白网格,请设计2个新的图案,使该图案同时具有你在解答(1)中所写出的2个共同特征.(注 意新图案与已有的2个图案不能重合)24.如图,点P 关于OA 、OB 轴对称的对称点分别为C 、D ,连结CD ,交OA 于M ,交OB 于N .(1)若CD 的长为18厘米,求△PMN 的周长;(2)若∠CPD =131°,∠C =21°,∠D =28°,求∠MPN .25.如图,在平面直角坐标系中有一个ABC ,顶点()1,3A -,()2,0B ,()3,1C --. (1)画出ABC 关于y 轴的对称图形111A B C △(不写画法);(2)点C 关于x 轴对称的点的坐标为__________,点B 关于y 轴对称的点的坐标为__________;(3)若网格上每个小正方形的边长为1,求111A B C △的面积?26.已知:如图,四边形ABCD 中,AD ∥BC ,∠B=90°,AD=AB=4,BC=7,点E 在BC 上,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.(1)求线段DC 的长度;(2)求△FED 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、不是轴对称图形,不合题意;D 、是轴对称图形,符合题意.故选:D .【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键.2.B解析:B【分析】根据轴对称的性质求解.【详解】观察选项可知,A 中的两个图形可以通过平移,旋转得到,C 中可以通过平移得到,D 中可以通过放大或缩小得到,只有B 可以通过对称得到.故选B .【点睛】本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.B解析:B【分析】根据平移、翻折或旋转的性质逐项判断可求解.【详解】解:①轴对称的两个三角形形状相同,故正确;②面积相等的两个三角形形状不一定相同,故不是轴对称图形,故错误;③轴对称的两个三角形的周长相等,故正确;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的,故正确.故选:B .【点睛】本题考查了图形的变换,掌握平移、翻折或旋转的性质是解题的关键.4.D解析:D【分析】运用“SSS”可证明ACD BCD △≌△,从而可判断①,由ACD BCD △≌△得∠ACO=∠BCO ,从而可判断ACO BCO △≌△,进一步判断②③④;根据轴对称图形的概念可判断⑤.【详解】解:在△ACD 与△BCD 中,AD BD AC BC DC DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BCD (SSS ),故①正确;∴∠ACO=∠BCO ,在△ACO 与△BCO 中,AC BC ACO BCO OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△ACO ≌△BCO (SSS ),故④正确;∴AO=BO,故②正确;,故③正确;∴∠AOC=∠BOC=90°,即AB CD∴“筝形”是轴对称图形,故⑤正确;所以,正确的是①②③④⑤,故选:D.【点睛】此题考查全等三角形的判定和性质,以及轴对称图形的判断,熟练掌握有关判定是解答此题的关键.5.B解析:B【分析】根据平行线的性质以及翻折不变性,分别求出∠C′EF;∠AEC;∠BGE;∠BFD即可判断.【详解】解:A、∵∠EFB=34°,AC′∥BD′,∴∠EFB=∠FEC′=∠FEG=34°,故正确,不符合题意;B、由折叠可得∠C′EG=68°,则∠AEC=180°﹣∠C′EG=112°,故错误,符合题意;C、∵∠BGE=∠C′EG=68°,故正确,不符合题意;D、∵EC∥DF,∴∠BFD=∠BGC=∠AEC=112°,故正确,不符合题意.故选:B.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.6.D解析:D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.7.C解析:C【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】符合题意的三角形如图所示:满足要求的图形有6个故选:C【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.8.C解析:C【解析】【分析】根据轴对称图形的概念对各个图案进行判断即可得解.【详解】解:第1个是轴对称图形,故本选项正确;第2个是轴对称图形,故本选项正确;第3个是轴对称图形,故本选项正确;第4个不是轴对称图形,故本选项错误.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.A解析:A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.10.D解析:D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.C解析:C【分析】依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D 的度数.【详解】解:∵GF ∥CD ,GE ∥AD ,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G ,∴四边形BEGF 中,∠B=360920110︒︒︒-- =80°, ∴四边形ABCD 中,∠D=360°-∠A-∠B-∠C=80°,故选:C .【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.B解析:B【分析】将△ABD 沿着AD 翻折,则△ABD ≌△AED ,可得AB=AE ,∠B=∠AEB ,将△CEF 沿着EF 翻折,则△AEF ≌△CEF ,可得AE=CE ,∠C=∠CAE ,进而得到AB=EC,∠AEB=∠C+∠CAE=2∠C,从而判断③④正确,由折叠性质只能得到∠ADB=∠ADC=∠AFE=∠CFE=90°,BD=DE,无法得到∠BAC=90°,DE=EF,从而判断①②不一定正确.【详解】解:∵将△ABD沿着AD翻折,使点B和点E重合,∴AB=AE,∠B=∠AEB,∵将△CEF沿着EF翻折,点C恰与点A重合,∴AE=CE,∠C=∠CAE,∴AB=EC,∴④正确;∵∠AEB=∠C+∠CAE=2∠C,∴∠B=2∠C,故③正确;由折叠性质可得△ABD≌△AED,△AEF≌△CEF,∴∠ADB=∠ADC=∠AFE=∠CFE=90°,BD=DE,无法得到∠BAC=90°,DE=EF,∴①②不一定正确.故选:B.【点睛】本题考查翻折变换,含30°直角三角形的性质,全等三角形的判定和性质,三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.二、填空题13.100°【分析】根据要使△AMN的周长最小即利用点的对称让三角形的三边在同一直线上作出A关于BC和CD的对称点A′A″即可得出∠AA′M+∠A″=180°-∠DAB=∠C=50°进而得出∠AMN+∠解析:100°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°-∠DAB =∠C=50°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠B=∠D=90°,∠C=50°,∵∠DAB=130°,∴∠AA′M+∠A″=180°-130°=50°,由对称性可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,故答案为:100°.【点睛】此题主要考查了平面内最短路线问题求法以及三角形的内角和定理及外角的性质和轴对称的性质等知识,根据已知得出M,N的位置是解题关键.14.100°【分析】由∠1:∠2:∠3=13:3:2和三角形内角和定理求出∠1=130°∠3=20°根据折叠的性质即可求解【详解】解:∵∠1:∠2:∠3=13:3:2∴∠1=130°∠3=20°∴∠DC解析:100°【分析】由∠1:∠2:∠3=13:3:2和三角形内角和定理求出∠1=130°,∠3=20°,根据折叠的性质即可求解.【详解】解:∵∠1:∠2:∠3=13:3:2,∴∠1=130°,∠3=20°,∴∠DCA=20°,∠EAB=130°,∵∠PAC=360°﹣2∠1=100°,∴∠EPD=∠APC=180°﹣∠PAC﹣∠DCA=60°,由翻折的性质可知:∠E=∠3=20°,∴∠α=180°﹣60°﹣20°=100°.故答案为:100°.【点睛】本题考查了折叠变换的性质、三角形内角和定理;熟练掌握翻折变换的性质和三角形内角和定理是解题的关键.15.20cm或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A和∠B两种情况求解即可【详解】当∠B翻折时B点与D点重合DE与EC的和就是BC的长即DE+EC=16cmCD=AC=解析:20cm或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A和∠B两种情况求解即可.【详解】当∠B翻折时,B点与D点重合,DE与EC的和就是BC的长,即DE+EC=16cm ,CD=12AC=6cm ,故△CDE 的周长为16+6=22cm ; 当∠A 翻折时,A 点与D 点重合.同理可得DE+EC=AC=12cm ,CD=12BC=8cm , 故△CDE 的周长为12+8=20cm .故答案为20cm 或22cm .【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称. 16.140【分析】作A 关于BC 和CD 的对称点连接交BC 于M 交CD 于N 则即为的周长最小值推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决【详解】如图作A 关于BC 和CD 的对称点连接交BC 于M 交CD 于N 则解析:140【分析】作A 关于BC 和CD 的对称点,A A ''',连接A A ''',交BC 于M ,交CD 于N ,则A A '''即AMN ∆为的周长最小值,推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决.【详解】如图,作A 关于BC 和CD 的对称点,A A ''',连接A A ''',交BC 于M ,交CD 于N ,则A A '''即AMN ∆为的周长最小值,70,90C B D ︒︒∠=∠=∠=,110DAB ︒∴∠=,∴∠A′+∠A″=70°,∵BA=BA′,MB ⊥AB ,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB ,∠A″=∠NAD ,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″)=140°.故答案为140【点睛】本题考查对称的性质、线段垂直平分线的性质、三角形内角和定理等知识,利用对称作辅助线是解决最短的关键.17.①②【分析】首先利用轴对称的性质分别判断正误即可【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称∴∠MAD =∠NAD ∠EAD =∠FAD ∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD 即:∠1=∠2故正解析:①②【分析】首先利用轴对称的性质分别判断正误即可.【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠MAD =∠NAD ,∠EAD =∠FAD ,∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD ,即:∠1=∠2,故正确;②∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠B =∠C ,AC =AB ,在△ANC 与△AMB 中,MAN NAM AC ABB C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ANC ≌△AMB ,故正确;③易得:CD =BD ,但在三角形DNB 中,DN 不一定等于BD ,故错误.故答案为:①②.【点睛】本题考查轴对称的性质,熟练掌握性质是解题的关键.18.【分析】由折叠可得依据的周长是可得进而得到的周长【详解】由折叠可得的周长是的周长故答案为:27【点睛】本题主要考查了折叠问题折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和 解析:27【分析】由折叠可得,BE CE =,6BD CD ==,依据ABE △的周长是15,可得+15AB AE BE AB AE CE +=++=,进而得到ABC △的周长AB AE CE BD CD =++++.【详解】由折叠可得,BE CE =,6BD CD ==,ABE △的周长是15,∴+15AB AE BE AB AE CE +=++=,∴ABC △的周长151227AB AE CE BD CD =++++=+=.故答案为:27..【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.70°【解析】【分析】由折叠的性质可得∠DEH=∠FEH=70°再根据两直线平行内错角相等即可求得答案【详解】由题意得∠DEH=∠FEH=70°∵AD//BC∴∠BHE=∠DEH=70°故答案为:7解析:70°【解析】【分析】由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.【详解】由题意得∠DEH=∠FEH=70°,∵AD//BC,∴∠BHE=∠DEH=70°,故答案为:70°.【点睛】本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.20.12【分析】根据题意利用翻折不变性可得AE=ACCD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题【详解】解:由翻折的性质可知:AE=ACCD=DE且AB=10AC=6BC=解析:12【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,且AB=10,AC=6,BC=8,∴BE=AB-AE=10-6=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.(1)见解析;(2)7 2【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可;(2)利用割补法求解即可.【详解】解:(1)111A B C △如图所示,(2)111A B C △的面积为1117331223132222. 【点睛】 本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.22.【问题1】边边边(或SSS );【问题2】见解析【分析】问题1:根据三角形全等的SSS 定理解答;问题2:证明Rt △ONP ≌Rt △OMP ,根据全等三角形的性质证明即可.【详解】解:问题1:张老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS , 故答案为:SSS ;问题2:由作图得:OM ON =,PN OB ⊥,PM OA ⊥.∴90PNO PMO ∠=∠=︒.∴PNO 和PMO △是直角三角形.∵OP OP =,∴ONP OMP ≌.∴AOP BOP ∠=∠.∴OP 为AOB ∠的平分线.【点睛】本题考查了全等三角形的应用及基本作图的知识,同学们注意仔细审题,理解这些作角平分线的方法,按照题目意思解答.23.(1)第一个共同特征:它们都是轴对称图形,第二个共同特征:它们的面积都是4个空白小正方形单位面积和.(2)作图见解析.【分析】(1)从图形的对称性、阴影的面积等入手考虑即可解答;(2)只需作出符合(1)中的特征的图形即可.【详解】解:(1)由图可知,第一个共同特征:它们都是轴对称图形第二个共同特征:它们的面积都是 4 个空白小正方形单位面积和。

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。

七年级数学下册第五章《生活中的轴对称》单元测试卷1(北师大版)含答案

七年级数学下册第五章《生活中的轴对称》单元测试卷1(北师大版)含答案

第五章《生活中的轴对称》单元测试卷1一、选择题1.下列说法中,不正确的是 ( )A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是 ( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为 ( )4A.2a B.a3C.1.5a D.a4.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是( )A.9cm B.12cmC.9cm和12cm D.在9cm与12cm之间5.观察图7—108中的汽车商标,其中是轴对称图形的个数为 ( )A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 ( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图7—109,在△ACD中,AD=BD=BC,若∠C=25°,则∠ADB=________.7.已知:如图7—110,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E =_____________.8.如图7—111,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图7—112,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图7—113,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图7—115,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图7—116,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图7—117,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB=20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图7—118,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图7—119,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.8.已知:如图7—120,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF.参考答案一、1.D 2.B 3.C 4.B 5.C 6.C 7.D 8.D 9.B 10.A 二、1.5 2.3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD =5cm ,DE =5cm ,EB =10cm 6.先证△ENC≌△DMB(ASA ), ∴ DM=EN. 再加上AD =BE 即可.7.∵ AF=AG ,∴ ∠G=∠AFG.又∵ ∠ADC=∠GEC,∴ AD∥GE.∴ ∠G=∠CAD. ∴ ∠AFG=∠BAD.∴ ∠CAD=∠BAD. ∴ AD 平分∠BAC.8.连结AD.在△ADF 和△BDE 中,可证得: BD =AD ,BE =AF ,∠B=∠D AF. ∴ △ADF≌△BDE.∴ DE=DF.。

北师大版七年级下册数学-第五章-生活中的轴对称-单元测试卷(附参考答案)

北师大版七年级下册数学-第五章-生活中的轴对称-单元测试卷(附参考答案)

第五章生活中的轴对称单元测试卷(北师大版七年级数学下册)一.选择题1. 下列图形中对称轴只有两条的是()A.圆B.等边三角形C.矩形D.等腰梯形2. 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°3.在下列说法中,正确的是()A.如果两个三角形全等,则它们必是关于直线成轴对称的图形;B.如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C.等腰三角形是关于底边中线成轴对称的图形;D.一条线段是关于经过该线段中点的直线成轴对称的图形 .4. 小明从镜中看到电子钟示数是,则此时时间是()A.12:01B.10:51C.11:59D.10:215. 如图,AD是△ABC的角平分线,AE是△ABD的角平分线,若∠BAC=60°那么∠EAC=()A.40°B.30°C.15°D.45°6.如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为()A.12 B.24 C.36 D.不确定∠=︒,则7. 如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若1129∠的度数为()2A. 49°B. 50°C. 51°D. 52°8. 如图, △ABC中, ∠ACB=90°, ∠ABC=60°, AB的中垂线交BC的延长线于D,交AC于E, 已知DE=2.AC的长为()A.2B.3C. 4D.5二.填空题9. 如图,把一个边长为1的正方形经过三次对折后沿中位线(虚线)剪开,则下图展开得到的图形的面积为.10. 如图,在△ABC中,∠C=90度,AD平分∠BAC交BC于D,若BC=8,BD=5,则点D到AB的距离为.11.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.12. 如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,PD的长为________.13.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=•∠OCA,∠BOC=110°,求∠A的度数为________.14. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为 .15. 如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60º,若BE=6cm,DE=2cm,则BC=______________.16. 如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________。

生活中的轴对称试题总集含答案

生活中的轴对称试题总集含答案

第十二章 轴对称 全章测试一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对6、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.A .16B .18 C.26 D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).A .75°或15°B .75°C .15°D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直ACB图2图1 l O D CBABCAB .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm . 18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC , △A 1B 1C 1(1)分别画出与△ABC 关于x 轴、y 轴对称的图形和△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.ADEF BC DEC BAO ABCDE 23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.的长.25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC . 29、如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC的道理.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD . 答案: 一、 选择题: 1 2 3 4 5 6 7 8 9 10 ACCBCBCABA 二、填空题:11.MN ,AB 12.6 13.120 14.20 15.080,050或065,065 16.15 17.6 18.030 19.上,5 20.3 三、解答题 略第七章:生活中的轴对称一、中考要求:1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念. 2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质.3.探索并了解基本图形(线段、角、等腰三角形)的轴对称性及其相关性质.4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴.5.欣赏现实中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值.6.结合现实生活中的典型实例了解并欣赏物体的镜面对称.二、中考卷研究(一)中考对知识点的考查:2004、2005年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 轴对称图形2~6%2 轴对称的应用2~5%(二)中考热点:将图形的折叠问题,照镜问题转化为轴对称图形问题及将轴对称问题运用于综合题中是2006年的热点题型之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册《生活中的轴对称》单元测试卷
姓名:________________成绩:________________
一、选择题
1.(下列说法中,不正确的是()
A.等腰三角形底边上的中线就是它的顶角平分线
B.等腰三角形底边上的高就是底边的垂直平分线的一部分
C.一条线段是以它的垂直平分线为对称轴的轴对称图形
D.两个三角形能够重合,它们一定是轴对称的
2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()
A.48°B.54°C.74°D.78°
3.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()
A.9cm B.12cm C.9cm或12cm D.在9cm或12cm之间
4.观察图中的汽车商标,其中是轴对称图形的个数为()
A.2 B.3 C.4 D.5
5.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()
A.1个B.2个C.3个D.4个
二、填空题(每题6分,共30分)
6.五角星有条对称轴.
7.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.
8.等腰三角形的腰长是底边长的,一边长为11cm,则它的周长是.
9.在下列图形中:①等腰三角形;②正方形;③正七边形;④平行四边形;⑤梯形;⑥菱形,一定是轴对称图形的是.
10.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.
三、解答题(共40分)
11.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.
12.如图,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.
参考答案与试题解析
一、选择题(每题6分,共30分)
1.(6分)下列说法中,不正确的是()
A.等腰三角形底边上的中线就是它的顶角平分线
B.等腰三角形底边上的高就是底边的垂直平分线的一部分
C.一条线段是以它的垂直平分线为对称轴的轴对称图形
D.两个三角形能够重合,它们一定是轴对称的
【分析】根据等腰三角形的三线合一的性质,及两个图形关于某直线对称,对称轴是任何一对对应点所连线段的垂直平分线得出.
【解答】解:A、B符合等腰三角形的三线合一的性质,正确;
C、符合轴对称的性质,正确;
D、不符合轴对称的性质,不正确.
故选D.
2.(6分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()
A.48°B.54°C.74°D.78°
【分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.
【解答】解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,
∴∠B=180°﹣78°﹣48°=54°
∵△ABC与△A′B′C′关于直线l对称,
∴∠B=∠B′=54°.
故选B.
3.(6分)等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()
A.9cm B.12cm
C.9cm或12cm D.在9cm或12cm之间
【分析】题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;
当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.
故选B.
4.(6分)观察图中的汽车商标,其中是轴对称图形的个数为()
A.2 B.3 C.4 D.5
【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对对称轴,找出每个图中的对称轴,即可选出答案.
【解答】解:第一、二、四、五个图形都是轴对称图形,第三个是中心对称图形,
故选:C.
5.(6分)如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()
A.1个B.2个C.3个D.4个
【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;
(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定
义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°
∵BP=PC,
∴∠PBC=(180°﹣150°)÷2=15°,
①正确;
根据题意可得四边形ABCD是轴对称图形,
∴②AD∥BC,③PC⊥AB正确;
④也正确.
所以四个命题都正确.
故选D.
二、填空题(每题6分,共30分)
6.(6分)五角星有5条对称轴.
【分析】根据轴对称图形的概念分析解答即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【解答】解:五角星共有5条对称轴,过每个角的顶点都有条对称轴.
故答案为5.
7.(6分)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为8cm2.
【分析】正方形为轴对称图形,一条对称轴为其对角线;由图形条件可以看出阴影部分的面积为正方形面积的一半.
【解答】解:依题意有S阴影=×4×4=8cm2.
故答案为:8.
8.(6分)等腰三角形的腰长是底边长的,一边长为11cm,则它的周长是cm或cm.【分析】题中给出的长为11cm的边,没有指明那一边是腰还是底,则应该分情况进行分析.【解答】解:(1)若腰长为11cm,则底边长为11×=cm,则它的周长是11+11+=cm;
(2)若底边长为11cm,则腰长为11×=cm,则它的周长是11++=cm;
所以它的周长为cm或cm.
故填为cm或cm.
9.(6分)在下列图形中:①等腰三角形;②正方形;③正七边形;④平行四边形;⑤梯形;
⑥菱形,一定是轴对称图形的是①②③⑥.
【分析】根据轴对称图形的概念,结合各图形进行判断即可.
【解答】解:①等腰三角形一定是轴对称图形;
②正方形一定是轴对称图形;
③正七边形一定是轴对称图形;
④平行四边形不是轴对称图形;
⑤梯形不一定是轴对称图形;
⑥菱形一定是轴对称图形.
故答案为:①②③⑥.
10.(6分)如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55.
【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.
【解答】解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=70°,可得∠B′OG+∠BOG=110°
∴∠B′OG=×110°=55°.
三、解答题(共40分)
11.(20分)如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.
【分析】分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,则PM+MN+NP最短.
【解答】解:如图所示:分别以直线OX、OY为对称轴,作点P的对应点P1与P2,
连接P1P2交OX于M,交OY于N,
则PM+MN+NP最短.
12.(20分)如图,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.
【分析】根据等腰三角形性质可得∠G=∠GFA;根据平行线的判定方法可得AD∥GF,运
用平行线的性质得角的关系求证.
【解答】证明:∵AF=AG,
∴∠G=∠GFA.
∵∠ADC=∠GEC,
∴AD∥GE.
∴∠BAD=∠GFA,∠DAC=∠G.
∴∠BAD=∠DAC,即AD平分∠BAC.。

相关文档
最新文档